Open Access
December 2016 Coauthorship and citation networks for statisticians
Pengsheng Ji, Jiashun Jin
Ann. Appl. Stat. 10(4): 1779-1812 (December 2016). DOI: 10.1214/15-AOAS896


We have collected and cleaned two network data sets: Coauthorship and Citation networks for statisticians. The data sets are based on all research papers published in four of the top journals in statistics from $2003$ to the first half of $2012$. We analyze the data sets from many different perspectives, focusing on (a) productivity, patterns and trends, (b) centrality and (c) community structures.

For (a), we find that over the 10-year period, both the average number of papers per author and the fraction of self citations have been decreasing, but the proportion of distant citations has been increasing. These findings are consistent with the belief that the statistics community has become increasingly more collaborative, competitive and globalized.

For (b), we have identified the most prolific/collaborative/highly cited authors. We have also identified a handful of “hot” papers, suggesting “Variable Selection” as one of the “hot” areas.

For (c), we have identified about $15$ meaningful communities or research groups, including large-size ones such as “Spatial Statistics,” “Large-Scale Multiple Testing” and “Variable Selection” as well as small-size ones such as “Dimensional Reduction,” “Bayes,” “Quantile Regression” and “Theoretical Machine Learning.”

Our findings shed light on research habits, trends and topological patterns of statisticians. The data sets provide a fertile ground for future research on social networks.


Download Citation

Pengsheng Ji. Jiashun Jin. "Coauthorship and citation networks for statisticians." Ann. Appl. Stat. 10 (4) 1779 - 1812, December 2016.


Received: 1 October 2014; Revised: 1 November 2015; Published: December 2016
First available in Project Euclid: 5 January 2017

zbMATH: 06688753
MathSciNet: MR3592033
Digital Object Identifier: 10.1214/15-AOAS896

Keywords: Adjacent rand index , centrality , collaboration , Community detection , Degree Corrected Block Model , productivity , Social network , spectral clustering

Rights: Copyright © 2016 Institute of Mathematical Statistics

Vol.10 • No. 4 • December 2016
Back to Top