Open Access
October 2019 Metastability of the contact process on fast evolving scale-free networks
Emmanuel Jacob, Amitai Linker, Peter Mörters
Ann. Appl. Probab. 29(5): 2654-2699 (October 2019). DOI: 10.1214/18-AAP1460
Abstract

We study the contact process in the regime of small infection rates on finite scale-free networks with stationary dynamics based on simultaneous updating of all connections of a vertex. We allow the update rates of individual vertices to increase with the strength of a vertex, leading to a fast evolution of the network. We first develop an approach for inhomogeneous networks with general kernel and then focus on two canonical cases, the factor kernel and the preferential attachment kernel. For these specific networks, we identify and analyse four possible strategies how the infection can survive for a long time. We show that there is fast extinction of the infection when neither of the strategies is successful, otherwise there is slow extinction and the most successful strategy determines the asymptotics of the metastable density as the infection rate goes to zero. We identify the domains in which these strategies dominate in terms of phase diagrams for the exponent describing the decay of the metastable density.

References

1.

[1] Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286 509–512. 1226.05223 10.1126/science.286.5439.509[1] Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286 509–512. 1226.05223 10.1126/science.286.5439.509

2.

[2] Berger, N., Borgs, C., Chayes, J. T. and Saberi, A. (2005). On the spread of viruses on the Internet. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms 301–310. ACM, New York. 1297.68029[2] Berger, N., Borgs, C., Chayes, J. T. and Saberi, A. (2005). On the spread of viruses on the Internet. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms 301–310. ACM, New York. 1297.68029

3.

[3] Chatterjee, S. and Durrett, R. (2009). Contact processes on random graphs with power law degree distributions have critical value 0. Ann. Probab. 37 2332–2356. 1205.60168 10.1214/09-AOP471 euclid.aop/1258380791[3] Chatterjee, S. and Durrett, R. (2009). Contact processes on random graphs with power law degree distributions have critical value 0. Ann. Probab. 37 2332–2356. 1205.60168 10.1214/09-AOP471 euclid.aop/1258380791

4.

[4] Chung, F. and Lu, L. (2006). Complex Graphs and Networks. CBMS Regional Conference Series in Mathematics 107. Amer. Math. Soc., Providence, RI. 1114.90071[4] Chung, F. and Lu, L. (2006). Complex Graphs and Networks. CBMS Regional Conference Series in Mathematics 107. Amer. Math. Soc., Providence, RI. 1114.90071

5.

[5] Dereich, S. and Mörters, P. (2011). Random networks with concave preferential attachment rule. Jahresber. Dtsch. Math.-Ver. 113 21–40. 1217.05206 10.1365/s13291-010-0011-6[5] Dereich, S. and Mörters, P. (2011). Random networks with concave preferential attachment rule. Jahresber. Dtsch. Math.-Ver. 113 21–40. 1217.05206 10.1365/s13291-010-0011-6

6.

[6] Ganesh, A., Massoulie, L. and Towsley, D. (2005). The effect of network topology on the spread of epidemics. In Proceedings IEEE Infocom 2 1455–1466, New York, NY.[6] Ganesh, A., Massoulie, L. and Towsley, D. (2005). The effect of network topology on the spread of epidemics. In Proceedings IEEE Infocom 2 1455–1466, New York, NY.

7.

[7] Jacob, E. and Mörters, P. (2017). The contact process on scale-free networks evolving by vertex updating. R. Soc. Open Sci. 4 170081.[7] Jacob, E. and Mörters, P. (2017). The contact process on scale-free networks evolving by vertex updating. R. Soc. Open Sci. 4 170081.

8.

[8] Liggett, T. M. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 276. Springer, New York. 0559.60078[8] Liggett, T. M. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 276. Springer, New York. 0559.60078

9.

[9] Molloy, M. and Reed, B. (1995). A critical point for random graphs with a given degree sequence. Random Structures Algorithms 6 161–179. 0823.05050 10.1002/rsa.3240060204[9] Molloy, M. and Reed, B. (1995). A critical point for random graphs with a given degree sequence. Random Structures Algorithms 6 161–179. 0823.05050 10.1002/rsa.3240060204

10.

[10] Mountford, T., Valesin, D. and Yao, Q. (2013). Metastable densities for the contact process on power law random graphs. Electron. J. Probab. 18 No. 103. 1281.82018 10.1214/EJP.v18-2512[10] Mountford, T., Valesin, D. and Yao, Q. (2013). Metastable densities for the contact process on power law random graphs. Electron. J. Probab. 18 No. 103. 1281.82018 10.1214/EJP.v18-2512

11.

[11] Norros, I. and Reittu, H. (2006). On a conditionally Poissonian graph process. Adv. in Appl. Probab. 38 59–75. 1096.05047 10.1239/aap/1143936140 euclid.aap/1143936140[11] Norros, I. and Reittu, H. (2006). On a conditionally Poissonian graph process. Adv. in Appl. Probab. 38 59–75. 1096.05047 10.1239/aap/1143936140 euclid.aap/1143936140

12.

[12] van der Hofstad, R. (2017). Random Graphs and Complex Networks, Vol. 1. Cambridge Series in Statistical and Probabilistic Mathematics 43. Cambridge Univ. Press, Cambridge. 1361.05002[12] van der Hofstad, R. (2017). Random Graphs and Complex Networks, Vol. 1. Cambridge Series in Statistical and Probabilistic Mathematics 43. Cambridge Univ. Press, Cambridge. 1361.05002
Copyright © 2019 Institute of Mathematical Statistics
Emmanuel Jacob, Amitai Linker, and Peter Mörters "Metastability of the contact process on fast evolving scale-free networks," The Annals of Applied Probability 29(5), 2654-2699, (October 2019). https://doi.org/10.1214/18-AAP1460
Received: 1 July 2018; Published: October 2019
Vol.29 • No. 5 • October 2019
Back to Top