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EXISTENCE AND UNIQUENESS OF INFINITE COMPONENTS
IN GENERIC RIGIDITY PERCOLATION1

By Alexander E. Holroyd

University of Cambridge

We consider a percolation configuration on a general lattice in which
edges are included independently with probability p. We study the rigidity
properties of the resulting configuration, in the sense of generic rigidity in
d dimensions. We give a mathematically rigorous treatment of the problem,
starting with a definition of an infinite rigid component. We prove that, for
a broad class of lattices, there exists an infinite rigid component for some
p strictly below unity. For the particular case of two-dimensional rigidity
on the two-dimensional triangular lattice, we prove first that the critical
probability for rigidity percolation lies strictly above that for connectivity
percolation and second that the infinite rigid component (when it exists)
is unique for all but countably many values of p. We conjecture that this
uniqueness in fact holds for all p. Some of our arguments could be applied
to two-dimensional lattices in more generality.

1. Introduction. We consider a “percolation model”; that is, starting with
an infinite graph having some regular structure (a “lattice”), we delete some
of the edges at random, while retaining the others. In the case which we
shall consider, individual edges are retained independently of each other, each
with probability p. Questions relating to the connectivity properties of the
resulting graph have been studied extensively (see [5], [6]). In particular, it is
known that (under a wide range of conditions) there exists a critical proba-
bility pc, satisfying 0 < pc < 1, such that for p > pc there is almost surely a
unique infinite connected component, while for p < pc there is almost surely
no infinite connected component. The most elegant proof of the uniqueness of
the infinite connected component may be found in [2].

We shall consider a somewhat different problem. Given a percolation
model, we regard the retained edges as solid bars, which are able to pivot
freely at the vertices. Our aim is to study the rigidity properties of the
resulting structure. The questions which arise have important applications
in physics, and the subject has been approached in the physics literature by
means of (partly) nonrigorous arguments and numerical simulations. See [8]
for the results of an extensive and innovative simulation study, together with
a summary of physical applications and references to previous studies. The
basic application is to the behavior of materials, and in particular glasses;
the retained edges represent chemical bonds between atoms. Our aim here is
to approach the subject from a rigorous mathematical standpoint.
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One of the necessary steps in a mathematical treatment of the problem is
to formulate a precise definition of rigidity. In particular, we shall see that the
rigidity of a graph may depend on the particular way in which it is embedded in
Euclidean space. However, it has been shown (see [3], [4]) that for “almost all”
embeddings of a particular finite graph, the rigidity properties are identical,
and this gives rise to a definition of “generic rigidity” for abstract graphs. We
shall restrict our attention to generic rigidity. (This is also the approach taken
in [8].) This restriction makes the concept of rigidity easier to deal with from
a mathematical point of view, and it is also regarded as providing a realistic
physical model of “glassy” materials. It should be noted that the subject of
graph rigidity is of interest in itself from a combinatorial point of view, and we
shall make some use of results from this area. The most important reference
in this context is [4].

The main results presented here are as follows. Starting from the defini-
tion of generic rigidity for finite graphs, we formulate a definition of rigidity
for infinite graphs, and use this to define rigidity percolation. We prove that
for a broad class of lattices, the rigidity critical probability lies strictly below
unity (Theorem 4.1). In the subsequent sections we restrict our attention to
the particular case of two-dimensional generic rigidity percolation on the two-
dimensional triangular lattice (as in [8]), although it is believed that our tech-
niques could be applied to other lattices. For the triangular lattice we prove
first, that the rigidity critical probability lies strictly above the connectivity
critical probability (Theorem 7.1), and second, that for all p lying outside a
particular (perhaps empty) countable set, the infinite rigid component (when
it exists) is unique (Theorem 8.1). Our proof of the strict inequality of criti-
cal probabilities confirms some of the numerical findings of [8] (for example),
where the rigidity critical probability is estimated to be 0:66020 ± 0:0003;
the connectivity critical probability for the triangular lattice is known to be
2 sin�π/18� = 0:34730 · · · : The uniqueness of the infinite rigid component is
sometimes implicitly assumed in the physics literature, although it does not
appear to have been mentioned explicitly, perhaps partly because there has
not previously been any explicit definition of an infinite rigid component.

The paper is organized as follows. In Section 2 we present the concept of
generic rigidity of finite graphs and give some standard results. In Section
3 we extend the definition of rigidity to infinite graphs and discuss rigidity
of “lattices.” In Section 4 we define rigidity percolation and derive some ba-
sic results which are valid for a wide range of lattices and in an arbitrary
number of dimensions. The remaining sections are devoted to the study of
two-dimensional rigidity percolation on the triangular latttice. In Section 5
we state and discuss our main results. In Section 6 we give some further re-
sults on rigidity which will be needed, and finally in Sections 7 and 8 we give
proofs of the two main results.

2. Rigidity of finite graphs. In this section we define the concept of
rigidity for an embedding of a graph in d dimensions, and describe how this
may be used to define generic rigidity in d dimensions. This material will be
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treated fairly briefly. For a full account see, for example, [4]. See also Section 2
of [7] for a useful summary of generic rigidity.

Our approach to graph theory will be slightly unconventional, since it will
be convenient to regard a graph simply as a set of edges rather than as a pair
�V;E�. For any set A, we write P �A� for the set of all subsets of A (the power
set), and A�r� for the set of all subsets of A of size r (where r ∈ N). Given an
underlying set V (which we will regard as a set of vertices), we refer to V �2� as
the set of edges on V . By a graph we mean any nonempty subset of V �2�, and
by a subgraph we mean a nonempty subset of a graph. We define the vertex
set of a graph E to be

V�E� =
⋃
e∈E

e;

and for a graph E and a set of vertices U ⊆ V�E� we define

E�U� =
{
�x;y� ∈ Ex x;y ∈ U

}
:

Given a graph E we write 1E�·; ·� for graph-theoretic distance between pairs
of vertices in V�E�. We shall sometimes say that a graph E contains a vertex
x to mean that x ∈ V�E�.

Let E be a finite graph. An embedding of E in d dimensions is an injective
mapping

rx V�E� → Rd:

A framework �E;r� is a graph together with an embedding.
A motion of a framework �E;r� is a differentiable family of embeddings

�r�t�x t ∈ �0;1�� of E (in some fixed number of dimensions) including r which
preserves all edges lengths; that is, for every �x;y� ∈ E, �r�t��x� − r�t��y��
is constant in t (where � · � is the Euclidean norm on Rd). A motion is a rigid
motion if this holds for every pair x;y ∈ V�E�. A framework is rigid if all its
motions are rigid motions.

The above definition of rigidity depends on the embedding r as well as on
the graphE. However, we may define rigidity (in d dimensions) for an abstract
graph via the concept of generic embeddings as follows. We say an embedding
r is generic if the sequence of coordinates �r�x�ix x ∈ V�E�; 1 ≤ i ≤ d�
contains no repetitions, and the corresponding set C = �r�x�ix x ∈ V�E�;1 ≤
i ≤ d� is algebraically independent over the rationals [that is, any relation of
the form q1�z

α1;1

1 · · · zα1; n
n � + · · · + qm�z

αm;1
1 · · · zαm;nn � = 0 where q1; : : : ; qm ∈ Q

and α1;1; α1;2; : : : ; αm;n ∈ �0;1; : : :� which is satisfied by some z1; : : : ; zn ∈
C must be an “identity” satisfied by any z1; : : : ; zn ∈ R]. The idea of this
definition is that a generic embedding cannot have any “special symmetries.”
In fact, the above condition is stronger than that which is actually required;
for more details see [3] and [4]. Note that (with respect to Lebesgue measure
on Rd�V�E��), almost all embeddings are generic.

The following result is essentially due to Gluck [3]. For further details
see [4].
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Theorem 2.1. For any given finite graph E and any fixed d ≥ 1, either
all generic embeddings of E are rigid, or all generic embeddings of E are not
rigid.

We say a graph is generically rigid in d dimensions, or simply d-rigid, if
any (all) of its generic embeddings in d dimensions are rigid.

We shall now state, without proof, a number of standard results about
d-rigidity. For proofs, see, for example, [4]. In all the immediately following
propositions we assume that all the graphs mentioned are finite.

Proposition 2.2. A graph is 1-rigid if and only if it is connected.

Proposition 2.3. For any d > 1, a d-rigid graph is �d−1�-rigid. (Thus, in
particular, for any d ≥ 1, a d-rigid graph is connected).

Proposition 2.4. If A and B are d-rigid graphs and �V�A� ∩V�B�� ≥ d,
then A ∪B is d-rigid.

Proposition 2.4 expresses an important property of rigidity which we shall
use repeatedly: if we join two d-rigid graphs together by identifying d vertices
of one with d vertices of the other, the resulting graph is d-rigid. One possible
proof depends on the fact that the only “small” isomorphism of Rd which fixes d
generically embedded points is the identity. We shall also give a simple proof in
the case d = 2 (Proposition 6.7) assuming the combinatorial characterization
of 2-rigidity afforded by Laman’s theorem (Theorem 6.3).

Proposition 2.5. If A is a d-rigid graph with �V�A�� ≥ d then �A� ≥
d�V�A�� − d�d+ 1�/2.

Proposition 2.5 will be used only in the proof of Proposition 3.2 concerning
rigidity of general regular graphs. However, we shall make use of the simi-
lar but much stronger result of Laman’s theorem (Theorem 6.3) in the case
d = 2. The proof of the above proposition depends on the idea of “constraint-
counting”; a set of �V�A�� vertices has d�V�A�� degrees of freedom, while a
rigid body in d dimensions has d�d + 1�/2, so at least d�V�A�� − d�d + 1�/2
edge-constraints are required to induce rigidity.

3. Infinite rigidity, rigid components and lattices. In order to study
rigidity percolation, we must extend our definition of rigidity to infinite graphs.
There are several possible ways to do this, but we will adopt the following
approach. Let A be any (possibly infinite) graph. We say A is d-rigid if every
finite subgraph of A is a subgraph of some finite d-rigid subgraph of A (note
that this is consistent with the existing definition in the case when A is finite).

Meta-proposition 3.1. The statements of Propositions 2.2, 2.3 and 2.4 all
hold if we allow the graphs concerned to be infinite.
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Proof. In each case the result may be deduced easily from the above
definition of rigidity for infinite graphs.

For example, to prove the “infinite version” of Proposition 2.4, suppose A
and B are possibly infinite graphs satisfying the conditions of the proposition.
Then if E ⊆ A∪B is a finite graph, we may find finite d-rigid graphs A′ ⊆ A
and B′ ⊆ B such that A′ ⊇ A ∩E, B′ ⊇ B ∩E and �V�A′� ∩V�B′�� ≥ d. We
now appeal to the original proposition. 2

For the sake of convenience, we shall henceforth use the original numbers
2.2, 2.3 and 2.4 to refer to the extensions of these propositions implied by
Meta-proposition 3.1.

By a d-rigid component of a graph, we mean a maximal d-rigid subgraph.
Note that by Proposition 2.4, if A and B are distinct rigid components of
E, then �V�A� ∩ V�B�� < d. Note also that in the case d = 2, this implies
A∩B = \. (Recall thatA andB are sets of edges). Thus the 2-rigid components
of E partition E.

In order for the phenomenon of rigidity percolation to be of any interest, we
must work on an infinite graph which is itself d-rigid (for some d > 1). The
following result gives some conditions under which this is not the case.

Given a graph E, for any subgraph A ⊆ E, we define

D�A� =
{
�x;y� ∈ Ex x ∈ V�A�; y 6∈ V�A�

}
:

Now define

Sn = inf
{
�D�A��x A ⊆ E; �V�A�� = n

}
:

(We interpret Sn as the “minimum surface of a sphere of size n” in E).

Proposition 3.2. Suppose E is an infinite regular graph of degree δ (that
is, with every vertex having degree δ). If either

(i) δ < 2d,

or

(ii) δ ≤ 2d and Sn→∞ as n→∞,

then E has no finite d-rigid subgraphs with vertex set larger than N for some
N. Hence E has no infinite rigid subgraphs.

Proof. Let A be a subgraph of E with �V�A�� = n. A simple counting
argument shows that

�A� = δn− �D�A��
2

:

We may now appeal to Proposition 2.5. In case (i), the proposition implies that
A is not rigid provided n > max�d;d�d + 1�/�2d − δ��. In case (ii), A is not
rigid provided n ≥ d and n is large enough to ensure that �D�A�� ≥ d�d+1�. 2

In particular, we note that the “square lattice” (usually written L2) is not
2-rigid, so it is of no interest to us. For this reason, we shall mainly study the
(two-dimensional) “triangular lattice” T, which we shall now define formally.
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Define V ⊂ R2 by

V =
{
a�1;0� + b

(
1/2;
√

3/2
)
x a; b ∈ Z

}
;

and define the origin O = �0;0� ∈ V. We use + to denote vector space addition
on V and � · � for Euclidean distance. We define the triangular lattice T ⊂
V�2� by

T =
{
�x;y�x �x− y� = 1

}
;

and note that V = V�T�.
We shall make use of several subgraphs of T which for convenience we

define here. We define the hexagons centered at O:

H�n� = T
(
�xx 1T�O;x� ≤ n�

)
;

∂H�n� = T
(
�xx 1T�O;x� = n�

)
:

[Recall that T�X� denotes the set of edges of T with both vertices in the set
X.] We shall also use the hexagons centred at an arbitrary vertex x ∈ V�T�,
which we write H�n�+x and ∂H�n�+x. Figure 1 is an illustration of a portion
of the triangular lattice together with two examples of hexagons.

For the purposes of the next section, we shall also give a general definition of
the term “lattice.” We say a graph is a lattice if it is graph-theoretic isomorphic
to a graph L with vertex set

V�L� = Z2 ×S;
where S is a nonempty, countable set (which may or may not be infinite),
which satisfies

{
�x; s�; �y; t�� ∈ L if and only if ��x+ z; s�; �y+ z; t�

}
∈ L

for all x;y; z ∈ Z2 and s; t ∈ S

Fig. 1. An illustration of a portion of the triangular lattice, together with two hexagons. Here x
is the vertex specified by a = 3; b = 1; and the thickened subgraphs are ∂H�2� and H�1� + x.
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(i.e., L is invariant under the natural translations of Z2). Note that we do not
insist that a lattice is connected or place any restriction on numbers of edges.
The fact that we allow S to be infinite allows lattices to have “dimension”
greater than 2, so that, for example, the “cubic lattice” (L3) is a lattice.

We note that T is indeed a lattice. We note also that T is 2-rigid; this may be
deduced by first using Proposition 2.4 to show that H�n� is 2-rigid for any n.

4. Rigidity percolation. In this section we define the concept of rigidity
percolation, and determine sufficient conditions for the critical probability to
be strictly less than 1.

Let E be a countable infinite graph. We wish to consider a “random sub-
graph” K of E, in which any edge of E is included with probability p and dis-
tinct edges behave independently. To be precise, we define the sample space
� �= �E� = �0;1�E, equipped with the product σ-field. For p ∈ �0;1�, we
define Pp to be the product measure on � with parameter p. We define the
random variable Kx �E→ P �E� by K�ω� = �e ∈ Ex ω�e� = 1�.

We define the event

R�d� =
{
K has an infinite d-rigid component containing O

}
;

and define the d-rigidity percolation probability

ρ�d��p� = Pp�R�d��:

Remark. It is of course necessary to check that R�d� is indeed a measur-
able event; we briefly describe one approach to this below. Similar arguments
can be applied to all the events which we shall consider, and we shall therefore
generally not mention questions of measurability. Write E = �e1; e2; : : :�, and
define En = �e1; : : : ; en�. For natural numbers m and n, define the cylinder
event

rm;n =
{
K ∩Em has a d-rigid component containing Ed and en

}
:

Then we have
⋃
m

rm;n =
{
K has a d-rigid component containing Ed and en

}
;

and so
{⋃
m

rm;n occurs for infinitely many n
}

=
{
K has an infinite d-rigid component containing Ed

}
:

But R�d� is the union over all subgraphs of E of size d (such as Ed) contain-
ing O of the event that K has an infinite d-rigid component containing the
subgraph. The required measurability follows.
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We note that ρ�d� is a nondecreasing function, and define the d-rigidity
critical probability p�d�r = p�d�r �E� by

p
�d�
r = sup

{
px ρ�d��p� = 0

}
:

Since the concept of 1-rigidity is identical with that of connectivity (Propo-
sition 2.2), we will normally write pc for p�1�r . (This is the usual critical prob-
ability for connectivity percolation.)

By Proposition 2.3, for any particular graph we have

pc ≤ p
�d�
r for any d ≥ 1

(and indeed p�d�r ≤ p�d
′�

r whenever d ≤ d′). Standard techniques from perco-
lation theory may be used to show that for a broad family of graphs we have
0 < pc. The following result allows us to bound pr away from 1.

Theorem 4.1. For any d ≥ 1, if L is any d-rigid lattice then we have

p
�d�
r �L� < 1:

The proof of this theorem depends on the following result of Liggett,
Schonmann and Stacey [10]. The result concerns measures on the state space
�0;1�Z2

equipped with the product σ-field. We write σ = �σ�x��x∈Z2 for a
typical point in the sample space. For any p ∈ �0;1� we write πp for the
product measure with parameter p. We say that a measure µ is k-dependent
(for k ≥ 0) if for any A;B ⊆ Z2 such that �x−y� > k for all x ∈ A and y ∈ B,
the families �σ�x��x∈A and �σ�x��x∈B are independent of each other under µ.
In words, µ has no dependence over distances greater than k.

Theorem 4.2 (Liggett, Schonmann and Stacey). For any k>0 and α<1,
there exists β < 1 such that for every k-dependent measure µ satisfying
µ�σ x σ�x� = 1� ≥ β for every x ∈ Z2, µ stochastically dominates πα.

A proof of Theorem 4.2 (in a much more general form) may be found in [10].

Sketch proof of Theorem 4.1. We use a “two-dimensional block argu-
ment.” Let L be a d-rigid lattice, and suppose V�L� = S × Z2, as in the
definition of a lattice in the previous section. Without loss of generality, we
may assume that �S� ≥ d, since we make S as large as desired by relabelling
V�L� as �S× �0; : : : ;m− 1�2� × �mZ�2 for any m ≥ 1. Now let T ⊆ S be a set
of vertices of size d. Since L is rigid, we may find a finite rigid subgraph R
of L such that T × ��0;0�; �1;0�; �0;1�� ⊆ V�R�. Choose any such subgraph,
and define Rx (where x ∈ Z2) to be a subgraph of L obtained by “translating
R by x,” that is, adding the vector x to the vector component of each vertex.
Note that R0 = R, and that Rx is graph-theoretic isomorphic to R.

The crucial point of this construction is that if x;y ∈ Z2 are “adjacent” in
the sense that �x − y� = 1, then �V�Rx� ∩ V�Ry�� ≥ d. Since R is rigid, it
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follows by Proposition 2.4 that if x1; x2; : : : is a sequence of distinct vectors
in Z2 such that �xi+1 − xi� = 1 for each i, then

⋃
iRxi

is a rigid graph. We
shall show that for p sufficiently close to 1, K contains an infinite graph of
this type almost surely with respect to Pp.

Given K ⊆ L, define for each x ∈ Z2,

σ�x� =
{

1; if Rx ⊆K;
0; otherwise.

We note that sinceR is finite, the law of σ induced by Pp must be k-dependent
for some k. Also note that for each x we have Pp�σ�x� = 1� = p�R�. We may
now appeal to Theorem 4.2. For any α < 1, we may choose p sufficiently large
that the law of σ stochastically dominates the product measure πα. Hence if
we choose α to exceed the critical probability for site percolation on the square
lattice in two dimensions (which is strictly less than 1), the result follows. 2

In particular, we note that Theorem 4.1 may be applied to the triangular
lattice to show that p�2�r �T� < 1. It is a standard result of percolation theory
that pc�T� > 0, so we also have p�2�r �T� > 0.

5. Results for the triangular lattice. The remainder of this work will
be devoted to the study of 2-rigidity percolation on the triangular lattice, T.
It is believed that our arguments could in principle be extended to deal with
a large family of lattices, but that this would involve considerable difficulties
of a rather technical graph-theoretic nature.

We have seen that the general results of the previous section imply the
inequalities

0 < pc�T� ≤ p
�2�
r �T� < 1;

so that there is a genuine rigidity phase transition, occurring at a critical
probability greater than or equal to that for connectivity percolation.

Our first main result (Theorem 7.1) will be the strict inequality

pc�T� < p
�2�
r �T�:

Our approach to proving this is based on the general result of Aizenman and
Grimmett [1], although we shall require a slight extension of the method used
therein.

Our second main result (Theorem 8.1) concerns uniqueness of the infinite
rigid component:

If p is such that ρ�2��p� > 0 and ρ�2� is either left-continuous
or right-continuous at p; then

Pp�K has exactly one infinite 2-rigid component� = 1:

Since ρ�2� is a nondecreasing function, this implies that the above dis-
played equation holds for all but countably many values of p in the interval
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�px ρ�2��p� > 0�. We shall also see that the result enables us to make some
deductions about the continuity of ρ�2�.

Our approach to proving this result is based on the method of Burton and
Keane [2]. However, since we are dealing here with rigidity rather than con-
nectivity percolation, we shall require a variety of additional techniques, and
our final result is slightly weaker than the corresponding result in [2], in that
we prove uniqueness only for all but countably many p. We briefly describe
the reasons for this below.

In the physics literature, rigidity (in contrast with connectivity) is often de-
scribed as a “long-range phenomenon.” To see one example of what is meant
by this, consider the effect of adding one extra edge to a graph. The effect on
connectivity is simply to unite the two connected components of the two ver-
tices into one connected component (if they were distinct initially). However,
the effect on rigidity may be much more complicated. For example, consider
starting with a square and adding one diagonal; initially each of the four edges
forms a distinct 2-rigid component, but the addition of the extra edge unites
all five edges into a single 2-rigid component. Thus it appears to be much
more difficult to predict the effect of adding or removing edges on rigidity (as
opposed to connectivity); perhaps the most useful partial information in this
direction is provided by Proposition 6.9.

The method of Burton and Keane consists essentially of two steps. Assum-
ing that the number of infinite components is infinite, one first deduces the
existence of so-called “encounter points,” which may be thought of as points
where three “branches” of an infinite component meet. Second, a counting ar-
gument based on the “compatibility” of pairs of encounter points shows that
this leads to a contradiction. For the case of 2-rigidity, one may define a natural
analogue of an encounter point, which we shall later refer to as a “pretrifurca-
tion”; roughly speaking, this is a zone where the removal of a small number of
edges causes one infinite 2-rigid component to split into at least three infinite
2-rigid components. With the aid of Proposition 6.9, we may show that the
existence of infinitely many infinite 2-rigid components implies the existence
of pretrifurcations, although the argument is considerably more delicate than
in the connectivity case. However, the conditions defining a pretrifurcation are
not strong enough to allow the final counting argument to work, essentially
because we do not have enough control over the effect which removing a few
edges from near a pretrifurcation may have. This difficulty is overcome as
follows. Using a further property of rigidity (Proposition 6.5), and Proposition
8.8, which is an extension of Russo’s Formula (see [5]), we show that, given the
continuity of ρ�2�, the effect of removing edges near a pretrifurcation extends
only over a finite range, and hence, with positive probability, the effect is only
to split one infinite component into three. This establishes the existence of
“trifurcations,” whose definition is more restrictive, and whose properties are
such that the counting argument may now be made to work.

In the section immediately following, we shall develop the tools which we
will require to study 2-rigidity, and in the two final sections we shall prove
the two main results for the triangular lattice.
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6. Two-dimensional rigidity. In this section we shall study the proper-
ties of 2-rigid graphs in more detail. We shall do this first for the case of finite
graphs, and then extend the results to infinite graphs. It will be convenient
to use the rigidity closure operator, which is defined below. The material in
this section is of a somewhat different nature from the rest of this work, be-
ing primarily combinatorial. The reader should note that the only information
from this section which is logically necessary in what follows consists of the
statements of Theorem 6.3, Propositions 6.4–6.9 and Meta-proposition 6.10.
In particular, the proofs of these statements may be omitted on a first reading.

We write F �V � for the set of all finite graphs on V . We define the two-
dimensional rigidity closure operator �·�x F �V � → F �V � as follows. Given
E ∈ F �V �, choose a generic embedding of E in two dimensions and let M be
the collection of all motions of the resulting framework. We define �E� to be the
set of all edges �x;y� ∈ V�E��2� such that the “edge length” �r�t��x�−r�t��y��
is constant for every motion �r�t�� in M . It can be shown (see [4]) that, as
we might expect in the light of Theorem 2.1, the set �E� so defined is not
dependent on the choice of the generic embedding. By definition,

E is 2-rigid if and only if �E� = V�E��2�:
We remark that the closure operator is more commonly defined in a some-
what different but equivalent way in terms of infinitesimal rigidity. See [4] for
details.

The following properties of �·� may be deduced immediately from the defi-
nition.

Lemma 6.1. For any A;B ∈ F �V � we have the following:

(i) �A� ⊇ A;
(ii) If A ⊆ B then �A� ⊆ �B�;

(iii) ��A�� = �A�.

The following is an elementary consequence of the previous lemma.

Corollary 6.2. For any A;B ∈ F �V � and A ⊆ A′ ⊆ �A�, we have �A ∪
B� = �A′ ∪B�.

We note that all our observations so far could be applied equally to rigidity
in any number of dimensions. Thus we could define a closure operator in
the same way for rigidity in any number of dimensions, and Lemma 6.1 and
Corollary 6.2 would still be valid. What makes the case of two dimensions
special is the following purely combinatorial characterization of the closure
operator, which is originally due (in a slightly different form) to Laman [9].
(See [4] for a treatment of the result in the form given here.) It is this which
allows us to obtain simple proofs of the results which follow.

We say a graph E ∈ F �V � is overconstrained if �E� > 2�V�E�� − 3, and bal-
anced if �E� = 2�V�E��−3. We sayE is independent if it has no overconstrained
subgraph.
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Theorem 6.3 (From Laman). The closure operator �·� is characterized by

�E�=E ∪
{
ex there exists F⊆E such that F is independent

but F ∪ �e� is not independent
}
:

In all that follows we shall restrict our attention to rigidity in two dimen-
sions, and in the remainder of this section and those which follow we will
use the term rigid to mean 2-rigid. Note that the results we give in this
section subsume the general rigidity results of Propositions 2.2–2.5 in the
two-dimensional case (as well as providing a considerable amount of further
information), so that, for example, the statement of Proposition 6.7 is sim-
ply the specialization of Proposition 2.4 to the case d = 2. Thus all the re-
sults on two-dimensional rigidity which we shall require follow from Laman’s
characterization. In all the immediately following results, we assume that
A;B;E ∈ F �V �.

Proposition 6.4. We have

�E� =
⋃
F⊆Ex

F is rigid

V�F��2�:

Proof. That the right-hand side is a subset of �E� follows from the defini-
tion of rigidity, as given above. For the reverse inclusion, suppose that e ∈ �E�.
If e ∈ E, then e is a member of the set on the right-hand side, since �e� is a
rigid graph. If not, we note that the graph F in the statement of Theorem 6.3
must have a balanced independent subgraph F′ such that both vertices of e lie
in V�F′�. Hence, since F′ is balanced and independent, Theorem 6.3 implies
that �F′� = V�F′��2�; that is, F′ is rigid. Hence the result follows. 2

In words, Proposition 6.4 states that an edge lies in �E� if and only if both
its vertices are contained in some rigid subgraph of E. It will be useful to
bear in mind this interpretation of the closure operator in what follows. We
remark that the statement corresponding to Proposition 6.4 in three or more
dimensions is false (a counter-example in three dimensions may be constructed
along the lines of the graph in Figure 1.7 of [4]).

Proposition 6.5. If s; t ∈ V �2� \ �E� and s ∈ �E ∪ �t�� then t ∈ �E ∪ �s��.

Proof. By Theorem 6.3, there must exist F ⊆ E with F∪�t� independent
and F∪ �s; t� not independent. But then F is independent, and F∪ �s� must
be independent, for otherwise we would have s ∈ �E�. Hence t ∈ �F ∪ �s��. 2

This is perhaps the least intuitive of our results on rigidity: if the addition
of an edge t “locks” the two vertices of s by causing them to be contained in
a rigid graph, then the addition of s has the same effect on the vertices of t.
The result will be crucial to the proof of Theorem 8.1, since it will enable us to
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show that if, with positive probability, there are an infinite number of regions
which are affected by a particular change near the origin (“hinges”), then,
with positive probability, there are an infinite number of regions at which a
change will affect the origin (“h-pivotal vertices”). It is this that allows us to
deduce the existence of “trifurcations” from the existence of “pretrifurcations”
and the continuity of ρ�2�. (We remark that the statements of Lemma 6.1 and
Proposition 6.5 together amount to the assertion that �·� is a matroid closure
operator. For more details, see [4].)

Proposition 6.6. If �V�A� ∩V�B�� ≤ 1 then �A ∪B� ⊆ V�A��2� ∪V�B��2�.
In particular, a rigid graph is connected.

Proof. Suppose on the contrary that there exist x ∈ V�A� \ V�B� and
y ∈ V�B� \V�A� such that �x;y� ∈ �A ∪ B�. Then there must exist disjoint
graphs C ⊆ A and D ⊆ B with C ∪D balanced and independent, and such
that x ∈ V�C� and y ∈ V�D�. Now since C ∪D is balanced, we have

�C� + �D� = �C ∪D�

= 2�V�C ∪D�� − 3

≥ 2��V�C�� + �V�D�� − 1� − 3

= 2�V�C�� + 2�V�D�� − 5:

But since C and D are not overconstrained we have

�C� ≤ 2�V�C�� − 3

and

�D� ≤ 2�V�D�� − 3;

giving a contradiction. 2

Proposition 6.7. If A and B are rigid and �V�A� ∩V�B�� ≥ 2 then A∪B
is rigid.

Proof. We shall appeal to Corollary 6.2. It is sufficient to show that for any
two vertices x ∈ V�A� \V�B� and y ∈ V�B� \V�A� we have �x;y� ∈ �A∪B�.
Let u; v be two distinct vertices in V�A� ∩ V�B�, and note that the edges
�u; v�; �x;u�; �x; v�; �y;u�; �y; v� all lie in �A ∪ B�. The result now follows
from the observation that the graph consisting of these five edges is rigid. 2

Proposition 6.8. Suppose x;y ∈ V�A� and z ∈ V \ V�A�, and let A′ =
A ∪ ��x; z�; �y; z��. Then A′ is rigid if and only if A is rigid.

Proof. An argument similar to the above shows that if A is rigid then A′

is rigid. On the other hand, supposeA′ is rigid butA is not rigid. Then there is
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some edge �u; v� ∈ �A′�\�A�, where u; v ∈ V�A�. It is easily seen this implies
the existence of some C ⊆ A such that C∪��x; z�; �y; z�� is independent and
balanced and u; v ∈ V�C�. It follows that C is also independent and balanced,
contradicting the assertion that �u; v� 6∈ �A�. 2

Proposition 6.9. If A ∪ B and B′ are rigid, and V�A� ∩ V�B� ⊆ V�B′�,
then A ∪B′ is rigid.

Proof. First observe that by Proposition 6.6 we must have �V�A� ∩
V�B�� ≥2.

We now construct a graph C as follows. Let x and y be two distinct vertices
in V�B′�, and let V�B� \V�A� = �z1; : : : zk�. Then define

C =
{
�x; z1�; �y; z1�; �x; z2�; �y; z2�; : : : ; �x; zk�; �y; zk�

}
:

Thus, by repeated application of Proposition 6.8 we deduce that A∪B′ is rigid
if and only if A ∪ B′ ∪ C is rigid, and also that B′ ∪ C is rigid. But applying
Corollary 6.2, we have

�A ∪B′ ∪C� = �A ∪ �V�B′� ∪V�B���2�� (since B′ ∪C is rigid)

= �V�A ∪B��2� ∪ �V�B′� ∪V�B���2�� (since A ∪B is rigid)

= �V�A� ∪V�B� ∪V�B′���2� (by Proposition 6.7).

= V�A ∪B′ ∪C��2�: 2

The statement of Proposition 6.9 expresses an intuitively plausible fact: if
we remove some part B of a rigid graph A ∪ B, then we can restore rigidity
by adding any rigid graph B′ which contains all the vertices of A from which
edges have been removed.

As in Section 3, we may now extend our results to infinite graphs. Let E
be any (possibly infinite) graph. We define �E� according to the statement of
Proposition 6.4. We now have the following meta-proposition, whose proof is
straightforward.

Meta-proposition 6.10. The statements of Propositions 6.5–6.9 all hold if
we allow the graphs concerned to be infinite.

Again, for the sake of convenience, we shall use the original numbers to
refer to the “infinite versions” of these propositions.

7. Strict inequality of critical points. Our first main result about the
triangular lattice is the following.

Theorem 7.1. We have the strict inequality

pc�T� < p
�2�
r �T�:
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Our approach to proving Theorem 7.1 is to translate the problem into a
problem concerning only connectivity percolation, and then to solve this prob-
lem using the techniques of [1].

Let E be a graph. We say an edge �x;y� ∈ E is a bridge of E if the following
hold:

1. Each of x;y has degree exactly 2 in E.
2. There does not exist z ∈ V�E� such that �x; z�; �y; z� ∈ E.

A bridge is illustrated in Figure 2. The idea of the definition is that removing
bridges has no effect on the infinite rigid components of a graph, but does
affect its connectivity properties.

Lemma 7.2. Let E be a finite graph and let b ∈ E be a bridge. The only
rigid subgraph of E which is not also a rigid subgraph of E \ �b� is �b� itself.

Proof. Suppose F is a rigid subgraph of E which is not a rigid subgraph
of E \ �b�. Clearly we have b ∈ F. Further, provided F 6= �b�, by Proposition
6.6, F must also include the two edges e1; e2 of E adjacent to b, and also at
least one further edge adjacent to each of e1; e2 (we say two edges are adjacent
if they share a vertex). But now, by Proposition 6.6, F \ �b; e2� is not rigid, so
by Proposition 6.8, F is not rigid, a contradiction. 2

Corollary 7.3. Let E be any graph, and let B ⊆ E be a (possibly infinite)
set of bridges of E. Then the only rigid subgraphs of E which are not also rigid
subgraphs of E \ B are singleton bridges �b� ⊆ B. In particular, the infinite
rigid subgraphs of E are precisely the infinite rigid subgraphs of E \B.

Proof. We prove the result first for finite rigid subgraphs of E. Since any
such subgraph contains only finitely many bridges in B, we obtain this result
simply by repeatedly applying the preceding lemma. The general result now
follows from the definition of an infinite rigid graph. 2

Fig. 2. The thickened edge is an example of a bridge.
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The above result tells us that removing bridges from a graph has no effect
on its infinite rigid components. The following result will show that removing
a particular set of bridges does have an effect on the connectivity critical
probability, which will enable us to deduce the main result, Theorem 7.1.

Define the set

U =
{
3a�1;0� + 2b

(
1/2;
√

3/2
)
x a; b ∈ Z

}
⊂ V�T�:

We also define W to be the subgraph of T consisting of the eleven edges illus-
trated in Figure 3 and define the edges b; e1; e2 ∈ W as in the figure. Let X
be the graph �b; e1; e2�. For u ∈ U, we shall write W+ u; b+ u and so on, for
the “translated copies” of these graphs and edges (which also lie in T). Note
that for any distinct u; v ∈ U, the graphs W+ u and W+ v are disjoint.

Given the graph K ⊆ T, we define ψ�K� ⊆ T as follows:

ψ�K� =K
∖ ⋃

u∈Ux
K∩�W+u�=X+u

�b+ u�:

In words, we obtain ψ�K� from K by deleting all edges of the form b+u where
the edges of W+u present in K are precisely those of X+u (so that b+u is
a bridge of K).

Proposition 7.4 (After Aizenman and Grimmett). There exists a nonempty
interval �p1; p2� ⊂ �0;1� such that for p ∈ �p1; p2� we have

Pp�K has an infinite connected component containing O� > 0;

but

Pp�ψ�K� has an infinite connected component containing O� = 0:

This result is almost a special case of the result proved in [1]. However
there are two essential differences.

1. Our result is for the triangular lattice, whereas [1] uses the “hypercubic
lattice” (Ld).

Fig. 3. The subgraph W of T and some special edges of W.
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2. The general result in [1] is for “enhancements,” that is, systematic alter-
ations to a configuration which involve the addition of edges. Our alteration
ψ might be called a disenhancement since it involves the removal of edges,
and (to extend the terminology of [1] further), it is an “essential” disen-
hancement.

The proof of Proposition 7.4 is omitted; it presents no substantial difficulty
and consists merely of repeating the steps used in [1], bearing in mind the
above differences.

We are now in a position to prove the main result of this section.

Proof of Theorem 7.1. Let p1; p2 be as in Proposition 7.4. Clearly we
have pc ≤ p1. Now consider ψ�K�. For p ∈ �p1; p2�, almost surely with respect
to Pp, ψ�K� has no infinite connected component and therefore no infinite
rigid component. But since ψ�K� is obtained from K by deleting bridges, by
Corollary 7.3 this implies that K has no infinite rigid component. Hence p2 ≤
p
�2�
r , and the required inequality follows. 2

8. Uniqueness for almost all p. Throughout this section we shall work
with the triangular lattice T. Our main result is the following.

Theorem 8.1. If p is such that ρ�2��p� > 0 and ρ�2� is either left-continuous
or right-continuous at p, then

Pp�K has exactly one infinite rigid component� = 1:

Before proving this theorem, we shall make a few remarks on its conse-
quences, and then outline the approach of the proof.

We say that “we have uniqueness at p” if p is such that the displayed
equation above holds. Since ρ�2� is a nondecreasing function, it is an immediate
corollary of Theorem 8.1 that we have uniqueness for all but countably many
p in the interval �px ρ�2��p� > 0� (and hence for almost all such p with respect
to Lebesgue measure). We conjecture that in fact we have uniqueness for all
p in this interval.

It may be shown (by the same method as for connectivity percolation; see
[5], pages 117–119, but replacing “a finite path” with “a finite rigid graph”)
that the following holds.

Proposition 8.2. If p > p
�2�
r and we have uniqueness at p then ρ�2� is

left-continuous at p.

In particular, it follows from this and Theorem 8.1 that we have uniqueness
at p (> p

�2�
r ) if and only if ρ�2� is left-continuous at p. Also, if ρ�2� is left-

discontinuous at p (> p
�2�
r ), then it is also right-discontinuous at the same

point.
We shall now give an outline of our approach to proving Theorem 8.1. Stan-

dard arguments can be used to show that for any given p, the number of
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infinite rigid components of K takes some value k with probability 1, and
that k ∈ �0;1;∞�. Our task is therefore to rule out the possibility k = ∞. We
shall show that this possibility leads to a contradiction, using an extension of
the method in [2]. The main step is to prove the existence of “trifurcations,”
which play the same role as “encounter points” in the terminology of [2] (the
term “trifurcation” is taken from [6]). We first prove the existence of “pretrifur-
cations,” which have some of the required properties. To deduce the existence
of trifurcations we use Proposition 6.5 to show that with positive probability,
a pretrifurcation is “almost” a trifurcation when viewed on a sufficiently large
scale. It is here that the continuity of ρ�2� is required, and it is this step which
represents the most significant augmentation to the ideas in [2].

We shall make use of a number of special subgraphs and edges of H�3�.
These are most conveniently defined by means of diagrams. Define Y to be
the graph illustrated in Figure 4, and define the edges f1; f2; f3, z0; : : : ; z8,
w2;w

′
2, w4;w

′
4, w6;w

′
6 of H�3�, and the vertices a2; a4; a6 of V�H�3�� via Fig-

ure 5. Also, set ai+1 = ai;wi+1 = wi;w′i+1 = w′i for each i = 2;4;6, and define
Z = �z0; : : : ; z8�. Note in particular the form of the graph Y\Z, which is illus-
trated in Figure 6. Finally, we define the following subgraphs of H�3� which
will be required in the proof of Lemma 8.9:

X1 = �Y \Z� ∪ �z0; z1�;
X2 =X1 ∪ �z2�;

:::

X7 =X6 ∪ �z7�;
W2 =X1 ∪ �w2;w

′
2�;

:::

W7 =X6 ∪ �w7;w
′
7�:

As we shall see, the idea of this construction is that X1; : : : ;X7 form a se-
quence of intermediate steps between Y\Z and Y, and that Wj, together with

Fig. 4. The subgraph Y of H�3�.
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Fig. 5. Some special edges and vertices of H�3�.

the vertex aj, forms a “test configuration” for testing the difference between
Xj−1 and Xj.

We shall make extensive use of the following result from percolation theory,
whose proof is elementary.

Lemma 8.3. Let A ;B ⊆ P �T� be two sets such that �K ∈ A � and �K ∈ B�
are measurable events, and let S ⊂ T be finite. Suppose ζx P �T� → P �S� is a
function such that

if K ∈ A then �K \S� ∪ ζ�K� ∈ B:

Then Pp�K ∈ A � > 0 implies Pp�K ∈ B� > 0.

In words, Lemma 8.3 states that if, starting from an event of positive prob-
ability, we can force a second event to occur by making changes to some fixed

Fig. 6. The subgraph Y \Z of H�3�.
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finite set of edges, then the second event also has positive probability. This
assertion is closely related to the “finite energy condition” on measures which
is used in [2].

We say that the origin is a trifurcation of K if the following three conditions
hold:

1. K ∩H�3� = Y.
2. In the graph K \Z (whose intersection with H�3� is Y \Z; see Figure 6),

each of the edges f1; f2; f3 (see Figure 5) lies in an infinite rigid component,
which we denote Ti (i = 1;2;3); and T1;T2;T3 have pairwise disjoint
vertex sets [that is, V�Ti� ∩V�Tj� = \ for each pair i 6= j].

3. Z∪T1∪T2∪T3 is a rigid component of K (in particular it is not contained
in any strictly larger rigid subgraph of K).

Note that conditions (1) and (2) imply that Z∪T1∪T2∪T3 is a rigid graph,
so that the only way in which condition (3) can fail is for Z ∪ T1 ∪ T2 ∪ T3
to be contained in a strictly larger rigid graph. It is precisely to rule out this
possibility that we require the assumption about the continuity of ρ�2� in the
statement of Theorem 8.1. A trifurcation is illustrated in Figure 7; after the
removal of the nine edges of Z from the center of the picture, the shaded
regions will form parts of three distinct rigid components.

We say that the origin is a pretrifurcation if conditions (1) and (2) hold. We
say x ∈ V is a (pre)trifurcation if the corresponding statements hold for the
translated graph K− x.

Fig. 7. An illustration of the event �O is a trifurcation�.
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Proposition 8.4. Suppose p is such that

Pp�K has infinitely many infinite rigid components� = 1:

Then we have

Pp�O is a pretrifurcation of K� > 0:

In proving this result we shall make use of the following lemmas, 8.5
and 8.6, whose validity is “obvious,” although full proofs would be somewhat
lengthy. A sketch proof of Lemma 8.5 is given, and an example of the con-
struction involved in Lemma 8.6 is illustrated in Figure 10.

By an interval of ∂H�m� we mean a nonempty proper subset of ∂H�m�
which forms a connected graph. We say two intervals are separate if they
have no common vertex.

Lemma 8.5. Let D1;D2;D3 be infinite connected subgraphs of T \H�m�
with pairwise disjoint vertex sets. Write Ji = V�Di�∩V�∂H�m��, and suppose
�Ji� ≥ 2 for each i. Then there exist pairwise separate intervals I1; I2; I3 of
∂H�m� with Ji ⊆ V�Ii�.

Sketch of proof. For any collection of distinct vertices v1; : : : ; vr ∈
V�∂H�m��, we write

v1 {v2 { · · · {vr

for the assertion that the vertices are encountered in the order v1; v2; : : : ; vr
when ∂H�m� is traversed in the clockwise direction. (Thus, v1 { · · · {vr is
equivalent to vr {v1 { · · · {vr−1, and so on. Note that for any two distinct
vertices v1 and v2 we always have v1 {v2 and v2 {v1). Also, for u; v ∈
V�∂H�m��, we write �u; v� for the interval of ∂H�m� whose “anticlockwise
end” is u and whose “clockwise end” is v. (See Figure 8.)

Note that for j; j′ ∈ J1 and k; k′ ∈ J2∪J3, we cannot have j{k{j′{k′.
This is because there is an infinite path in D2∪D3 starting from each of k; k′,

Fig. 8. An illustration of the assertion u1 {u2 {u3 and of the interval �u; v�.
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Fig. 9. An illustration of intersecting paths in D1 and D2 ∪D3 leading to a contradiction.

and there is a path in D1 from j to j′ which cannot intersect either of these
infinite paths. (See Figure 9.)

Now writeJ1 = �j1; : : : ; jr�where j1 { · · · {jr. By the above observation,
there must exist some pair �js; js′� where s′ ≡ s+ 1 �mod r�, such that

J2 ∪J3 ⊆ V��js; js′ ��:

Without loss of generality we may take �js; js′� = �jr; j1�. Now define I1 =
�j1; jr�, and define I2 and I3 similarly.

Clearly Ji ⊆ V�Ii�, and it is easily verified that I1; I2; I3 are pairwise
separate. 2

Lemma 8.6. There exists some fixed R such that if m ≥ R and I1; I2; I3
are pairwise separate intervals of ∂H�m�, then there exist rigid graphs
A1;A2;A3 ⊆ �H�m� \H�3�� ∪ ∂H�3� with pairwise disjoint vertex sets, such
that, after relabelling indices if necessary, we have Ai ∩ ∂H�m� = Ii and
Ai ∩ ∂H�3� = �fi� for i = 1;2;3.

The proof of Lemma 8.6 is omitted. See Figure 10 for an example of the
construction involved. That the graphs A1;A2;A3 are rigid may be deduced
from Proposition 6.8.

Some of the steps in the following proof are illustrated in Figures 11 and 12.

Proof of Proposition 8.4. Suppose the condition of the proposition holds.
Define the event

FN =
{
at least three infinite rigid components of K intersect H�N�

}
:

Choose N large enough that Pp�FN� ≥ 1/2.
Suppose FN occurs, and let C1;C2;C3 be the “first” three such components

(with respect to some suitable ordering). Since C1;C2;C3 are distinct rigid
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Fig. 10. An example of the construction of the graphs A1;A2;A3.

components of a graph, Proposition 6.7 implies that any pair have at most
one vertex in common, so we can take M sufficiently large that

Pp
(
C1;C2;C3 have pairwise no common vertices outside

V�H�M− 1�� � FN

)
≥ 1/2:

Take M′ = max�M;R� where R is as in Lemma 8.6, and let

G =
{
FN occurs and C1;C2;C3 have pairwise no common

vertices outside V�H�M′ − 1��
}
;

so that Pp�G� ≥ 1/4. (See Figure 11.)

Fig. 11. An illustration of the graphs C1;C2;C3.
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Fig. 12. An illustration of some of the graphs used in the proof of Proposition 8.4.

We shall use Lemma 8.3. We show that for any K such that G occurs, we
can define ζ�K� ⊆H�M′� so that O is a pretrifurcation of �K\H�M′��∪ζ�K�,
and the result will follow.

Suppose G occurs. For each i, Ci \H�M′� must have an infinite connected
component, hence let Di be the “first” such component. By Proposition 6.6,
since Ci is rigid we must have �V�Di� ∩ V�∂H�M′��� ≥ 2. By Lemma 8.5,
there must exist separate intervals I1; I2; I3 of ∂H�M′� such that V�Di� ∩
V�∂H�M′�� ⊆ V�Ii� for i = 1;2;3. Take I1; I2; I3 to be minimal such intervals,
so that their end vertices lie in the respective V�Di�.

Now let A1;A2;A3 be as in Lemma 8.6 with m = M′, and put ζ�K� =
Y∪A1 ∪A2 ∪A3. We claim that O is a pretrifurcation of �K \H�M′�� ∪ ζ�K�.

First observe that by Proposition 6.9, Ai ∪Di is rigid. We must also show
that the rigid components of the graph �K \H�M′�� ∪ A1 ∪ A2 ∪ A3 (which
we shall refer to as L) containing each Ai ∪Di are distinct and have pairwise
disjoint vertex sets, from which the result will follow. Let Pi be a finite path
in Di connecting the two end vertices of Ii, and let Ei be the set of edges of K
in the finite region enclosed by Pi and Ii. (See Figure 12.) We claim that the
rigid component of L containing Ai ∩Di is contained in Ai ∪Ci ∪Ei. Indeed
suppose that Ai ∪ C ∪ E ∪ Q ⊆ L is rigid, where C ⊆ Ci \ Ei, E ⊆ Ei and
Q ⊆ K \ �Ci ∪Ei�. Then by Proposition 6.9, since V�E� ∩ V�Ai ∪ C ∪Q� ⊆
V�Ai ∪Di�, we deduce that Ai ∪C∪ �Ai ∪Di� ∪Q is rigid, but this is simply
Ai ∪ C ∪Di ∪Q. Further, since V�Ai� ∩V�C ∩Di ∩Q� ⊆ V�Ci�, we deduce
that Ci ∪ C ∪Di ∪Q is rigid, but this is simply Ci ∪Q. Hence (since Ci is a
rigid component of K), Q = \.

The result now follows by Propositions 6.6 and 6.8. 2

Our aim is now to prove the following.
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Proposition 8.7. Suppose p is such that

Pp�K has infinitely many infinite rigid components� = 1

and ρ�2� is either left-continuous or right-continuous at p. Then we have

Pp�O is a trifurcation of K� > 0:

The proof depends on the following lemmas, 8.8 and 8.9.
We start with a definition. Let A ⊆ P �T� be such that �K ∈ A� is an

increasing measurable event, so that if K ⊆K′ then K ∈ A implies K′ ∈ A .
Given K, we say that a vertex x is h-pivotal to A (or to the event �K ∈ A �,
when the latter is more convenient) if

K ∪ �H�1� + x� ∈ A and K \ �H�1� + x� 6∈ A :

We shall write NA (or N�K∈A �) for the (random) number of vertices h-pivotal
to A .

Lemma 8.8. Let A ⊆ P �T� be such that �K ∈ A � is an increasing event.
For any p < 1 we have

lim
δ↓0

(
Pp+δ�A � −Pp�A �

)
≥ Pp�NA = ∞�

and

lim
δ↓0

(
Pp�A � −Pp−δ�A �

)
≥ Pp�NA = ∞�:

Suppose O is a pretrifurcation of K. We say a vertex x is a hinge if x lies
in fewer rigid components of K than of K \Z. See Figure 13 for an illustra-
tion of one way in which hinges can occur; the five shaded regions lie in a
single rigid component, but when the edges of Z are removed, each will lie in
a distinct rigid component, so each of the three marked vertices will lie in two
distinct rigid components. The idea of this definition is that it is the existence
of hinges which may prevent a pretrifurcation from being a trifurcation. This
is essentially because any rigid component is connected, so given any vertex
contained in the same rigid component as the origin, this rigid component
must contain a path from the vertex to the origin. If the chosen vertex is not
contained in Z ∪T1 ∪T2 ∪T3, then this path must contain a hinge. We shall
make this argument precise in the proof of Proposition 8.7. We shall also show
that, under the continuity assumption of Proposition 8.7, the number of hinges
must be finite, and we may therefore “remove” all hinges (with positive proba-
bility) by taking a hexagon large enough to contain all of them and appealing
to Lemma 8.3. We shall show that the number of hinges is finite by observ-
ing that if x is a hinge then, by altering the configuration near the origin
(and shifting coordinates), we may make x h-pivotal to R�2� and then using
Lemma 8.8.

Lemma 8.9. Suppose

Pp�O is a pretrifurcation of K and there are infinitely many hinges� > 0:

Then Pp�NR�2� = ∞� > 0.
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Fig. 13. The three marked vertices are examples of hinges.

Proof of Lemma 8.8. We shall prove only the first inequality, the proof of
the second being similar. We introduce the usual coupling of Pp and Pp+δ: let
�ηe�e∈T be a collection of independent Uniform�0;1� random variables and set
K�p� = �ex ηe < p�. Then for all δ > 0 we have

Pp+δ�K ∈ A � −Pp�K ∈ A � = P�K�p+δ� ∈ A ; K�p� 6∈ A �
≥ P�F�;

say, where

F =
{
there exists x ∈ V h-pivotal to A for K�p� such that

p ≤ ηe ≤ p+ δ for all e ∈H�1� + x
}
:

But we have

P�F� ≥ P�F �NA = ∞ for K�p��Pp�NA = ∞�:
Now whenever NA = ∞, there is an infinite set of h-pivotal vertices S such
that for any x;y ∈ S with x 6= y, the graphs H�1� + x and H�1� + y are
disjoint. It follows that Pp�F �NA = ∞� = 1, completing the proof. 2

Proof of Lemma 8.9. Suppose O is a pretrifurcation of K. Define the
graphs K0 ⊂ · · · ⊂K8 by

K0 =K \Z;
K8 =K;
Kj = �K \H�3�� ∪Xj �j = 1; : : : ;7�:
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We say x ∈ V�T� is a j-hinge if x lies in fewer rigid components of Kj than
of Kj−1. Thus if x is a hinge, it must be a j-hinge for some j. It is also clear
that 1-hinges and 8-hinges cannot exist (by Proposition 6.8 and Corollary 6.2).
Hence if there are infinitely many hinges, there must be infinitely many j-
hinges for some 2 ≤ j ≤ 7. Thus choose j to be the smallest value such that

Pp
(
O is a pre-trifurcation of K and there are infinitely

many j-hinges
)
> 0:

We define K̂ = �K\H�3��∪Wj and also recall the definition of the vertex aj.
The required result follows from the observation (which we justify below) that
any j-hinge outside V�H�3�� is h-pivotal to the event �aj lies in an infinite
rigid component� in K̂. Hence, whenever the above event occurs, there are
infinitely many such vertices, so the result follows by Lemma 8.3 and the fact
that NR�2� is translation-invariant.

A separate argument is required for each j. For the sake of brevity, we give
the argument only for the case j = 2, the other cases being similar.

Suppose x ∈ V�T� \V�H�3�� is a 2-hinge. The relevant subgraphs of H�3�
are illustrated in Figure 14. The edges of X1 are indicated by thin solid
lines, while X2 consists of these edges together with the dashed edge �O;b�,
and W2 consists of the edges of X1 together with the two thickened edges.
Recall that the graphs K1, K2 and K̂ differ only on H�3�, and we have
K1 ∩H�3� =X1;K2 ∩H�3� =X2; K̂∩H�3� =W2. The vertices O and a2 are
also marked, and we define the additional vertices b and c via the figure. Now,
x must have two neighbors u and v in K such that �x;u�; �x; v� lie in distinct
rigid components of K1 but not of K2. Consider the edge �u; v�, which is not
necessarily an edge of T. Consider also the edge �O;b� which is present in K2
but not in K1. We have �u; v�; �O;b� 6∈ �K1�, and �u; v� ∈ �K1 ∪ ��O;b���,
so by Proposition 6.5, �O;b� ∈ �K1 ∪ ��u; v���. Hence in K1 ∪ ��u; v��, there
must be some rigid subgraph containing O and b, and we claim that it must
also contain c. Indeed, any rigid subgraph containing O must include both of
the two edges incident to O in K1, otherwise we would have a contradiction
to Proposition 6.6. It follows by Proposition 6.8 that a2 lies in an infinite rigid

Fig. 14. An illustration of the case j = 2.
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component of K̂ ∪ ��u; v�� but not of K̂. Hence since �u; v� ∈ �H�1� + x�, a2

lies in an infinite rigid component of K̂∪�H�1�+x� but not of K̂ \ �H�1�+x�;
that is, x is h-pivotal to �a2 lies in an infinite rigid component� in K̂, as re-
quired. 2

Proof of Proposition 8.7. It follows from the two previous lemmas that
if ρ�2� is either left-continuous or right-continuous at p, then

Pp
(
O is a pretrifurcation of K and there are infinitely

many hinges
)
= 0:

Therefore

Pp
(
O is a pretrifurcation of K and there are finitely

many hinges
)
> 0:

Hence for some fixed S <∞ we have

Pp
(
O is a pretrifurcation of K and there are no hinges

outside V�H�S− 1��
)
> 0:

We now appeal to Lemma 8.3. Suppose the above event occurs and let
T1;T2;T3 be the three rigid components of K\Z containing f1; f2; f3. Define
ζ�K� =H�S� ∩ �Z ∪T1 ∪T2 ∪T3�. Define K′ = �K \H�S�� ∪ ζ�K�. We shall
show that O is a trifurcation of K′.

Clearly T1;T2;T3 are rigid components of K′ \Z, since they are rigid com-
ponents of K \Z and we have K′ \Z ⊆K \Z.

Suppose the rigid component of K′ containing H�1� is strictly larger than
Z∪T1∪T2∪T3. Since the rigid component is connected, it must contain some
edge �x;y� 6∈ Z ∪ T1 ∪ T2 ∪ T3 with x ∈ V�Ti� (some i). But �x;y� 6∈ H�S�
[since K′ ∩H�S� = Z ∪ T1 ∪ T2 ∪ T3], and �x;y� must also lie in the rigid
component of K containing H�1� (since we have K ⊇K′). We claim that x is a
hinge, which gives a contradiction since x does not lie in V�H�S− 1��. To see
that x is a hinge, note that in K \Z, x is contained in the rigid component Ti
and also in another distinct rigid component, T′ say, which includes the edge
�x;y�. In K, the graphs Ti and T′ both form part of a single rigid component.
Hence, since the addition of Z cannot make any rigid component smaller, we
deduce that x lies in fewer rigid components of K than of K \Z. 2

The final ingredient is the following result about “compatibility” of trifur-
cations. See Figure 15 for an illustration of the proof of the lemma.

Proposition 8.10. Suppose s; t are distinct trifurcations of K which are
contained in the same rigid component of K. Write K�s� =K \ �Z+ s�, K�t� =
K \ �Z + t� and K�s��t� = K \ ��Z + t� ∪ �Z + t��, and write S1; S2; S3 for the
three rigid components of K�s� containing f1 + s; f2 + s; f3 + s, respectively;
define similarly T1;T2;T3 for K�t�.

Then, after relabelling indices if necessary, we have

S2 ∪S3 ⊆ T1:
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Fig. 15. An illustration of the proof of “compatibility” of trifurcations.

Proof. Due to condition (1) of a trifurcation, it is clear that s+H�1� and
t +H�1� must be disjoint, so after relabelling if necessary, we may assume
H�1�+ s ⊆ T1 and H�1�+ t ⊆ S1. We have S2∪S3 ⊆ T1∪T2∪T3, so we must
show that Si ∩Tj = \ for each pair i; j ∈ �2;3�. By symmetry it is sufficient
to show that S2 ∩T2 = \.

Suppose r ∈ S2∩T2. Write e = f2+t (see Figure 15). Then since r ∈ S2 and
e ∈ S1, r and e lie in distinct rigid components ofK�s�, hence they lie in distinct
rigid components of K�s��t�. But r and e lie in the same rigid component, T2, of
K�t�, so we must have Z+s ⊆ T2 also, a contradiction since H�1�+s ⊆ T1. 2

We now follow [2]. Let Z be a finite set with �Z� ≥ 3. A partition of Z is a
set P = �P1;P2;P3� of disjoint nonempty subsets of Z with P1∪P2∪P3 = Z.

Lemma 8.11 (Burton and Keane). If P is a set of partitions of Z such that
for any P;Q ∈ P, after relabelling indices if necessary we have

P2 ∪P3 ⊆ Q1;

then

�P� ≤ �Z� − 2:

See [2] for a proof of Lemma 8.11.

Proof of Theorem 8.1. All that is now required is to repeat the steps of
[2]. Let N be the number of infinite rigid components of K. By ergodicity,
Pp�N = k� = 1 for some constant k. Also, if 2 ≤ k < ∞ then it can be
shown using Lemma 8.3 that Pp�N < k� > 0, a contradiction. Also k = 0 is
impossible since we are given that ρ�2��p� > 0. Hence k ∈ �1;∞�.

Suppose k = ∞. Consider H�n�, and let F = ��x;y� ∈ H�n�, x ∈
V�∂H�n���. Let T = �x ∈ V�H�n − 1��x x is a trifurcation of K�. Let U ⊆ T
be the set of trifurcations in T belonging to a particular rigid component C
of K, and let Z = F ∩ C. Then each trifurcation in U induces a partition
of Z, and by Lemma 8.10, the condition of Lemma 8.11 is satisfied, hence



COMPONENTS IN GENERIC RIGIDITY PERCOLATION 973

�U� ≤ �Z� − 2. Applying this to each rigid component containing trifurcations
in T and summing, we may deduce that �T� ≤ �F�. However, Proposition 8.7
implies that E��T�� ≥ εn2 for some constant ε > 0, and we have �F� ≤ cn for
some constant c, so we obtain a contradiction for large n. 2
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