Open Access
June 2020 Thermalisation for small random perturbations of dynamical systems
Gerardo Barrera, Milton Jara
Ann. Appl. Probab. 30(3): 1164-1208 (June 2020). DOI: 10.1214/19-AAP1526
Abstract

We consider an ordinary differential equation with a unique hyperbolic attractor at the origin, to which we add a small random perturbation. It is known that under general conditions, the solution of this stochastic differential equation converges exponentially fast to an equilibrium distribution. We show that the convergence occurs abruptly: in a time window of small size compared to the natural time scale of the process, the distance to equilibrium drops from its maximal possible value to near zero, and only after this time window the convergence is exponentially fast. This is what is known as the cut-off phenomenon in the context of Markov chains of increasing complexity. In addition, we are able to give general conditions to decide whether the distance to equilibrium converges in this time window to a universal function, a fact known as profile cut-off.

References

1.

[1] Aldous, D. and Diaconis, P. (1986). Shuffling cards and stopping times. Amer. Math. Monthly 93 333–348. 0603.60006 10.1080/00029890.1986.11971821[1] Aldous, D. and Diaconis, P. (1986). Shuffling cards and stopping times. Amer. Math. Monthly 93 333–348. 0603.60006 10.1080/00029890.1986.11971821

2.

[2] Aldous, D. and Diaconis, P. (1987). Strong uniform times and finite random walks. Adv. in Appl. Math. 8 69–97. 0631.60065 10.1016/0196-8858(87)90006-6[2] Aldous, D. and Diaconis, P. (1987). Strong uniform times and finite random walks. Adv. in Appl. Math. 8 69–97. 0631.60065 10.1016/0196-8858(87)90006-6

3.

[3] Arnold, A., Carrillo, J. A. and Manzini, C. (2010). Refined long-time asymptotics for some polymeric fluid flow models. Commun. Math. Sci. 8 763–782. 1213.35094 10.4310/CMS.2010.v8.n3.a8 euclid.cms/1282747139[3] Arnold, A., Carrillo, J. A. and Manzini, C. (2010). Refined long-time asymptotics for some polymeric fluid flow models. Commun. Math. Sci. 8 763–782. 1213.35094 10.4310/CMS.2010.v8.n3.a8 euclid.cms/1282747139

4.

[4] Arnold, L. (2003). Linear and nonlinear diffusion approximation of the slow motion in systems with two time scales. In IUTAM Symposium on Nonlinear Stochastic Dynamics. Solid Mech. Appl. 110 5–18. Kluwer Academic, Dordrecht. 1079.34046[4] Arnold, L. (2003). Linear and nonlinear diffusion approximation of the slow motion in systems with two time scales. In IUTAM Symposium on Nonlinear Stochastic Dynamics. Solid Mech. Appl. 110 5–18. Kluwer Academic, Dordrecht. 1079.34046

5.

[5] Athreya, K. B. and Hwang, C.-R. (2010). Gibbs measures asymptotics. Sankhya A 72 191–207. 1209.60004 10.1007/s13171-010-0006-5[5] Athreya, K. B. and Hwang, C.-R. (2010). Gibbs measures asymptotics. Sankhya A 72 191–207. 1209.60004 10.1007/s13171-010-0006-5

6.

[6] Baek, Y. and Kafri, Y. (2015). Singularities in large deviation functions. J. Stat. Mech. Theory Exp. 8 P08026, 31.[6] Baek, Y. and Kafri, Y. (2015). Singularities in large deviation functions. J. Stat. Mech. Theory Exp. 8 P08026, 31.

7.

[7] Bakhtin, Y. (2010). Small noise limit for diffusions near heteroclinic networks. Dyn. Syst. 25 413–431. 1281.34105 10.1080/14689367.2010.482520[7] Bakhtin, Y. (2010). Small noise limit for diffusions near heteroclinic networks. Dyn. Syst. 25 413–431. 1281.34105 10.1080/14689367.2010.482520

8.

[8] Bakhtin, Y. (2011). Noisy heteroclinic networks. Probab. Theory Related Fields 150 1–42. 1231.34100 10.1007/s00440-010-0264-0[8] Bakhtin, Y. (2011). Noisy heteroclinic networks. Probab. Theory Related Fields 150 1–42. 1231.34100 10.1007/s00440-010-0264-0

9.

[9] Barrera, G. (2018). Abrupt convergence for a family of Ornstein–Uhlenbeck processes. Braz. J. Probab. Stat. 32 188–199. 1404.60109 10.1214/16-BJPS337 euclid.bjps/1520046140[9] Barrera, G. (2018). Abrupt convergence for a family of Ornstein–Uhlenbeck processes. Braz. J. Probab. Stat. 32 188–199. 1404.60109 10.1214/16-BJPS337 euclid.bjps/1520046140

10.

[10] Barrera, G. and Jara, M. (2016). Abrupt convergence for stochastic small perturbations of one dimensional dynamical systems. J. Stat. Phys. 163 113–138. 1364.37116 10.1007/s10955-016-1468-1[10] Barrera, G. and Jara, M. (2016). Abrupt convergence for stochastic small perturbations of one dimensional dynamical systems. J. Stat. Phys. 163 113–138. 1364.37116 10.1007/s10955-016-1468-1

11.

[11] Barrera, J., Bertoncini, O. and Fernández, R. (2009). Abrupt convergence and escape behavior for birth and death chains. J. Stat. Phys. 137 595–623. 1195.60115 10.1007/s10955-009-9861-7[11] Barrera, J., Bertoncini, O. and Fernández, R. (2009). Abrupt convergence and escape behavior for birth and death chains. J. Stat. Phys. 137 595–623. 1195.60115 10.1007/s10955-009-9861-7

12.

[12] Barrera, J. and Ycart, B. (2014). Bounds for left and right window cutoffs. ALEA Lat. Am. J. Probab. Math. Stat. 11 445–458. 1346.60040[12] Barrera, J. and Ycart, B. (2014). Bounds for left and right window cutoffs. ALEA Lat. Am. J. Probab. Math. Stat. 11 445–458. 1346.60040

13.

[13] Bogachev, V. I., Röckner, M. and Shaposhnikov, S. V. (2016). Distances between transition probabilities of diffusions and applications to nonlinear Fokker–Planck–Kolmogorov equations. J. Funct. Anal. 271 1262–1300. 1345.35051 10.1016/j.jfa.2016.05.016[13] Bogachev, V. I., Röckner, M. and Shaposhnikov, S. V. (2016). Distances between transition probabilities of diffusions and applications to nonlinear Fokker–Planck–Kolmogorov equations. J. Funct. Anal. 271 1262–1300. 1345.35051 10.1016/j.jfa.2016.05.016

14.

[14] Bouchet, F. and Reygner, J. (2016). Generalisation of the Eyring–Kramers transition rate formula to irreversible diffusion processes. Ann. Henri Poincaré 17 3499–3532. 1375.82081 10.1007/s00023-016-0507-4[14] Bouchet, F. and Reygner, J. (2016). Generalisation of the Eyring–Kramers transition rate formula to irreversible diffusion processes. Ann. Henri Poincaré 17 3499–3532. 1375.82081 10.1007/s00023-016-0507-4

15.

[15] Bovier, A., Eckhoff, M., Gayrard, V. and Klein, M. (2004). Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. (JEMS) 6 399–424. MR2094397 1076.82045 10.4171/JEMS/14[15] Bovier, A., Eckhoff, M., Gayrard, V. and Klein, M. (2004). Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. (JEMS) 6 399–424. MR2094397 1076.82045 10.4171/JEMS/14

16.

[16] Bovier, A., Gayrard, V. and Klein, M. (2005). Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues. J. Eur. Math. Soc. (JEMS) 7 69–99. 1105.82025 10.4171/JEMS/22[16] Bovier, A., Gayrard, V. and Klein, M. (2005). Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues. J. Eur. Math. Soc. (JEMS) 7 69–99. 1105.82025 10.4171/JEMS/22

17.

[17] Chen, G.-Y. and Saloff-Coste, L. (2008). The cutoff phenomenon for ergodic Markov processes. Electron. J. Probab. 13 26–78. 1190.60007 10.1214/EJP.v13-474[17] Chen, G.-Y. and Saloff-Coste, L. (2008). The cutoff phenomenon for ergodic Markov processes. Electron. J. Probab. 13 26–78. 1190.60007 10.1214/EJP.v13-474

18.

[18] Day, M. (1982). Exponential leveling for stochastically perturbed dynamical systems. SIAM J. Math. Anal. 13 532–540. 0513.60077 10.1137/0513035[18] Day, M. (1982). Exponential leveling for stochastically perturbed dynamical systems. SIAM J. Math. Anal. 13 532–540. 0513.60077 10.1137/0513035

19.

[19] Day, M. V. (1983). On the exponential exit law in the small parameter exit problem. Stochastics 8 297–323. 0504.60032 10.1080/17442508308833244[19] Day, M. V. (1983). On the exponential exit law in the small parameter exit problem. Stochastics 8 297–323. 0504.60032 10.1080/17442508308833244

20.

[20] Diaconis, P. (1996). The cutoff phenomenon in finite Markov chains. Proc. Natl. Acad. Sci. USA 93 1659–1664. 0849.60070 10.1073/pnas.93.4.1659[20] Diaconis, P. (1996). The cutoff phenomenon in finite Markov chains. Proc. Natl. Acad. Sci. USA 93 1659–1664. 0849.60070 10.1073/pnas.93.4.1659

21.

[21] Eberle, A. and Zimmer, R. Sticky couplings of multidimensional diffusions with different drifts. Ann. Inst. Henri Poincaré B, Calc. Probab. Stat.. To appear. (N.S.) Available at  arXiv:1612.061251612.06125 1434.60213 10.1214/18-AIHP951 euclid.aihp/1573203632[21] Eberle, A. and Zimmer, R. Sticky couplings of multidimensional diffusions with different drifts. Ann. Inst. Henri Poincaré B, Calc. Probab. Stat.. To appear. (N.S.) Available at  arXiv:1612.061251612.06125 1434.60213 10.1214/18-AIHP951 euclid.aihp/1573203632

22.

[22] Freidlin, M. and Wentzell, A. (1970). On small random perturbations of dynamical systems. Russian Math. Surveys 25 1–55. 0297.34053 10.1070/RM1970v025n01ABEH001254[22] Freidlin, M. and Wentzell, A. (1970). On small random perturbations of dynamical systems. Russian Math. Surveys 25 1–55. 0297.34053 10.1070/RM1970v025n01ABEH001254

23.

[23] Freidlin, M. and Wentzell, A. (1972). Some problems concerning stability under small random perturbations. Theory Probab. Appl. 17 269–283. 0268.93032[23] Freidlin, M. and Wentzell, A. (1972). Some problems concerning stability under small random perturbations. Theory Probab. Appl. 17 269–283. 0268.93032

24.

[24] Freidlin, M. I. and Wentzell, A. D. (2012). Random Perturbations of Dynamical Systems, 3rd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 260. Springer, Heidelberg. Translated from the 1979 Russian original by Joseph Szücs. 0922.60006[24] Freidlin, M. I. and Wentzell, A. D. (2012). Random Perturbations of Dynamical Systems, 3rd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 260. Springer, Heidelberg. Translated from the 1979 Russian original by Joseph Szücs. 0922.60006

25.

[25] Galves, A., Olivieri, E. and Vares, M. E. (1987). Metastability for a class of dynamical systems subject to small random perturbations. Ann. Probab. 15 1288–1305. 0709.60058 10.1214/aop/1176991977 euclid.aop/1176991977[25] Galves, A., Olivieri, E. and Vares, M. E. (1987). Metastability for a class of dynamical systems subject to small random perturbations. Ann. Probab. 15 1288–1305. 0709.60058 10.1214/aop/1176991977 euclid.aop/1176991977

26.

[26] Hartman, P. (1960). On local homeomorphisms of Euclidean spaces. Bol. Soc. Mat. Mexicana (2) 5 220–241. 0127.30202[26] Hartman, P. (1960). On local homeomorphisms of Euclidean spaces. Bol. Soc. Mat. Mexicana (2) 5 220–241. 0127.30202

27.

[27] Hwang, C.-R. (1980). Laplace’s method revisited: Weak convergence of probability measures. Ann. Probab. 8 1177–1182. 0452.60007 10.1214/aop/1176994579 euclid.aop/1176994579[27] Hwang, C.-R. (1980). Laplace’s method revisited: Weak convergence of probability measures. Ann. Probab. 8 1177–1182. 0452.60007 10.1214/aop/1176994579 euclid.aop/1176994579

28.

[28] Hwang, C.-R., Hwang-Ma, S.-Y. and Sheu, S. J. (1993). Accelerating Gaussian diffusions. Ann. Appl. Probab. 3 897–913. 0780.60074 10.1214/aoap/1177005371 euclid.aoap/1177005371[28] Hwang, C.-R., Hwang-Ma, S.-Y. and Sheu, S. J. (1993). Accelerating Gaussian diffusions. Ann. Appl. Probab. 3 897–913. 0780.60074 10.1214/aoap/1177005371 euclid.aoap/1177005371

29.

[29] Jacquot, S. (1992). Comportement asymptotique de la seconde valeur propre des processus de Kolmogorov. J. Multivariate Anal. 40 335–347. 0749.60026 10.1016/0047-259X(92)90030-J[29] Jacquot, S. (1992). Comportement asymptotique de la seconde valeur propre des processus de Kolmogorov. J. Multivariate Anal. 40 335–347. 0749.60026 10.1016/0047-259X(92)90030-J

30.

[30] Jourdain, B., Le Bris, C., Lelièvre, T. and Otto, F. (2006). Long-time asymptotics of a multiscale model for polymeric fluid flows. Arch. Ration. Mech. Anal. 181 97–148. 1089.76006 10.1007/s00205-005-0411-4[30] Jourdain, B., Le Bris, C., Lelièvre, T. and Otto, F. (2006). Long-time asymptotics of a multiscale model for polymeric fluid flows. Arch. Ration. Mech. Anal. 181 97–148. 1089.76006 10.1007/s00205-005-0411-4

31.

[31] Kabanov, Yu. M., Liptser, R. Sh. and Shiryaev, A. N. (1986). On the variation distance for probability measures defined on a filtered space. Probab. Theory Related Fields 71 19–35. 0554.60006 10.1007/BF00366270[31] Kabanov, Yu. M., Liptser, R. Sh. and Shiryaev, A. N. (1986). On the variation distance for probability measures defined on a filtered space. Probab. Theory Related Fields 71 19–35. 0554.60006 10.1007/BF00366270

32.

[32] Kipnis, C. and Newman, C. M. (1985). The metastable behavior of infrequently observed, weakly random, one-dimensional diffusion processes. SIAM J. Appl. Math. 45 972–982. 0592.60063 10.1137/0145059[32] Kipnis, C. and Newman, C. M. (1985). The metastable behavior of infrequently observed, weakly random, one-dimensional diffusion processes. SIAM J. Appl. Math. 45 972–982. 0592.60063 10.1137/0145059

33.

[33] Kulik, A. (2018). Ergodic Behavior of Markov Processes: With Applications to Limit Theorems. De Gruyter Studies in Mathematics 67. de Gruyter, Berlin. 1386.60006[33] Kulik, A. (2018). Ergodic Behavior of Markov Processes: With Applications to Limit Theorems. De Gruyter Studies in Mathematics 67. de Gruyter, Berlin. 1386.60006

34.

[34] Lachaud, B. (2005). Cut-off and hitting times of a sample of Ornstein–Uhlenbeck processes and its average. J. Appl. Probab. 42 1069–1080. 1092.60031 10.1239/jap/1134587817 euclid.jap/1134587817[34] Lachaud, B. (2005). Cut-off and hitting times of a sample of Ornstein–Uhlenbeck processes and its average. J. Appl. Probab. 42 1069–1080. 1092.60031 10.1239/jap/1134587817 euclid.jap/1134587817

35.

[35] Lancaster, P. and Tismenetsky, M. (1985). The Theory of Matrices, 2nd ed. Computer Science and Applied Mathematics. Academic Press, Orlando, FL. 0558.15001[35] Lancaster, P. and Tismenetsky, M. (1985). The Theory of Matrices, 2nd ed. Computer Science and Applied Mathematics. Academic Press, Orlando, FL. 0558.15001

36.

[36] Lelièvre, T., Nier, F. and Pavliotis, G. A. (2013). Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion. J. Stat. Phys. 152 237–274. 1276.82042 10.1007/s10955-013-0769-x[36] Lelièvre, T., Nier, F. and Pavliotis, G. A. (2013). Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion. J. Stat. Phys. 152 237–274. 1276.82042 10.1007/s10955-013-0769-x

37.

[37] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI. With a chapter by James G. Propp and David B. Wilson. 1160.60001[37] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI. With a chapter by James G. Propp and David B. Wilson. 1160.60001

38.

[38] Maier, R. and Stein, D. (1993). Escape problem of irreversible systems. Phys. Rev. E 48 931–938.[38] Maier, R. and Stein, D. (1993). Escape problem of irreversible systems. Phys. Rev. E 48 931–938.

39.

[39] Maier, R. and Stein, D. (1993). Transition-rate theory for nongradient drift fields. Phys. Rev. Lett. 69 3691–3695.[39] Maier, R. and Stein, D. (1993). Transition-rate theory for nongradient drift fields. Phys. Rev. Lett. 69 3691–3695.

40.

[40] Maier, R. S. and Stein, D. L. (1997). Limiting exit location distributions in the stochastic exit problem. SIAM J. Appl. Math. 57 752–790. 0874.60072 10.1137/S0036139994271753[40] Maier, R. S. and Stein, D. L. (1997). Limiting exit location distributions in the stochastic exit problem. SIAM J. Appl. Math. 57 752–790. 0874.60072 10.1137/S0036139994271753

41.

[41] Mao, X. (2008). Stochastic Differential Equations and Applications, 2nd ed. Horwood Publishing Limited, Chichester.[41] Mao, X. (2008). Stochastic Differential Equations and Applications, 2nd ed. Horwood Publishing Limited, Chichester.

42.

[42] Martínez, S. and Ycart, B. (2001). Decay rates and cutoff for convergence and hitting times of Markov chains with countably infinite state space. Adv. in Appl. Probab. 33 188–205. 0979.60066 10.1017/S0001867800010697 euclid.aap/999187903[42] Martínez, S. and Ycart, B. (2001). Decay rates and cutoff for convergence and hitting times of Markov chains with countably infinite state space. Adv. in Appl. Probab. 33 188–205. 0979.60066 10.1017/S0001867800010697 euclid.aap/999187903

43.

[43] Matkowsky, B. J. and Schuss, Z. (1977). The exit problem for randomly perturbed dynamical systems. SIAM J. Appl. Math. 33 365–382. 0369.60071 10.1137/0133024[43] Matkowsky, B. J. and Schuss, Z. (1977). The exit problem for randomly perturbed dynamical systems. SIAM J. Appl. Math. 33 365–382. 0369.60071 10.1137/0133024

44.

[44] Olivieri, E. and Vares, M. E. (2005). Large Deviations and Metastability. Encyclopedia of Mathematics and Its Applications 100. Cambridge Univ. Press, Cambridge. MR2123364[44] Olivieri, E. and Vares, M. E. (2005). Large Deviations and Metastability. Encyclopedia of Mathematics and Its Applications 100. Cambridge Univ. Press, Cambridge. MR2123364

45.

[45] Perko, L. (2001). Differential Equations and Dynamical Systems, 3rd ed. Texts in Applied Mathematics 7. Springer, New York. 0973.34001[45] Perko, L. (2001). Differential Equations and Dynamical Systems, 3rd ed. Texts in Applied Mathematics 7. Springer, New York. 0973.34001

46.

[46] Priola, E., Shirikyan, A., Xu, L. and Zabczyk, J. (2012). Exponential ergodicity and regularity for equations with Lévy noise. Stochastic Process. Appl. 122 106–133. 1239.60059 10.1016/j.spa.2011.10.003[46] Priola, E., Shirikyan, A., Xu, L. and Zabczyk, J. (2012). Exponential ergodicity and regularity for equations with Lévy noise. Stochastic Process. Appl. 122 106–133. 1239.60059 10.1016/j.spa.2011.10.003

47.

[47] Saloff-Coste, L. (2004). Random walks on finite groups. In Probability on Discrete Structures. Encyclopaedia Math. Sci. 110 263–346. Springer, Berlin. 1049.60006[47] Saloff-Coste, L. (2004). Random walks on finite groups. In Probability on Discrete Structures. Encyclopaedia Math. Sci. 110 263–346. Springer, Berlin. 1049.60006

48.

[48] Schuss, Z. and Matkowsky, B. J. (1979). The exit problem: A new approach to diffusion across potential barriers. SIAM J. Appl. Math. 36 604–623. 0406.60071 10.1137/0136043[48] Schuss, Z. and Matkowsky, B. J. (1979). The exit problem: A new approach to diffusion across potential barriers. SIAM J. Appl. Math. 36 604–623. 0406.60071 10.1137/0136043

49.

[49] Siegert, W. (2009). Local Lyapunov Exponents: Sublimiting Growth Rates of Linear Random Differential Equations. Lecture Notes in Math. 1963. Springer, Berlin.[49] Siegert, W. (2009). Local Lyapunov Exponents: Sublimiting Growth Rates of Linear Random Differential Equations. Lecture Notes in Math. 1963. Springer, Berlin.

50.

[50] Stroock, D. W. and Varadhan, S. R. S. (2006). Multidimensional Diffusion Processes. Classics in Mathematics. Springer, Berlin. Reprint of the 1997 edition. MR2190038[50] Stroock, D. W. and Varadhan, S. R. S. (2006). Multidimensional Diffusion Processes. Classics in Mathematics. Springer, Berlin. Reprint of the 1997 edition. MR2190038

51.

[51] Villani, C. (2009). Hypocoercivity. Mem. Amer. Math. Soc. 202 iv+141.[51] Villani, C. (2009). Hypocoercivity. Mem. Amer. Math. Soc. 202 iv+141.
Copyright © 2020 Institute of Mathematical Statistics
Gerardo Barrera and Milton Jara "Thermalisation for small random perturbations of dynamical systems," The Annals of Applied Probability 30(3), 1164-1208, (June 2020). https://doi.org/10.1214/19-AAP1526
Received: 1 March 2018; Published: June 2020
Vol.30 • No. 3 • June 2020
Back to Top