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COAUTHORSHIP AND CITATION NETWORKS FOR
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We have collected and cleaned two network data sets: Coauthorship and
Citation networks for statisticians. The data sets are based on all research
papers published in four of the top journals in statistics from 2003 to the
first half of 2012. We analyze the data sets from many different perspectives,
focusing on (a) productivity, patterns and trends, (b) centrality and (c) com-
munity structures.

For (a), we find that over the 10-year period, both the average number of
papers per author and the fraction of self citations have been decreasing, but
the proportion of distant citations has been increasing. These findings are con-
sistent with the belief that the statistics community has become increasingly
more collaborative, competitive and globalized.

For (b), we have identified the most prolific/collaborative/highly cited au-
thors. We have also identified a handful of “hot” papers, suggesting “Variable
Selection” as one of the “hot” areas.

For (c), we have identified about 15 meaningful communities or research
groups, including large-size ones such as “Spatial Statistics,” “Large-Scale
Multiple Testing” and “Variable Selection” as well as small-size ones such as
“Dimensional Reduction,” “Bayes,” “Quantile Regression” and “Theoretical
Machine Learning.”

Our findings shed light on research habits, trends and topological patterns
of statisticians. The data sets provide a fertile ground for future research on
social networks.

1. Introduction. It is frequently of interest to identify “hot” areas and key au-
thors in a scientific community, and to understand the research habits, trends and
topological patterns of the researchers. A better understanding of such features is
useful in many perspectives: it may help administrators or funding agencies to pri-
oritize research areas, and researchers to start a new topic or a new collaboration,
and so on and so forth.

Coauthorship and Citation networks provide a convenient and yet appropriate
approach to addressing many of these questions. On the one hand, with the boom
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of online resources (e.g., MathSciNet) and search engines (e.g., Google Scholar),
it is relatively convenient to collect the Coauthorship and Citation network data of
a specific scientific community. On the other hand, these network data provide a
wide variety of information (e.g., productivity, trends and community structures)
that can be extracted to understand many aspects of the scientific community.

Recent studies on such networks include but are not limited to the following:
Grossman (2002) studied the Coauthorship network of mathematicians; Newman
(2001a, 2004) and Martin et al. (2013) studied the Coauthorship networks of biol-
ogists, physicists and computer scientists; Ioannidis (2008) used the Coauthorship
network to help assess the scientific impacts.

Unfortunately, as far as we know, Coauthorship and Citation networks for statis-
ticians have not yet been studied. We recognize that people who are most interested
in networks for statisticians are statisticians ourselves, and it is the statisticians’
task to study our own networks. We also recognize that, as statisticians, we have
the advantage of knowing something about many aspects of our own community;
such “partial ground truth” can be very helpful in analyzing the networks and in
interpreting the results.

With substantial time and effort, we have collected two network data sets: Coau-
thorship network and Citation network for statisticians. The data sets are based on
all published papers from 2003 to the first half of 2012 in four of the top statistical
journals: Annals of Statistics (AoS), Biometrika, Journal of American Statistical
Association (JASA) and Journal of Royal Statistical Society (Series B) (JRSS-B).

The data sets provide fertile ground for research on social networks. For exam-
ple, we can use the data sets to check and build network models, to develop new
methods and theory, and to further understand the research habits, patterns and
community structures of statisticians. The data sets also serve as a starting point
for a more ambitious project [Ji, Jin and Ke (2015)], where we collect a network
data set that is similar in nature but is much larger: it covers about 30 journals and
spans a time period of 40 years.

1.1. Our findings. We have the following findings:

(a) Productivity, patterns and trends. We identify noticeable productivity char-
acteristics and publication patterns/trends for statisticians.

(b) Centrality. We identify “hot” areas, authors who are most collaborative, and
authors who are most highly cited.

(c) Community detection. With possibly more sophisticated methods and anal-
ysis, we identify meaningful communities for statisticians.

We now discuss the three items separately.
(a) Productivity, patterns and trends. We have found the following:

• Between 2003 and 2012, the number of papers per author has been decreas-
ing (Figure 1). The proportion of self-citations has been decreasing, while the
proportion of distant citations has been increasing (Figure 4). Possible expla-
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nations are as follows: the statistics community has become increasingly more
collaborative, competitive and globalized.

• The distribution of either the degrees of the author-paper bipartite network or
the Coauthorship network has a power-law tail (Figures 2–3), a phenomenon
frequently found in social networks [Barabási and Albert (1999), Newman
(2001b)].

(b) Centrality. We have identified Peter Hall, Jianqing Fan and Raymond Carroll
as the most prolific authors, Peter Hall, Raymond Carroll and Joseph Ibrahim as
the most collaborative authors, and Jianqing Fan, Hui Zou and Peter Hall as the
most cited authors; see Table 2.

We have also identified 14 “hot” papers; see Table 3. Among these 14 papers,
10 are on variable selection, suggesting “Variable Selection” as a “hot” area. Other
“hot” areas may include “Covariance Estimation,” “Empirical Bayes” and “Large-
scale Multiple Testing.”

(c) Community detection. Intuitively, communities in a network are groups of
nodes that have more edges within than across (note that “community” and “com-
ponent” are very different concepts); see Jin (2015), for example. The goal of
community detection is to identify such groups (i.e., clustering).

We consider the Citation network and two versions of Coauthorship networks.
In each of these networks, a node is an author:

(c1) Coauthorship network (A). In this network, there is an (undirected) edge
between two authors if and only if they have coauthored 2 or more papers in the
range of our data sets.

(c2) Coauthorship network (B). This is similar to Coauthorship network (A),
but “2 or more papers” is replaced by “1 or more papers.”

(c3) Citation network. There is a (directed) edge from author i to j if author i

has cited 1 or more papers by author j .

The first version of the Coauthorship network is easier to analyze than the second
version, and presents many meaningful research groups that are hard to find. We
now discuss the three networks separately.

(c1) Coauthorship network (A). The network is rather fragmented. The giant
component can be interpreted as the “High-Dimensional Data Analysis [Coau-
thorship (A)]” (HDDA-Coau-A) community, which has 236 nodes and may con-
tain substructures; see Section 4.2. The next two largest components (Figure 8)
can be interpreted as communities of “Theoretical Machine Learning” (18 nodes)
and “Dimension Reduction” (14 nodes), respectively. The next 5 components (Ta-
ble 6) can be interpreted as communities of “Johns Hopkins,” “Duke,” “Stanford,”
“Quantile Regression” and “Experimental Design,” respectively.

(c2) Coauthorship network (B). We have identified three meaningful commu-
nities as follows: “Bayes,” “Biostatistics [Coauthorship (B)]” (Biostat-Coau-B)
and “High-Dimensional Data Analysis [Coauthorship (B)]” (HDDA-Coau-B), pre-
sented in Figures 9, 10 and 11, respectively.
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TABLE 1
The 14 communities introduced in Section 1.1. In Coauthorship Network (A), each community is a

component of the network. In Coauthorship Network (B) and the Citation Network, the communities
are identified by SCORE and D-SCORE, respectively

Network Communities # nodes Visualization

Coauthor (A) High-Dimensional Data Analysis (HDDA-Coau-A) 236 Figures 6, 7
Theoretical Machine Learning 18 Figure 8
Dimension Reduction 14 Figure 8

Johns Hopkins 13 Table 6
Duke 10
Stanford 9
Quantile Regression 9
Experimental Design 8

Coauthor (B) Bayes 64 Figure 9
Biostatistics 388 Figure 10
High-Dimensional Data Analysis (HDDA-Coau-B) 1181 Figure 11

Citation Large-Scale Multiple Testing 359 Figure 13
Variable Selection 1280 Figure 14
Spatial & Semiparametric/Nonparametric Statistics 1015 Figure 15

(c3) Citation network. We have identified three communities: “Large-Scale
Multiple Testing,” “Variable Selection” and “Spatial and semiparametric/
nonparametric Statistics,” presented in Figures 13–15, respectively.

We present in Table 1 a road map for the 14 communities we just mentioned
(some of these communities have subcommunities; see Sections 4–5). The com-
munities or groups identified in each of the three networks are connected and in-
tertwined, but are also very different; see Sections 5.2.1–5.2.2.

1.2. Data collection and cleaning. We have faced substantial challenges in
data collection and cleaning, and it has taken us more than 6 months to obtain
high-quality data sets and prepare them in a ready-to-use format.

It may be hard to understand why collecting such data is challenging: the data
seem to be everywhere, very accessible and free. This is true to some extent. How-
ever, when it comes to high-volume high-quality data, the resources become sur-
prisingly limited. For example, Google Scholar aggressively blocks any one who
tries to download the data more than just a little; when you try to download little
by little, you will see some portion of the data are made messy and incomplete
intentionally. For other online resources, we faced similar problems.

Other challenges we have faced are missing paper identifiers, ambiguous author
names, etc.; we explain how we have overcome these in the Appendix.

1.3. Experimental design and scientific relevance. We have limited our atten-
tion to four journals (AoS, Biometrika, JASA, JRSS-B), which are regarded by
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many statisticians as the leading methodological journals (with a caveat for JASA
applications). We recognize that we may have different results if we include in our
data set either journals which are the main venues for statisticians from a different
country or region, or journals which are the main venues for statisticians with a
different focus (e.g., Bioinformatics).

Also, in our study, we are primarily interested in the time period when high-
dimensional data analysis emerged as a new statistical area. We may have different
results if we extend the study to a much longer time period.

On the other hand, it seems that the data sets we have here serve well for our
targeted scientific problems: they provide many meaningful results in many aspects
of our targeted community within the targeted time period. They also prepare us
well for a more ambitious project [Ji, Jin and Ke (2015)] where we collect new
data sets by downloading papers from about 30 journals in the last 40 years.

1.4. Disclaimers. Our primary goal in the paper is to present the data sets
we collect, and to report our findings in such data sets. It is not our intention to
rank one author/paper over the others. We wish to clarify that “highly cited” is not
exactly the same as “important” or “influential.” It is not our intention to rank one
area over the other either. A “hot” area is not exactly the same as an “important”
area or an area that needs the most of our time and efforts. It is not exactly an area
that is exhausted either.

Also, it is not our intention to label an author/paper/topic with a certain com-
munity/group/area. A community or a research group may contain many authors,
and can be hard to interpret. For presentation, we need to assign names to such
communities/groups/areas, but the names do not always accurately reflect all the
authors/papers in them.

Finally, social networks are about “real people” (and this time, “us”). To obtain
interpretable results, we have to use real names, but we have not used any data that
is not publicly available. The interest of the paper is on the statistics community
as a whole, not on any individual statistician.

1.5. Contents. Section 2 studies the productivity, patterns and trends for statis-
ticians. Section 3 discusses the network centrality. Sections 4–5 discuss commu-
nity detection for the Coauthorship network and Citation network, respectively.
Section 6 contains some discussion, and Appendix, where we address the chal-
lenges in data collection and cleaning.

2. Productivity, patterns and trends.

2.1. Productivity. There are 3248 papers and 3607 authors in the data set (an
average of 0.90 paper per author). To investigate how the productivity evolves over
the years, we present in Figure 1 the total number of papers published in each year
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FIG. 1. Left: total number of papers published each year from 2002 to 2012 (for the year 2012, we
have only data for the first half). Right: yearly average productivity per author.

(left panel) and the yearly average productivity (per author).3 Over the 10-year
period, the number of papers published in each year has been increasing, but the
yearly average producibility has been decreasing (drop about 18% in ten years).
Possible explanations include the following:

• More collaborative. Collaboration between authors has been increasing.
• More competitive. Statistics has become a more competitive area, and there are

more people who enter the area than who leave the area.

It could also be the case that the productivity does not change much, but statis-
ticians are publishing in a wider range of journals, and more younger ones have
started making substantial contributions to the field.

For any K-author paper, we may count each coauthor’s contribution to this par-
ticular paper either as “divided” or as “nondivided,” where we count every coau-
thor as having published 1 paper and 1/K paper, respectively.

For “nondivided” contribution, we have Figure 2 (left), where the x-axis is the
number of papers, and the y-axis is the proportion of authors who have written
more than a certain number of papers. Figure 2 suggests that the distribution of
the number of papers has a power-law tail. For “divided” contribution, we have the
Lorenz curve for the number of papers by each author in Figure 2 (right), which
suggests the distribution does not have a power-law tail but is still very skewed.
For example, the figure shows that the top 10% most prolific authors contribute
41% of the papers. Our findings are similar to that in Martin et al. (2013) for the
physics community.

2.2. Coauthor patterns and trends. In the coauthorship network, the degrees
(i.e., number of coauthors) range from 0 to 65, where Peter Hall (65), Raymond

3For each year, this is the ratio of the total number of papers in that year over the total number of
authors who published at least once in that year.
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FIG. 2. Left: The proportion of authors who have written more than a certain number of papers
(for a better view, both axes are evenly spaced on the logarithmic scale). Right: The Lorenz curve for
the number of papers by each author with divided contributions.

Carroll (55), Joseph Ibrahim (41) and Jianqing Fan (38) have the highest degrees.
Also, 154 authors have degree 0, and 913 authors have degree 1. The degree dis-
tribution (Figure 3, left) suggests a power-law tail.

To investigate how the number of coauthors changes over time, we present in
Figure 3 (right) the average number of coauthors in each year, where the average
number of coauthors is steadily increasing. Again, this suggests that the statistics
community has become increasingly more collaborative.

FIG. 3. Left: The proportion of authors with more than a given number of coauthors (for a better
view, both axes are evenly spaced on the logarithmic scale). Right: The average number of coauthors
for all authors who have published in these journals that year.
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FIG. 4. Left: The Lorenz curve for the number of citations received by each paper. Right: The
proportions of self-citations (red circles), coauthor citations (green triangles) and distant citations
(blue rectangles) for each two-year block.

2.3. Citation patterns and trends. For the 3248 papers (3607 authors) in our
data sets, the average citation per paper is 1.76.4 Among these papers, (a) 1693
(52%) are not cited by any other paper in the data set, (b) 1450 (45%) do not cite
any other paper in the data set, and (c) 778 (24%) neither cite nor are cited by any
other papers in the data set.

The distribution of the in-degree (the number of citations received by each pa-
per) is highly skewed. For example, the top 10% of highly cited papers receive
about 60% of all citation counts. The Gini coefficient is 0.77 [Gini (1936)], sug-
gesting that the in-degree is highly dispersed. The Lorenz curve (Figure 4, left)
confirms that the distribution of the in-degrees is highly skewed.

It seems that authors tend to return a favor, especially if it is from a coauthor:
the proportion of (either earlier or later) reciprocation among coauthor citations is
79%, while that among distant citations is 25%.

The overall proportions for self-citations, coauthor citations and distant cita-
tions5 are 27%, 9% and 64%, respectively. Moreover, Figure 4 (right panel) sug-
gests that over the 10-year period, the proportions of self-citations, coauthor ci-
tations and distant citations have been slowly decreasing, roughly the same and
slowly increasing, respectively. The last item is a bit unexpected, but may be due
to that over the years the publications have become increasingly more accessible.
That the blue and red curves cross with each other on the left is probably due to
the “boundary effect.”6

4This is significantly lower than the Impact Factor (IF) of these journals; based on ISI 2010, the
IFs for AoS, JRSS-B, JASA and Biometrika are 3.84, 3.73, 3.22 and 1.94, respectively. This is due
to that we count only citations between papers in our data set.

5Citations from someone who is not oneself or a coauthor.
6Here is an example for boundary effect. For papers published in 2003, most papers they cite are

probably published earlier than 2002 (so beyond the range of our data set).
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TABLE 2
Top 3 authors identified by the degree centrality (Columns 1–3; corresponding networks are the
author-paper bipartite network, Coauthorship network and Citation network for authors), the

closeness centrality and the betweenness centrality

# of papers # of coauthors # of citers Closeness Betweenness

Peter Hall Peter Hall Jianqing Fan Raymond Carroll Raymond Carroll
Jianqing Fan Raymond Carroll Hui Zou Peter Hall Peter Hall
Raymond Carroll Joseph Ibrahim Peter Hall Jianqing Fan Jianqing Fan

3. Centrality. It is frequently of interest to identify the most “important” au-
thors or papers, and one possible approach is to use centrality. There are many
different measures of centrality. In this section, we use the degree centrality, the
closeness centrality and the betweenness centrality. The closeness centrality is de-
fined as the reciprocal of the total distance to all others [Sabidussi (1966)]. The
betweenness centrality measures the extent to which a node is located “between”
other pairs of nodes [Freeman, Borgatti and White (1991)].

The degree centrality is conceptually simple, but the definitions vary from case
to case. For the author-paper bipartite network, the centrality of an author is the
number of papers he/she publishes. For the Coauthorship network, the centrality of
an author is the number of his/her coauthors. For the Citation network of papers,
the centrality is the in-degree (i.e., the number of papers which cite this paper). For
the Citation network of authors, the centrality of an author is the number of citers
(i.e., authors who cite his or her papers).

Table 2 presents the key authors identified by different measures of centrality.
The results suggest that different measures of centrality are largely consistent with
each other, which identify Raymond Carroll, Jianqing Fan and Peter Hall (alpha-
betically) as the “top 3” authors.

Table 3 presents the “hot” papers identified by 3 different measures of centrality.
For all these measures, the “hottest” papers seem to be in the area of variable
selection. In particular, the top 3 most cited paper are Zou (2006) (75 citations;
adaptive lasso), Meinshausen and Bühlmann (2006) (64 citations; graphical lasso),
and Candes and Tao (2007) (49 citations; Dantzig Selector). The three papers are
all in a specific subarea of high-dimensional variable selection, where the theme is
to extend the penalization methods [e.g., the lasso by Chen, Donoho and Saunders
(1998) and Tibshirani (1996)] in various directions.7

These results suggest “Variable Selection” as one of the “hot” areas. Other “hot”
areas may include “Covariance Estimation,” “Empirical Bayes” and “Large-Scale
Multiple Testing”; see Table 3 for details.

7These fit well with the impression of many statisticians: in the past 10–20 years, there is a notice-
able wave of research interest on the penalization approach to variable selection.
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TABLE 3
Fourteen “hot” papers (alphabetically) identified by degree centrality (for citation networks of
papers), closeness centrality and betweenness centrality. The numbers in Columns 2–4 are the

ranks (only shown when the rank is smaller than 5)

Paper (Area) Citations Closeness Betweenness

Bickel and Levina (2008a) (Covariance Estimation) 4
Candes and Tao (2007) (Variable Selection) 3
Fan and Li (2004) (Variable Selection) 2
Fan and Lv (2008) (Variable Selection) 1
Fan and Peng (2004) (Variable Selection) 4 1
Huang et al. (2006) (Covariance Estimation) 3
Huang, Horowitz and Ma (2008) (Variable Selection) 5
Hunter and Li (2005) (Variable Selection) 4
Johnstone and Silverman (2005) (Empirical Bayes) 5
Meinshausen and Bühlmann (2006) (Variable Selection) 2
Storey (2003) (Multiple Testing) 3
Zou (2006) (Variable Selection) 1
Zou and Hastie (2005) (Variable Selection) 5
Zou and Li (2008) (Variable Selection) 2

For the 30 most cited papers, see http://faculty.franklin.uga.edu/psji/sites/
faculty.franklin.uga.edu.psji/files/top-cited-30.xlsx. These papers account for 16%
of the total number of citation counts. The list further shows that the most highly
cited papers are on the penalization approach to variable selection (e.g., adaptive
lasso, group lasso).

On the other hand, note that some important and innovative works in the area
of variable selection have significantly fewer citations. These include but are not
limited to the phenomenal paper by Efron et al. (2004) on least angle regression,
which has received a lot of attention from a broader scientific community.8 A sim-
ilar claim can be drawn on other areas or topics.

The fact that statisticians have been very much focused on a very specific re-
search topic and a very specific approach is an interesting phenomenon that de-
serves more explanation by itself.

4. Community detection for Coauthorship networks. In this section, we
study community detection for Coauthorship networks (A) and (B).

4.1. Community detection methods (undirected networks). Community detec-
tion is a problem of major interest in network analysis [Goldenberg et al. (2009)].
Consider an undirected and connected network N = (V ,E) with n nodes. We

8The paper has 4900 citations on Google Scholar, but is only cited 11 times by papers in our data
set [in comparison, the adaptive lasso paper Zou (2006) has received 75 citations].

http://faculty.franklin.uga.edu/psji/sites/faculty.franklin.uga.edu.psji/files/top-cited-30.xlsx
http://faculty.franklin.uga.edu/psji/sites/faculty.franklin.uga.edu.psji/files/top-cited-30.xlsx
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think of V as the union of a few (disjoint) subsets which we call the “communi-
ties”:

V = V (1) ∪ V (2) ∪ · · · ∪ V (K), 9

where “∪” stands for the conventional union in set theory (same below). Intuitively,
we think of communities as subsets of nodes where there are more edges “within”
than “across” [e.g., Bickel and Levina (2008b)]. The goal of community detection
is clustering: for each i ∈ V , decide to which of the K communities it belongs.

There are many community detection methods for undirected networks. In this
paper, we consider the Spectral Clustering approach (NSC) by Newman (2006),
the Profile Likelihood approach (BCPL) by Bickel and Chen (2009) and Zhao,
Levina and Zhu (2012), the Pseudo Likelihood approach (APL) by Amini et al.
(2013) and the SCORE by Jin (2015).

NSC is a spectral method based on the key observation that Newman and Gir-
van’s modularity matrix can be approximated by the leading eigenvectors of the
matrix. Following Newman (2006), we cluster by using the signs of the first lead-
ing eigenvectors when K = 2, and use the recursive bisection approach when
K ≥ 3.

BCPL is a penalization method proposed by Bickel and Chen (2009) which
uses a greedy search to maximize the profile likelihood. For large networks, BCPL
may be computationally inefficient. In light of this, Amini et al. (2013) modified
BCPL and proposed APL as a new Profile Likelihood approach. APL ignores some
dependence structures in the modeling so that the resultant profile likelihood has a
simpler form and is easier to compute.

SCORE, or Spectral Clustering On Ratios of Eigenvectors, is a spectral method
motivated by the recent Degree Corrected Block Model [DCBM, Karrer and
Newman (2011)]. SCORE recognizes that the degree heterogeneity parameters in
DCBM are nearly ancillary and can be conveniently removed by taking entry-wise
ratios between the eigenvectors of the adjacency matrix; see Jin (2015). SCORE
is a flexible idea and is highly adaptable. In Section 5, we extend SCORE to
Directed-SCORE (D-SCORE) as an approach to community detection for directed
networks, and use it to analyze the Citation network.

REMARK. For different methods, the vectors of predicted labels can be very
different. For a pair of the predicted label vectors, we measure the similarity by the
Adjusted Rand Index (ARI) [Hubert and Arabie (1985)] and the Variation of Infor-
mation (VI) [Meila (2003)]; a large ARI or a small VI suggests that two predicted
label vectors are similar to each other.

9For simplicity, we assume the communities are nonoverlapping in this paper.
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FIG. 5. Scree plots. From left to right: the giant component of Coauthorship network (A), Coau-
thorship network (B) and Citation network (asymmetric; plotted are singular values).

4.2. Coauthorship network (A). In this network, by definition, there is an edge
between two nodes (i.e., authors) if and only if they have coauthored 2 or more
papers (in the range of our data sets). The network is very much fragmented: the
total of 3607 nodes split into 2985 different components, where 2805 (94%) of
them are singletons, 105 (3.5%) of them are pairs, and the average component size
is 1.2.

The giant component (236 nodes) is seen to be the “High-Dimensional Data
Analysis [Coauthorship (A)]” community (HDDA-Coau-A), including (sorted de-
scendingly by the degree) Peter Hall, Raymond Carroll, Jianqing Fan, Joseph
Ibrahim, Tony Cai, David Dunson, Hua Liang, Jing Qin, Donglin Zeng, Hans-
Georg Müller, Hongtu Zhu, Enno Mammen, Jian Huang, Runze Li, etc. It seems
that the giant component has substructures. In Figure 5 (left), we plot the scree
plot of the adjacency matrix associated with this group. The elbow point of the
scree plot may be at the 3rd, 5th or 8th largest eigenvalue, suggesting that there
may be 2, 4 or 7 communities. In light of this, for each K with 2 ≤ K ≤ 7, we run
SCORE, NSC, BCPL and APL and record the corresponding vectors of predicted
labels. We find that, for K ≥ 3, the results by different methods are largely incon-
sistent with each other: the maximum of ARI and the minimum VI (see the remark
in Section 4.1) across different pairs of methods are 0.15 and 1.19, respectively.

We now focus on the case of K = 2. In Table 4, we present the ARI and VI
for each pair of the methods. The table suggests that the 4 methods split into two
groups where SCORE and APL are in one of the groups with an ARI of 0.72 be-
tween them, and NSC and BCPL are in the other group with an ARI of 0.21. The
results for methods in each group are moderately consistent to each other, but those
for methods in different groups are rather inconsistent. That BCPL and APL have
rather different results is unexpected, as APL is a variant of BCPL. A possible ex-
planation is that both methods use random starting points; they do not necessarily
converge even for a long time, and so may produce different results from run to
run. See Table 5, which compares the sizes of the communities identified by the 4
methods.

In Figures 6–7, we further compare the community detection results by each of
the 4 methods (K = 2). In each panel, nodes are marked with either blue circles or
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TABLE 4
The Adjusted Random Index (ARI) and Variation of Information (VI) for the vectors of predicted

community labels by four different methods for the giant component of Coauthorship (A), assuming
K = 2. A large ARI/small VI suggests that the two predicted label vectors are similar to each other

SCORE NSC BCPL APL

SCORE 1.00/0.00 −0.04/0.95 0.09/1.05 0.72/0.33
NSC 1.00/0.00 0.21/1.06 −0.06/0.91
BCPL 1.00/0.00 0.09/0.87
APL 1.00/0.00

red squares, representing two different communities. It seems that all four methods
agree that there are two communities as follows:

• “North Carolina” community. This includes a group of researchers from Duke
University, University of North Carolina and North Carolina State University.

• “Carroll–Hall” community. This includes a group of researchers in nonparamet-
ric and semiparametric statistics, functional estimation and high-dimensional
data analysis.

Comparing the results by different methods, one of the major discrepancies lies
in the “Fan” group: SCORE and APL cluster the “Fan” group (with Jianqing Fan
being the hub) into the “Carroll–Hall” community, and NSC and BCPL cluster
it into the “North Carolina” community. A possible explanation is that the “Fan”
group has strong ties to both communities. Another explanation is that there are
≥ 3 communities. However, the results by all 4 methods are rather inconsistent
if we assume K ≥ 3; see discussions before. How to obtain a more convincing
explanation is an interesting but challenging problem. We omit further discussions
for reasons of space.

Other noteworthy discrepancies are as follows:

TABLE 5
Comparison of community sizes by different methods assuming K = 2 for the giant component of

Coauthorship network (A)

North Carolina Carroll–Hall

SCORE 45 191
NSC 155 81
APL 31 205

SCORE ∩ NSC 45 81
SCORE ∩ APL 31 191
NSC ∩ APL 31 81

SCORE ∩ NSC ∩ APL 31 81
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FIG. 6. Community detection results by SCORE (top) and APL (bottom) for the giant component
of Coauthorship network (A), assuming K = 2. Nodes in blue circles and red squares represent two
different communities.

• SCORE includes the “Dunson” branch in the “North Carolina” group, but APL
clusters them into the “Carroll–Hall” group to which they are not directly con-
nected. In this regard, it seems that results by SCORE are more meaningful.

• NSC and BCPL differ on several small branches, including the “Dunson” branch
and two small branches connecting to Jianqing Fan. In comparison, the results
by NSC seem more meaningful.

Moving away from the giant component, the next two largest components are
the “Theoretical Machine Learning” group (18 nodes) and the “Dimension Re-
duction” group (14 nodes); see Figure 8. The first one is a research group who
work on Machine Learning topics using sophisticated statistical theory, including
authors Peter Bühlmann, Alexandre Tsybakov, Jon Wellner and Bin Yu. The sec-
ond one is a research group on Dimension Reduction, including authors Francesca
Chiaromonet, Dennis Cook, Bing Li and their collaborators.

A conversation with Professor Qunhua Li (Statistics Department at Penn State)
helped to illuminate why these groups are meaningful and how they evolve over
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FIG. 7. Community detection results by NSC (top) and BCPL (bottom) for the giant component of
Coauthorship network (A), assuming K = 2. Nodes in blue circles and red squares represent two
different communities.

FIG. 8. The second largest (left) and third largest (right) components of Coauthorship network (A).
They can be possibly interpreted as the “Theoretical Machine Learning” and “Dimension Reduc-
tion” communities, respectively.
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time. In the first community, Marloes H. Maathuis obtained her Ph.D. from the
University of Washington (jointly supervised by Jon Wellner and Piet Groene-
boom) in 2006 and then went on to work in ETH, Switzerland, and she is possibly
the “bridge” connecting the Seattle group and the ETH group (Peter Bühlmann,
Markus Kalische, Sara van de Geer). Nocolai Meinshausen could be one of the
“bridging nodes” between ETH and Berkeley: he was a Ph.D. student of Peter
Bühlmann and then a postdoc at Berkeley. In the second group, Ms. Chiaromonet
obtained her Ph.D. from the University of Minnesota, where Dennis Cook served
as the supervisor. She then went on to work in the Statistics Department at Penn-
sylvania State University, and started to collaborate with Bing Li on Dimension
Reduction.

The next 5 largest components in Coauthorship network (A) are the “Johns
Hopkins” group (13 nodes, including faculty at Johns Hopkins University and
their collaborators; similar below), “Duke” group (10 nodes, including Mike West,
Jonathan Stroud, Carlos Caravlaho, etc.), “Stanford” group (9 nodes, including
David Siegmund, John Storey, Ryan Tibshirani, and Nancy Zhang, etc.), “Quan-
tile Regression” group (9 nodes, including Xuming He and his collaborators) and
“Experimental Design” group (8 nodes). These groups are presented in Table 6.

TABLE 6
Top: the 4th, 5th and 6th largest components of Coauthorship network (A) which can be interpreted

as the groups of “Johns Hopkins,” “Duke” and “Stanford.” Bottom: the 7th and 8th largest
components of Coauthorship network (A) which can be interpreted as the groups of “Quantile

Regression” and “Experimental Design”

Barry Rowlingson
Brian S Caffo
Chong-Zhi Di
Ciprian M Crainiceanu
David Ruppert
Dobrin Marchev
Galin L Jones
James P Hobert
John P Buonaccorsi
John Staudenmayer
Naresh M Punjabi
Peter J Diggle
Sheng Luo

Carlos M Carvalho
Gary L Rosner
Gerard Letac
Helene Massam
James G Scott
Jonathan R Stroud
Maria De Iorio
Mike West
Nicholas G Polson
Peter Müller

Armin Schwartzman
Benjamin Yakir
David Siegmund
F Gosselin
John D Storey
Jonathan E Taylor
Keith J Worsley
Nancy Ruonan Zhang
Ryan J Tibshirani

Hengjian Cui
Huixia Judy Wang
Jianhua Hu
Jianhui Zhou
Valen E Johnson
Wing K Fung
Xuming He
Yijun Zuo
Zhongyi Zhu

Andrey Pepelyshev
Frank Bretz
Holger Dette
Natalie Neumeyer
Stanislav Volgushev
Stefanie Biedermann
Tim Holland-Letz
Viatcheslav B Melas
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TABLE 7
The Ajusted Rand Index (ARI) and Variation of Information (VI) for the vectors of predicted

community labels by four different methods in Coauthorship network (B), assuming K = 3. A large
ARI/small VI suggests that the two predicted label vectors are similar to each other

SCORE NSC BCPL APL

SCORE 1.00/0.00 0.55/0.51 0.00/1.65 0.19/0.59
NSC 1.00/0.00 0.00/1.46 0.41/0.36
BCPL 1.00/0.00 0.00/1.21
APL 1.00/0.00

4.3. Coauthorship network (B). In this network, there is an edge between
nodes i and j if and only if they have coauthored 1 or more papers. Compared to
Coauthorship network (A), this definition is more conventional, but it also makes
the network harder to analyze.

Coauthorship network (B) has a total of 3607 nodes, where the giant component
has 2263 nodes (63% of all nodes). For analysis in this section, we focus on the gi-
ant component. Also, for simplicity, we call the giant component the Coauthorship
network (B) whenever there is no confusion.

Figure 5 (middle) presents the scree plot for the adjacency matrix of Coauthor-
ship network (B), suggesting 3 or more communities. Assuming K = 3, we apply
SCORE, NSC, BCPL and APL, and below are the findings.

First, somewhat surprisingly, the results of BCPL are inconsistent with those by
all other methods. For example, the maximum ARI between BCPL and each of
the other three methods is 0.00, and the smallest VI between BCPL and each of
the other three methods is 1.29, showing a substantial disagreement; see Table 7,
where we compare all 4 methods pair-wise and tabulate the corresponding ARI
and VI.

Second, the results by SCORE, NSC and APL are reasonably consistent with
each other: the ARI between the vector of predicted labels by SCORE and that
by NSC is 0.55, and the ARI between the vector of predicted labels by NSC and
that by APL is 0.41; see Table 7 for details. In particular, the three methods seem
to agree on that there are three communities which can be interpreted as follows
(arranged ascendingly in size):

• “Bayes” community. This community includes a small group of researchers
(group sizes are different for different methods, ranging from 20 to 69), includ-
ing James Berger and his collaborators.

• “Biostatistics [Coauthorship (B)]” (Biostat-Coau-B) community. The sizes of
three versions of this community (corresponding to three methods) are quite
different and range from 50 to 388. While it is probably not exactly accurate
to call this community “Biostatistics,” the community consists of a number of
statisticians and biostatisticians in the Research Triangle Park of North Carolina.
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TABLE 8
Comparison of sizes of the three communities identified by each of the three methods in

Coauthorship network (B), assuming K = 3. BCPL is not included for comparisons, for its results
are inconsistent with those by the other three methods

Bayes Biostat-Coau-B HDDA-Coau-B

SCORE 64 388 1811
NSC 68 163 2032
APL 20 50 2193

SCORE ∩ NSC 55 162 1807
SCORE ∩ APL 20 50 1811
NSC ∩ APL 20 50 2032

SCORE ∩ NSC ∩ APL 20 50 1807

It also includes many statisticians and biostatisticians from Harvard University,
University of Michigan at Ann Arbor and University of Wisconsin at Madison.

• “High-Dimensional Data Analysis [Coauthorship (B)]” (HDDA-Coau-B) com-
munity. The sizes of this community identified by three different methods range
from 1811 to 2193. The community includes researchers from a wide variety
of research areas in or related to high-dimensional data analysis (e.g., Bioinfor-
matics, Machine Learning).

Figures 9–11 present these 3 communities (by SCORE), respectively.
In Table 8, we compare the sizes of the three communities identified by each of

the three methods. There are two points worth noting.
First, while SCORE and NSC are quite similar to each other, there is a major

difference: NSC clusters about 200 authors, mostly biostatisticians from Harvard
University, University of Michigan at Ann Arbor and University of Wisconsin at
Madison, into the HDDA-Coau-B community, but SCORE clusters them into the
Biostat-Coau-B community. It seems that the results by SCORE are more mean-
ingful.

Second, APL behaves very differently from either SCORE or NSC. Its esti-
mate of the “Bayes” community is (almost) a subset of its counterpart by either
SCORE or NSC, and is much smaller in size (sizes are 20, 64 and 69 for those
by APL, SCORE and NSC, respectively). A similar claim applies to the Biostat-
Coau-B community identified by each of the methods (sizes are 50, 388 and 169
for those by APL, SCORE and NSC, respectively). This suggests that APL may
have underestimated these two communities but overestimated the HDDA-Coau-B
community.10

10In Column 1 of Table 8, the authors in “SCORE ∩ NSC \ APL” are mostly Bayesian statisticians,
including Steven MacEachern, Alan Gelfand, Bruno Sanso, Gary Rosner, Nicholas Polson, Herbert
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FIG. 9. The “Bayes” community in Coauthorship network (B) identified by SCORE (64 nodes).
Only names for 14 nodes with a degree of 9 or larger are shown.

It is also interesting to compare these results with those we obtain in Section 4.2
for Coauthorship network (A). Below are three noteworthy points.

First, recall that, in Figure 8 and Table 6, we have identified a total of 7 differ-
ent components of Coauthorship network (A). Among these components, the Duke
component (middle panel on top row in Table 6) splits into three parts, where each

FIG. 10. The “Biostatistics” community (Biostat-Coau-B) in Coauthorship network (B) identi-
fied by SCORE (388 nodes). Only names for 17 nodes with a degree of 13 or larger are shown.
A “branch” in the figure is usually a research group in an institution or a state.

Lee, Edward George, etc. In Column 2 of Table 8, the authors in the subset of “SCORE ∩ NSC \
APL” are mostly biostatisticians, including Trivellore Raghunathan, Jun Liu, L. J. Wei, Louise Ryan,
Ram Tiwari, Joseph Lucas, Nathaniel Schenker, etc.



1798 P. JI AND J. JIN

FIG. 11. The “High-Dimensional Data Analysis” community (HDDA-Coau-B) in Coauthorship
network (B) identified by SCORE (1181 nodes). Only names for 22 nodes with degree of 18 or larger
are shown.

belongs to three of the communities of Coauthorship network (B) identified by
SCORE. The other 6 components fall into the HDDA-Coau-B community identi-
fied by SCORE almost completely.

Second, for the giant component of Coauthorship (A), there is a close draw on
whether we should cluster Carroll–Hall’s group and Fan’s group into two com-
munities: SCORE and APL think that two groups belong to one community, but
NSC and BCPL do not agree with this. In Coauthorship (B), both groups are in
the HDDA-Coau-B community. Also, in previous studies on this giant component,
BCPL and APL separate the nodes in Dunson’s branch from the North Carolina
group, and cluster them into the Carroll–Hall group. In the current study, however,
the whole North Carolina group (including Dunson’s branch) are in the Biostat-
Coau-B community.

Third, in Coauthorship (A), Gelfand’s group is included in this 236-node giant
component where James Berger is not a member. In Coauthorship network (B),
Gelfand’s group now becomes a subset of the “Bayes” community where James
Berger is a hub node.

5. Community detection for Citation network. The Citation network is a
directed network. As a result, the study in this section is very different from that in
Section 4, and provides additional insight.
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5.1. Community detection methods (directed networks). In the Citation net-
work, each node is an author and there is a directed edge from node i to node
j if and only if node i has cited node j at least once. To analyze the Citation
network, one usually focuses on the weakly connected giant component.11 From
now on, when we say the Citation network, we mean the weakly connected giant
component of the original Citation network.

For community detection of directed networks, we consider two methods:
LNSC and Directed-SCORE (D-SCORE). See the remark in Section 5.2.3 for dis-
cussions on other methods.

LNSC stands for the Spectral Clustering approach proposed in Leicht and New-
man (2008): the authors extended the spectral modularity methods by Newman
(2006) for undirected networks to directed networks using the so-called general-
ized modularity [Arenas et al. (2007)]. However, it is pointed out in Kim, Son and
Jeong (2010) that LNSC cannot properly distinguish the directions of the edges and
cannot detect communities representing directionality patterns among the nodes;
see details therein.

D-SCORE is an adaption of SCORE [Jin (2015)] (see Section 4.1) to directed
networks. Let A be the adjacency matrix, and let û1, û2, . . . , ûK and v̂1, v̂2, . . . , v̂K

be the first K left singular vectors and the first K right singular vectors of A,
respectively. Also, let N1 be the support of û1, and let N2 be the support of v̂1.
Define two n × (K − 1) matrices R̂(l) and R̂(r) by

R̂(l)(i, k) =
⎧⎪⎨
⎪⎩

sgn
(
ûk+1(i)/û1(i)

) · min
{∣∣∣∣ ûk+1(i)

û1(i)

∣∣∣∣, log(n)

}
, i ∈ N1,

0, i /∈ N1,

(5.1)

R̂(r)(i, k) =
⎧⎪⎨
⎪⎩

sgn
(
v̂k+1(i)/v̂1(i)

) · min
{∣∣∣∣ v̂k+1(i)

v̂1(i)

∣∣∣∣, log(n)

}
, i ∈ N2,

0, i /∈ N2.

(5.2)

Note that all nodes split into four disjoint subsets:

N = (N1 ∩N2) ∪ (N1 \N2) ∪ (N2 \N1) ∪ (
N \ (N1 ∪N2)

)
.

D-SCORE clusters nodes in each subset separately:

1. (N1 ∩N2). Restricting the rows of R̂(l) and R̂(r) to the set N1 ∩N2 and obtain-
ing two matrices R̃(l) and R̃(r), we cluster all nodes in N1 ∩N2 by applying the
k-means to the matrix [R̃(l), R̃(r)] assuming there are ≤ K communities.

2. (N1 \ N2). Note that, according to the communities we identified above, the
rows of R̃(l) partition into ≤ K groups. For each group, we call the mean of the

11That is, the giant component of the weakly connected citation network, where there is an (undi-
rected) edge between nodes i and j if one has cited the other at least once [Bang-Jensen and Gutin
(2009)].
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FIG. 12. Left: each point represents a row of R̂(l) (the matrix has only two columns since K = 3)
associated with the statistical Citation network (x-axis: first column; y-axis: second column). Only
rows with indices in N1 are shown. Blue pluses, green bars and red dots represent 3 different com-
munities identified by SCORE, which can be interpreted as “Large-Scale Multiple testing,” “Spatial
and Semiparametric/Nonparametric Statistics” and “Variable Selection”; Right: similar but with
(R̂(l),N1) replaced by (R̂(r),N2).

row vectors the community center. For a node i in N1 \ N2, if the ith row of
R̂(l) is closest to the center of the kth community for some 1 ≤ k ≤ K , then we
assign it to this community.

3. (N2 \ N1). We cluster in a similar fashion to that in the last step, but we use
(R̃(r), R̂(r)) instead of (R̃(l), R̂(l)).

4. (N \ (N1 ∪ N2)). In Steps 1–3, all nodes in N1 ∪ N2 partition into ≤ K com-
munities. For each node in N \ (N1 ∪ N2), we assign it to the community to
which it has the largest number of weak edges.

We don’t need a sophisticated clustering method for nodes in N \ (N1 ∪ N2), as
we assume this set is small; see Section 5.2 for an example.

Figure 12 illustrates how D-SCORE works using the statistical citation network
data set with K = 3. Two panels show similar clustering patterns, suggesting that
there are three communities; see Section 5.2 for details.

5.2. Community detection of the Citation network by D-SCORE. The original
citation network data set has 3607 nodes (i.e., authors). The associated weakly
connected network has 927 components. The giant component has 2654 nodes,
and all other components have no more than 5 nodes.

We restrict our attention to the weakly connected giant component N = (V ,E).
Let N1 and N2 be as defined in Section 5.1. We have |N1| = 2126, |N2| = 1790,
|N1 ∩N2| = 1276, and |N \ (N1 ∪N2))| = 14. Let A be the adjacency matrix of
N . Figure 5 (right) presents the scree plot of A. The plot suggests that there are
K = 3 communities in N .
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We now present the results by D-SCORE. The results of LNSC are very differ-
ent and are only discussed briefly in Section 5.2.3. Assuming K = 3, D-SCORE
identifies three communities as follows:

• “Large-Scale Multiple Testing” community (359 nodes). This consists of re-
searchers in multiple testing and control of False Discovery Rate. It includes
a Bayes group (James Berger, Peter Müller), three Berkeley–Stanford groups
(Bradley Efron, David Siegmund, John Storey; David Donoho, Iain Johnstone,
Mark Low,12 John Rice; Erich Lehmann, Joseph Romano), a Carnegie Mel-
lon group (e.g., Christopher Genovese, Jiashun Jin, Isabella Verdinelli, Larry
Wasserman), a Causal Inference group (Donald Rubin, Paul Rosenbaum) and
a Tel Aviv group (Felix Abramovich, Yoav Benjamini, Abba Krieger, Daniel
Yekutieli).

• “Variable Selection” community (1280 nodes). This includes (sorted descend-
ingly by the number of citers) Jianqing Fan, Hui Zou, Peter Hall, Nicolai
Meinshausen, Peter Bühlmann, Ming Yuan, Yi Lin, Runze Li, Peter Bickel,
Trevor Hastie, Hans-Georg Müller, Emmanuel Candès, Cun-Hui Zhang, Heng
Peng, Jian Huang, Tony Cai, Terence Tao, Jianhua Huang, Alexandre Tsybakov,
Jonathan Taylor, Xihong Lin, Jane-Ling Wang, Dan Yu Lin, Fang Yao, Jinchi
Lv.

• “Spatial and Semiparametric/Nonparametric Statistics” (for short, “Spatial
Statistics”) community (1015 nodes); see discussions below.

The first two communities are presented in Figures 13 and 14, respectively. The
last community is harder to interpret and seems to contain substructures. For fur-
ther investigation, we first restrict the network to this community (i.e., ignoring all
edges to/from outside) and obtain a subnetwork. We then apply D-SCORE with
K = 3 to the giant component (908 nodes) of this subnetwork, and obtain three
meaningful subcommunities as follows:

• Nonparametric spatial/Bayes statistics (212 nodes), including David Blei,
Alan Gelfand, Yi Li, Steven MacEachern, Omiros Papaspiliopoulos, Trivellore
Raghunathan, Gareth Roberts.

• Parametric spatial statistics (304 nodes), including Marc Genton, Tilmann
Gneiting, Douglas Nychka, Anthony O’Hagan, Adrian Raftery, Nancy Reid,
Michael Stein.

• Semiparametric/Nonparametric statistics (392 nodes), including Raymond Car-
roll, Nilanjan Chatterjee, Ciprian Crainiceanu, Joseph Ibrahim, Jeffrey Morris,
David Ruppert, Naisyin Wang, Hongtu Zhu.

These subcommunities are presented in Figure 15.

12He and Abba Krieger below are at the University of Pennsylvania.
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FIG. 13. The “Large-Scale Multiple Testing” community identified by D-SCORE (K = 3) in the
Citation network (359 nodes). Only 26 nodes with 24 or more citers are shown.

5.2.1. Comparison with Coauthorship network (A). In Section 4.2, we present
8 different components of Coauthorship network (A). In Table 9, we reinvestigate
all these components in order to understand their relationship with the 3 commu-
nities identified by D-SCORE in the Citation network.

Among these 8 components, the first one is the giant component, consisting of
236 nodes. All except 3 of these nodes fall in the 3 communities identified by
D-SCORE in the Citation network, with 60 nodes in “Spatial Statistics and Semi-
parametric/Nonparametric statistics,” including (sorted descendingly by the num-
ber of citers; same below) Raymond Carroll, Joseph Ibrahim, Naisyin Wang, Alan
Gelfand, Jeffrey Morris, Marc Genton, Sudipto Banerjee, Hongtu Zhu, Jeng-Min
Chiou, Ju-Hyun Park, Ulrich Stadtmüller, Ming-Hui Chen and Yi Li; 166 nodes in
“Variable Selection,” including Jianqing Fan, Hui Zou, Peter Hall, Ming Yuan, Yi
Lin, Runze Li, Trevor Hastie, Hans-Georg Müller, Emmanuel Candès, Cun-Hui
Zhang, Heng Peng, Jian Huang, Tony Cai, Jianhua Huang and Xihong Lin; and
7 nodes in “Large-Scale Multiple Testing,” including David Donoho, Jiashun Jin,
Mark Low, Wenguang Sun, Ery Arias-Castro, Michael Akritas and Jessie Jeng.

This is consistent with our previous claim that this 236-node giant component
contains a “Carroll–Hall” group and a “North Carolina” community: The “Carroll–
Hall” group has strong ties to the area of variable selection, and the “North Car-
olina” group has strong ties to Biostatistics. Raymond Carroll has close ties to both
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FIG. 14. The “Variable Selection” community identified by D-SCORE (K = 3) in the Citation
network (1280 nodes). Only 40 nodes with 54 or more citers are shown here.

of the two groups: it is not surprising that SCORE assigns him to the “Carroll–
Hall” group [Coauthorship network (A)] but D-SCORE assigns him to the “Spa-
tial” community (Citation network).

For the remaining 7 components of Coauthorship network (A), “Theoretical
Machine Learning,” “Dimension Reduction,” “Duke” and “Quantile Regression”
are (almost) subsets of “Variable Selection,” “Stanford” (including John Storey,
Johathan Taylor and Ryan Tibshirani) is (almost) a subset of “Large-Scale Mul-
tiple Testing,” and “Johns Hopkins” is (almost) a subset of “Spatial Statistics.”
The “Experimental Design” group has no stronger relation to one area than to the
others, and so the nodes spread almost evenly to these three communities.

5.2.2. Comparison with Coauthorship network (B). We compare the com-
munity detection results by D-SCORE for the Citation network with those by
SCORE for Coauthorship network (B) in Section 4.3. For the former, we have
been focused on the weakly connected giant component of the Citation network
(2654 nodes). For the latter, we have been focused on the giant component of
the Coauthorship network (B) (2263 nodes). The comparison of two sets of re-
sults is tabulated in Table 10 (for each of the 16 cells, the complete name list
can be found at http://faculty.franklin.uga.edu/psji/sites/faculty.franklin.uga.edu.
psji/files/Table10_Expanded.zip).

http://faculty.franklin.uga.edu/psji/sites/faculty.franklin.uga.edu.psji/files/Table10_Expanded.zip
http://faculty.franklin.uga.edu/psji/sites/faculty.franklin.uga.edu.psji/files/Table10_Expanded.zip
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FIG. 15. The “Spatial and Semiparametric/Nonparametric Statistics” community has sub-
communities: Nonparametric Spatial/Bayes (upper), Parametric Spatial (middle), Semiparamet-
ric/Nonparametric (lower). In each, only about 20 high-degree nodes are shown.
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TABLE 9
Sizes of the intersections of the communities identified by D-SCORE (K = 3) in the Citation

network (rows) and the 8 largest components of Coauthorship network (A) as presented in section
(columns). “Other”: nodes outside the weakly connected giant component; ∗: 9 out of 12 are in the

“Semiparametric/Nonparametric” subcommunity of the “Spatial Statistics” community

Mach. Dim. Johns Quant. Exp.
Giant learn. reduc. Hopkins Duke Stanford reg. design

Spatial 60 1 12∗ 1 3
Var. Selection 166 15 14 1 7 2 8 2
Multiple Tests 7 2 2 7 1 3
Other 3

236 18 14 13 10 9 9 8

Viewing the table vertically, we observe that Citation network provides addi-
tional insight into the Coauthorship network (B), and reveals structures we have
not found previously. Below are the details.

First, the “Bayes” community in Coauthorship network (B) contains two main
parts. The first part consists of 55% of the nodes, and most of them are seen to
be the researchers who have close ties to James Berger, including (sorted descend-
ingly by the number of citers; same below) Alan Gelfand, Fernando Quintana,
Steven MacEachern, Gary Rosner, Rui Paulo, etc. The second part consists of 25%
of the nodes, and is assigned to the “Variable Selection” community in the Citation
network by D-SCORE, including Carlos Carvalho, Feng Liang, Maria De Iorio,
German Molina, Merlise Clyde, etc. The results are reasonable, for many nodes in
the second part (e.g., Carlos Carvalho, Feng Liang, Merlise Clyde) have an interest
in model selection.

TABLE 10
Sizes of the intersections of the communities identified by D-SCORE (K = 3) in the Citation

network (rows; “other” stands for nodes outside the weakly connected giant component) and the
communities identified by SCORE in Coauthorship network (B) (columns; “other” stands for nodes

outside the giant component). ∗: 14 and 17 are in the “Nonparametric Spatial/Bayes” and
“Semiparametric/Nonparametric” subcommunities of the “Spatial and

Semiparametric/Nonparametric Statistics” community, respectively

Bayes Biostat-Coau-B HDDA-Coau-B Other

Spatial 35∗ 156 462 362 1015
Var. Selection 16 153 837 274 1280
Multiple Tests 6 17 221 115 359
Other 7 62 291 593 953

64 388 1811 1344 3067
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Second, the “Biostatistics [Coauthorship (B)]” community in Coauthorship net-
work (B) also has two main parts. The first part has 156 nodes (40% of the total),
including high-degree nodes such as Joseph Ibrahim, Sudipto Banerjee, Hongtu
Zhu, Ju-Hyun Park, Ming-Hui Chen, etc. The second part consists of 153 nodes
(40% of the total). The high-degree nodes include Yi Lin, Dan Yu Lin, Ji Zhu, He-
len Zhang, L J Wei, Wei Biao Wu, Donglin Zeng, Zhiliang Ying, David Dunson,
Steve Marron, etc. The results are quite reasonable: many nodes in the second part
(e.g., Dan Yu Lin, David Dunson, Helen Zhang, Steve Marron, Ji Zhu, Yi Lin)
either have works in or have strong ties to the area of variable selection.

Last, the “High-Dimensional Data Analysis” community in Coauthorship net-
work (B) has three parts. The first part has 459 nodes (25%), including high-
degree nodes such as Raymond Carroll, Gareth Roberts, Naisyin Wang, Adrian
Raftery, Omiros Papaspiliopoulos, etc. The second part has 840 nodes (46%),
including high-degree nodes such as Jianqing Fan, Hui Zou, Peter Hall, Nicolai
Meinshausen, Peter Bühlmann, etc. The third part has 221 nodes (26%), including
high-degree nodes such as Iain Johnstone, Larry Wasserman, Bradley Efron, John
Storey, Christopher Genovese, David Donoho, Yoav Benjamini, David Siegmund,
etc.

Respectively, the three parts are labeled as subsets of the “Spatial and Semipara-
metric/Nonparametric Statistics,” “Variable Selection” and “Large-Scale Multiple
Testing” communities in the Citation network. This seems convincing: (a) most
of the nodes in the first part have a strong interest in spatial statistics or biostatis-
tics (e.g., Ciprian Crainiceanu, Naisyin Wang, Raymond Carroll), (b) most of the
nodes in the second part are leaders in variable selection, and (c) most nodes in the
third part are leaders in Large-Scale Multiple Testing and in the topic of control of
FDR.

Viewing the table horizontally gives similar claims but also reveals some addi-
tional insight. For example, “Large-Scale Multiple Testing” contains three main
parts. One part consists of 221 nodes and is a subset of the “High-Dimensional
Data Analysis” community in Coauthorship network (B). The second consists of
115 nodes and falls outside the giant component of Coauthorship network (B).
A significant fraction of nodes in this part are from Germany and have close ties
to Helmut Finner, a leading researcher in Multiple Testing. Another significant
part (17 nodes) are researchers in Bioinformatics (e.g., Terry Speed) who do not
publish many papers in these four journals for the time period.

5.2.3. Comparison of D-SCORE and LNSC. We have also applied LNSC to
the Citation network, with K = 3. The communities are very different from those
identified by D-SCORE, and may be interpreted as follows:

• “Semiparametric and nonparametric” (434 nodes). We find this community hard
to interpret, but it could be the community of researchers on semiparametric and
nonparametric models, functional estimation, etc. The hub nodes include (sorted
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descendingly by the number of citers; same below) Peter Hall, Raymond Carroll,
Hans-Georg Müller, Xihong Lin, Fang Yao, Naisyin Wang, Marina Vannucci,
etc.

• “High-Dimensional Data Analysis” (HDDA-Cita-LNSC) (615 nodes). The sec-
ond one can be interpreted as the “High-Dimensional Data Analysis” commu-
nity, where the high-degree nodes include (sorted descendingly by the num-
ber of citers) Jianqing Fan, Hui Zou, Nicolai Meinshausen, Peter Bühlmann,
Ming Yuan, Yi Lin, Iain Johnstone, Runze Li, Peter Bickel, Trevor Hastie, Larry
Wasserman, Emmanuel Candès, Cun-Hui Zhang, Heng Peng, Bradley Efron,
etc.

• “Biostatistics” (Biostat-Cita-LNSC) (1605 nodes). The community is hard to
interpret and includes researchers from several different areas. For example, it
includes researchers in biostatistics (e.g., Joseph Ibrahim, L. J. Wei), in non-
parametric (Bayes) methods (e.g., Peter Müller, David Dunson, and Nils Hjort,
Fernando Quintana, Omiros Papaspiliopoulos), and in spatial statistics and un-
certainty quantification (e.g., Marc Genton, Tilmann Gneiting, Michael Stein,
Hao Zhang).

These results are rather inconsistent to those obtained by D-SCORE: the ARI and
VI between the two vectors of predicted community labels by LNSC and SCORE
are 0.07 and 1.68, respectively. Moreover, it seems that

• LNSC merges part of the nodes in the “Variable Selection” (1280 nodes)
and “Large-Scale Multiple Testing” (359 nodes) communities identified by D-
SCORE into a new HDDA-Cita-LNSC community, but with a much smaller
size (614 nodes).

• The Biostat-Cita-LNSC community (1605 nodes) is much larger than the “Spa-
tial” community identified by D-SCORE (1015 nodes), and is hard to interpret.

Our observations here somehow agree with Kim, Son and Jeong (2010) on that
LNSC cannot properly distinguish the directions of the edges and cannot detect
communities representing directionality patterns among the nodes.

REMARK. There are some other approaches to community detection for di-
rected networks. One possibility is the classical hierarchical approach, but the
challenge there is how to cut the clustering tree and how to interpret the results
[Newman (2004)]. The other possibility is the EM approach by Newman and Le-
icht (2007). However, as pointed out by Ramasco and Mungan (2008), this ap-
proach fails to detect obvious community structures if there are some nodes with
zero out-degree or zero in-degree (this is the case for our data set, as many ju-
nior researchers have no citations within the range of our data set). For reasons of
space, we omit further discussions.
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6. Discussions. We have collected, cleaned and analyzed a data set for the
network of statisticians. We have investigated the productivity, patterns and trends,
centrality and community structures for the statisticians with many different tools,
ranging from Exploratory Data Analysis [EDA; Tukey (1977)] tools to rather so-
phisticated methods. Some of these tools are relatively recent (e.g., SCORE, NSC,
BCPL, APL, LNSC), and some are even new (e.g., D-SCORE for directed net-
works). We have presented an array of interesting results. For example, we have
identified the “hot” authors and papers, and about 15 meaningful communities
such as “Spatial Statistics,” “Dimension Reduction,” “Large-Scale Multiple Test-
ing,” “Bayes,” “Quantile Regression,” “Theoretical Machine Learning” and “Vari-
able Selection.”

The paper has several limitations that need further explorations. First of all,
constrained by time and resources, the two data sets we collected are limited to the
papers published in four “core” statistical journals: AoS, Biometrika, JASA and
JRSS-B in the 10-year period from 2003 to 2012. We recognize that many statisti-
cians not only publish in so-called “core” statistical journals but also publish in a
wide variety of journals of other scientific disciplines, including but not limited to
Nature, Science, PNAS, IEEE journals, journals in computer science, cosmology
and astronomy, economics and finance, probability and social sciences. We also
recognize that many statisticians (even very good ones, such as David Donoho and
Steven Fienberg) do not publish often in these journals in this specific time period.
For these reasons, some of the results presented in this paper may be biased, and
they need to be interpreted with caution.

Still, the two data sets and the results we presented here serve well for our
purpose of understanding many aspects of the networks of statisticians working on
methodology and theory; see Section 1.3. They also serve as a good starting point
for a more ambitious project [Ji, Jin and Ke (2015)] where we are collecting and
cleaning a more “complete” data set for statistical publications.

Second, for reasons of space, we have primarily focused on data analysis in this
paper, and the discussions on models, theory and methods have been kept as brief
as we can. On the other hand, the data sets provide a fertile ground for model-
ing and development of methods and theory, and there are an array of interesting
problems worthy of exploration in the near future, for example, what could be a
better model for the data sets, what could be a better measure for centrality, and
what could be a better method for community detection. In particular, we propose
D-SCORE as a new community detection method for a directed network, but we
only present the algorithm in this paper without careful analysis. Also, sometimes,
the community detection results by different methods (e.g., SCORE, D-SCORE,
NSC, BCPL, APL, LNSC) are inconsistent with each other. When this happens, it
is hard to have a conclusive interpretation. It is therefore of interest to compare the
weaknesses and strengths of these methods theoretically.

Third, there are many other interesting problems we have not addressed here:
the issue of mixed membership, link prediction, relationship between citations and
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professional recognitions (e.g., receiving an important award, elected to National
Academy of Science), relationship and differences between “important work,” “in-
fluential work” and “popular work”. It is of interest to explore these in the future.

Last but not the least, coauthorship and citation networks only provide lim-
ited information for studying the research habits, trends, topological patterns, etc.
of the statistical community. There are more informative approaches (say, using
other information of the paper: abstract, author affiliations, key words or even the
whole paper) to studying such characteristics. Such study is beyond the scope of
the paper, and so we leave it to the future.

APPENDIX: DATA COLLECTION AND CLEANING

We describe how the data were collected and preprocessed, and how we have
overcome the challenges we have faced.

We focus on all papers published in AoS, JASA, JRSS-B and Biometrika from
2003 to the first half of 2012. For each paper in this range, we have extracted the
Digital Object Identifier (DOI), title, information for the authors, abstract, key-
words, journal name, volume, issue and page numbers, and the DOIs of the papers
in the same range that have cited this paper. The raw data set consists of about
3500 papers and 4000 authors.

Among these papers, we are only interested in those for original research, and
so we have removed items such as the book reviews, erratum, comments or re-
joinders, etc. Usually, these items contain signal words such as “Book Review,”
“Corrections,” etc. in the title. Removing such items leaves us with a total of 3248
papers (about 3950 authors) in the range of interest.

Our data collection process has three main steps. In the first step, we identify
all papers in the range of interest. In the second step, we figure out all citations
between the papers of interest (note that the information for citation relationship
between any two authors is not directly available). In the third step, we identify all
the authors for each paper.

In the first step, recall that the goal is to identify every paper in our range of
interest, and, for each of them, to collect the title, author, DOI, keywords, abstract,
journal name, etc. In this step, we face two main challenges.

First, all popular online resources have strict limits for high-quality high-volume
downloads; see Section 1.2. We manage to overcome the challenge by download-
ing the desired data and information from Web of Science and MathSciNet little
by little, each time in the maximum amount that is allowed. Overall, it has taken
us a few months to download and combine the data from two different sources.

Second, it is hard to find a good identifier for the papers. While the titles of
the papers could serve as unique identifiers, they are difficult to format and com-
pare. Also, while many online resources have their own paper identifiers, they are
either unavailable or unusable for our purpose. Eventually, we decide to use the
DOI, which has been used as a unique identifier for papers by most publishers for
statistical papers since 2000.
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Using DOI as the identifier, with substantial time and effort, we have success-
fully identified all papers in the range of interest with Web of Science and Math-
SicNet. One more difficulty we face here is that Web of Science does not have the
DOIs of (about) 200 papers and MathSciNet does not have the DOIs of (about)
100 papers, and we have to combine these two online sources to locate the DOI
for each paper in our range of interest.

We now discuss the second step. The goal is to figure out the citation relation-
ship between any two papers in the range of interest. MathSciNet does not allow
automated downloads for such information, but, fortunately, such information is
retrievable from Web of Science if we parse the XML pages in R at a small amount
each time. One issue we encounter in this step is that (as mentioned above) Web
of Science misses the DOIs of about 200 papers, and we have to deal with these
papers with extra efforts.

Consider the last step. The goal is to uniquely identify all authors for each paper
in the range of interest. This is the most time-consuming step, and we have faced
many challenges. First, for many papers published in Biometrika, we do not have
the first name and middle initial for each author, and this causes problems. For
instance, “L. Wang” can be any one of “Lan Wang,” “Li Wang,” “Lianming Wang,”
etc. Second, the name of an author is not listed consistently in different occasions.
For example, “Lixing Zhu” may be also listed as “Li Xing Zhu,” “L. X. Zhu” and
“Li-Xing Zhu.” Last but not the least, different authors may have the same name:
at least three authors (from University of California at Riverside, University of
Michigan at Ann Arbor and Iowa State University, respectively) have the same
name of “Jun Li.”

To solve this problem, we have written a program which mostly uses the author
names (e.g., first, middle and last names; abbreviations) to correctly identify all
except 200 (approximately) authors, about whom we may have problems in iden-
tification. We then manually identify each of these 200 authors using additional
information (e.g., affiliations, email addresses, information on their websites). Af-
ter all such cleaning, the number of authors is reduced from about 3950 to 3607.

For reproducibility purposes, we have carefully documented the data files and
R codes that produced the results in our paper. The data files include the raw and
cleaned bibtex files for all papers in the range of our study and also the author lists,
paper lists and adjacency matrices, etc. These files (with detailed instructions) can
be found at http://faculty.franklin.uga.edu/psji/sites/faculty.franklin.uga.edu.psji/
files/SCC2015.zip or http://www.stat.cmu.edu/~jiashun/StatNetwork/PhaseOne/.
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