Open Access
August 1998 Existence and uniqueness of infinite components in generic rigidity percolation
Alexander E. Holroyd
Ann. Appl. Probab. 8(3): 944-973 (August 1998). DOI: 10.1214/aoap/1028903458
Abstract

We consider a percolation configuration on a general lattice in which edges are included independently with probability p. We study the rigidity properties of the resulting configuration, in the sense of generic rigidity in d dimensions. We give a mathematically rigorous treatment of the problem, starting with a definition of an infinite rigid component. We prove that, for a broad class of lattices, there exists an infinite rigid component for some p strictly below unity. For the particular case of two-dimensional rigidity on the two-dimensional triangular lattice, we prove first that the critical probability for rigidity percolation lies strictly above that for connectivity percolation and second that the infinite rigid component (when it exists) is unique for all but countably many values of p. We conjecture that this uniqueness in fact holds for all p. Some of our arguments could be applied to two-dimensional lattices in more generality.

References

1.

[1] Aizenman, M. and Grimmett, G. (1991). Strict monotonicity for critical points in percolation and ferromagnetic models. J. Statist. Phy s. 63 817-835.  MR92i:82060 10.1007/BF01029985[1] Aizenman, M. and Grimmett, G. (1991). Strict monotonicity for critical points in percolation and ferromagnetic models. J. Statist. Phy s. 63 817-835.  MR92i:82060 10.1007/BF01029985

2.

[2] Burton, R. M. and Keane, M. (1989). Density and uniqueness in percolation. Comm. Math. Phy s. 121 501-505.  MR90g:60090 0662.60113 10.1007/BF01217735 euclid.cmp/1104178143 [2] Burton, R. M. and Keane, M. (1989). Density and uniqueness in percolation. Comm. Math. Phy s. 121 501-505.  MR90g:60090 0662.60113 10.1007/BF01217735 euclid.cmp/1104178143

3.

[3] Gluck, H. (1974). Almost all simply connected closed surfaces are rigid. Lecture Notes in Math. 438 225-239. Springer, Berlin.  MR400239 0315.50002[3] Gluck, H. (1974). Almost all simply connected closed surfaces are rigid. Lecture Notes in Math. 438 225-239. Springer, Berlin.  MR400239 0315.50002

4.

[4] Graver, J., Servatius, B. and Servatius, H. (1993). Combinatorial Rigidity. Amer. Math. Soc. Providence, RI.  MR95b:52034 0788.05001[4] Graver, J., Servatius, B. and Servatius, H. (1993). Combinatorial Rigidity. Amer. Math. Soc. Providence, RI.  MR95b:52034 0788.05001

5.

[5] Grimmett, G. R. (1989). Percolation. Springer, New York.  MR90j:60109[5] Grimmett, G. R. (1989). Percolation. Springer, New York.  MR90j:60109

6.

[6] Grimmett, G. R. (1997). Percolation and disordered sy stems. Ecole d'Et´e de Probabilit´es de Saint Flour XXVI, 1996. Lecture Notes in Math. 1665 153-300. Springer, Berlin. [6] Grimmett, G. R. (1997). Percolation and disordered sy stems. Ecole d'Et´e de Probabilit´es de Saint Flour XXVI, 1996. Lecture Notes in Math. 1665 153-300. Springer, Berlin.

7.

[7] Hendrickson, B. (1992). Conditions for unique graph realisations. SIAM J. Comput. 21 65-84.  MR1148818 0756.05047 10.1137/0221008[7] Hendrickson, B. (1992). Conditions for unique graph realisations. SIAM J. Comput. 21 65-84.  MR1148818 0756.05047 10.1137/0221008

8.

[8] Jacobs, D. J. and Thorpe, M. F. (1996). Generic rigidity percolation in two dimensions. Phy s. Rev. E 53 3682-3693. [8] Jacobs, D. J. and Thorpe, M. F. (1996). Generic rigidity percolation in two dimensions. Phy s. Rev. E 53 3682-3693.

9.

[9] Laman, G. (1970). On graphs and rigidity of plane skeletal structures. J. Engrg. Math. 4 331-440.  MR42:4430 0213.51903 10.1007/BF01534980[9] Laman, G. (1970). On graphs and rigidity of plane skeletal structures. J. Engrg. Math. 4 331-440.  MR42:4430 0213.51903 10.1007/BF01534980

10.

[10] Liggett, T. M., Schonmann, R. H. and Stacey, A. M. (1997). Domination by product measures. Ann. Probab. 25 71-95. MR98f:60095 0882.60046 10.1214/aop/1024404279 euclid.aop/1024404279 [10] Liggett, T. M., Schonmann, R. H. and Stacey, A. M. (1997). Domination by product measures. Ann. Probab. 25 71-95. MR98f:60095 0882.60046 10.1214/aop/1024404279 euclid.aop/1024404279
Copyright © 1998 Institute of Mathematical Statistics
Alexander E. Holroyd "Existence and uniqueness of infinite components in generic rigidity percolation," The Annals of Applied Probability 8(3), 944-973, (August 1998). https://doi.org/10.1214/aoap/1028903458
Published: August 1998
Vol.8 • No. 3 • August 1998
Back to Top