Open Access
April 2018 A phase transition regarding the evolution of bootstrap processes in inhomogeneous random graphs
Nikolaos Fountoulakis, Mihyun Kang, Christoph Koch, Tamás Makai
Ann. Appl. Probab. 28(2): 990-1051 (April 2018). DOI: 10.1214/17-AAP1324
Abstract

A bootstrap percolation process on a graph with infection threshold $r\ge1$ is a dissemination process that evolves in time steps. The process begins with a subset of infected vertices and in each subsequent step every uninfected vertex that has at least $r$ infected neighbours becomes infected and remains so forever.

Critical phenomena in bootstrap percolation processes were originally observed by Aizenman and Lebowitz in the late 1980s as finite-volume phase transitions in $\mathbb{Z}^{d}$ that are caused by the accumulation of small local islands of infected vertices. They were also observed in the case of dense (homogeneous) random graphs by Janson et al. [Ann. Appl. Probab. 22 (2012) 1989–2047]. In this paper, we consider the class of inhomogeneous random graphs known as the Chung-Lu model: each vertex is equipped with a positive weight and each pair of vertices appears as an edge with probability proportional to the product of the weights. In particular, we focus on the sparse regime, where the number of edges is proportional to the number of vertices.

The main results of this paper determine those weight sequences for which a critical phenomenon occurs: there is a critical density of vertices that are infected at the beginning of the process, above which a small (sublinear) set of infected vertices creates an avalanche of infections that in turn leads to an outbreak. We show that this occurs essentially only when the tail of the weight distribution dominates a power law with exponent 3 and we determine the critical density in this case.

References

1.

Abdullah, M. A. and Fountoulakis, N. (2014). A phase transition in the evolution of bootstrap percolation processes on preferential attachment graphs. Random Structures Algorithms. To appear. Available at  http://arxiv.org/abs/1402.2815.Abdullah, M. A. and Fountoulakis, N. (2014). A phase transition in the evolution of bootstrap percolation processes on preferential attachment graphs. Random Structures Algorithms. To appear. Available at  http://arxiv.org/abs/1402.2815.

2.

Adler, J. and Lev, U. (2003). Bootstrap percolation: Visualizations and applications. Braz. J. Phys. 33 641–644.Adler, J. and Lev, U. (2003). Bootstrap percolation: Visualizations and applications. Braz. J. Phys. 33 641–644.

3.

Aizenman, M. and Lebowitz, J. L. (1988). Metastability effects in bootstrap percolation. J. Phys. A 21 3801–3813. 0656.60106 10.1088/0305-4470/21/19/017Aizenman, M. and Lebowitz, J. L. (1988). Metastability effects in bootstrap percolation. J. Phys. A 21 3801–3813. 0656.60106 10.1088/0305-4470/21/19/017

4.

Amini, H. (2010a). Bootstrap percolation in living neural networks. J. Stat. Phys. 141 459–475. 1207.82037 10.1007/s10955-010-0056-zAmini, H. (2010a). Bootstrap percolation in living neural networks. J. Stat. Phys. 141 459–475. 1207.82037 10.1007/s10955-010-0056-z

5.

Amini, H. (2010b). Bootstrap percolation and diffusion in random graphs with given vertex degrees. Electron. J. Combin. 17 Research Paper 25. 1215.05152Amini, H. (2010b). Bootstrap percolation and diffusion in random graphs with given vertex degrees. Electron. J. Combin. 17 Research Paper 25. 1215.05152

6.

Amini, H. and Fountoulakis, N. (2014). Bootstrap percolation in power-law random graphs. J. Stat. Phys. 155 72–92. 1291.82052 10.1007/s10955-014-0946-6Amini, H. and Fountoulakis, N. (2014). Bootstrap percolation in power-law random graphs. J. Stat. Phys. 155 72–92. 1291.82052 10.1007/s10955-014-0946-6

7.

Amini, H., Fountoulakis, N. and Panagiotou, K. (2014). Bootstrap percolation in inhomogeneous random graphs. Preprint. Available at  http://arxiv.org/abs/1402.28151301.60107Amini, H., Fountoulakis, N. and Panagiotou, K. (2014). Bootstrap percolation in inhomogeneous random graphs. Preprint. Available at  http://arxiv.org/abs/1402.28151301.60107

8.

Balogh, J. and Bollobás, B. (2006). Bootstrap percolation on the hypercube. Probab. Theory Related Fields 134 624–648. 1087.60068 10.1007/s00440-005-0451-6Balogh, J. and Bollobás, B. (2006). Bootstrap percolation on the hypercube. Probab. Theory Related Fields 134 624–648. 1087.60068 10.1007/s00440-005-0451-6

9.

Balogh, J., Bollobás, B. and Morris, R. (2009). Bootstrap percolation in three dimensions. Ann. Probab. 37 1329–1380. 1187.60082 10.1214/08-AOP433 euclid.aop/1248182140Balogh, J., Bollobás, B. and Morris, R. (2009). Bootstrap percolation in three dimensions. Ann. Probab. 37 1329–1380. 1187.60082 10.1214/08-AOP433 euclid.aop/1248182140

10.

Balogh, J., Peres, Y. and Pete, G. (2006). Bootstrap percolation on infinite trees and non-amenable groups. Combin. Probab. Comput. 15 715–730. 1102.60086 10.1017/S0963548306007619Balogh, J., Peres, Y. and Pete, G. (2006). Bootstrap percolation on infinite trees and non-amenable groups. Combin. Probab. Comput. 15 715–730. 1102.60086 10.1017/S0963548306007619

11.

Balogh, J. and Pete, G. (1998). Random disease on the square grid. Proceedings of the Eighth International Conference “Random Structures and Algorithms” (Poznan, 1997). Random Structures Algorithms 13 409–422. 0964.60006 10.1002/(SICI)1098-2418(199810/12)13:3/4<409::AID-RSA11>3.0.CO;2-UBalogh, J. and Pete, G. (1998). Random disease on the square grid. Proceedings of the Eighth International Conference “Random Structures and Algorithms” (Poznan, 1997). Random Structures Algorithms 13 409–422. 0964.60006 10.1002/(SICI)1098-2418(199810/12)13:3/4<409::AID-RSA11>3.0.CO;2-U

12.

Balogh, J. and Pittel, B. G. (2007). Bootstrap percolation on the random regular graph. Random Structures Algorithms 30 257–286. 1106.60076 10.1002/rsa.20158Balogh, J. and Pittel, B. G. (2007). Bootstrap percolation on the random regular graph. Random Structures Algorithms 30 257–286. 1106.60076 10.1002/rsa.20158

13.

Balogh, J., Bollobás, B., Duminil-Copin, H. and Morris, R. (2012). The sharp threshold for bootstrap percolation in all dimensions. Trans. Amer. Math. Soc. 36 2667–2701. 1238.60108 10.1090/S0002-9947-2011-05552-2Balogh, J., Bollobás, B., Duminil-Copin, H. and Morris, R. (2012). The sharp threshold for bootstrap percolation in all dimensions. Trans. Amer. Math. Soc. 36 2667–2701. 1238.60108 10.1090/S0002-9947-2011-05552-2

14.

Bollobás, B., Janson, S. and Riordan, O. (2007). The phase transition in inhomogeneous random graphs. Random Structures Algorithms 31 3–122. 1123.05083 10.1002/rsa.20168Bollobás, B., Janson, S. and Riordan, O. (2007). The phase transition in inhomogeneous random graphs. Random Structures Algorithms 31 3–122. 1123.05083 10.1002/rsa.20168

15.

Bollobás, B., Gunderson, K., Holmgren, C., Janson, S. and Przykucki, M. (2014). Bootstrap percolation on Galton–Watson trees. Electron. J. Probab. 19 1–27. 1290.05058 10.1214/EJP.v19-2758Bollobás, B., Gunderson, K., Holmgren, C., Janson, S. and Przykucki, M. (2014). Bootstrap percolation on Galton–Watson trees. Electron. J. Probab. 19 1–27. 1290.05058 10.1214/EJP.v19-2758

16.

Candellero, E. and Fountoulakis, N. (2016). Bootstrap percolation and the geometry of complex networks. Stochastic Process. Appl. 126 234–264. 1335.60180 10.1016/j.spa.2015.08.005Candellero, E. and Fountoulakis, N. (2016). Bootstrap percolation and the geometry of complex networks. Stochastic Process. Appl. 126 234–264. 1335.60180 10.1016/j.spa.2015.08.005

17.

Cerf, R. and Manzo, F. (2002). The threshold regime of finite volume bootstrap percolation. Stochastic Process. Appl. 101 69–82. 1075.82010 10.1016/S0304-4149(02)00124-2Cerf, R. and Manzo, F. (2002). The threshold regime of finite volume bootstrap percolation. Stochastic Process. Appl. 101 69–82. 1075.82010 10.1016/S0304-4149(02)00124-2

18.

Chalupa, J., Leath, P. L. and Reich, G. R. (1979). Bootstrap percolation on a Bethe lattice. J. Phys. C, Solid State Phys. 12 L31–L35.Chalupa, J., Leath, P. L. and Reich, G. R. (1979). Bootstrap percolation on a Bethe lattice. J. Phys. C, Solid State Phys. 12 L31–L35.

19.

Chung, F. and Lu, L. (2002). Connected components in random graphs with given expected degree sequences. Ann. Comb. 6 125–145. 1009.05124 10.1007/PL00012580Chung, F. and Lu, L. (2002). Connected components in random graphs with given expected degree sequences. Ann. Comb. 6 125–145. 1009.05124 10.1007/PL00012580

20.

Chung, F. and Lu, L. (2003). The average distance in a random graph with given expected degrees. Internet Math. 1 91–113. 1065.05084 10.1080/15427951.2004.10129081 euclid.im/1057768561Chung, F. and Lu, L. (2003). The average distance in a random graph with given expected degrees. Internet Math. 1 91–113. 1065.05084 10.1080/15427951.2004.10129081 euclid.im/1057768561

21.

Chung, F., Lu, L. and Vu, V. (2004). The spectra of random graphs with given expected degrees. Internet Math. 1 257–275. 1080.05021 10.1080/15427951.2004.10129089 euclid.im/1109190962Chung, F., Lu, L. and Vu, V. (2004). The spectra of random graphs with given expected degrees. Internet Math. 1 257–275. 1080.05021 10.1080/15427951.2004.10129089 euclid.im/1109190962

22.

Ebrahimi, R., Gao, J., Ghasemiesfeh, G. and Schoenebeck, G. (2017). How complex contagions spread quickly in the preferential attachment model and other time-evolving networks. IEEE Trans. Netw. Sci. Eng. PP:99.Ebrahimi, R., Gao, J., Ghasemiesfeh, G. and Schoenebeck, G. (2017). How complex contagions spread quickly in the preferential attachment model and other time-evolving networks. IEEE Trans. Netw. Sci. Eng. PP:99.

23.

Enter, A. C. D. V. (1987). Proof of Straley’s argument for bootstrap percolation. J. Stat. Phys. 48 943–945. 1084.82548 10.1007/BF01019705Enter, A. C. D. V. (1987). Proof of Straley’s argument for bootstrap percolation. J. Stat. Phys. 48 943–945. 1084.82548 10.1007/BF01019705

24.

Fontes, L. and Schonmann, R. (2008). Bootstrap percolation on homogeneous trees has 2 phase transitions. J. Stat. Phys. 132 839–861. 1158.82007 10.1007/s10955-008-9583-2Fontes, L. and Schonmann, R. (2008). Bootstrap percolation on homogeneous trees has 2 phase transitions. J. Stat. Phys. 132 839–861. 1158.82007 10.1007/s10955-008-9583-2

25.

Fontes, L. R., Schonmann, R. H. and Sidoravicius, V. (2002). Stretched exponential fixation in stochastic Ising models at zero temperature. Comm. Math. Phys. 228 495–518. 1004.82013 10.1007/s002200200658Fontes, L. R., Schonmann, R. H. and Sidoravicius, V. (2002). Stretched exponential fixation in stochastic Ising models at zero temperature. Comm. Math. Phys. 228 495–518. 1004.82013 10.1007/s002200200658

26.

Holroyd, A. E. (2003). Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Related Fields 125 195–224. 1042.60065 10.1007/s00440-002-0239-xHolroyd, A. E. (2003). Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Related Fields 125 195–224. 1042.60065 10.1007/s00440-002-0239-x

27.

Janson, S., Łuczak, T. and Ruciński, A. (2000). Random Graphs. Wiley-Interscience, New York.Janson, S., Łuczak, T. and Ruciński, A. (2000). Random Graphs. Wiley-Interscience, New York.

28.

Janson, S., Łuczak, T., Turova, T. and Vallier, T. (2012). Bootstrap percolation on the random graph $G_{n,p}$. Ann. Appl. Probab. 22 1989–2047. 1254.05182 10.1214/11-AAP822 euclid.aoap/1350067992Janson, S., Łuczak, T., Turova, T. and Vallier, T. (2012). Bootstrap percolation on the random graph $G_{n,p}$. Ann. Appl. Probab. 22 1989–2047. 1254.05182 10.1214/11-AAP822 euclid.aoap/1350067992

29.

Karbasi, A., Lengler, J. and Steger, A. (2015). Normalization phenomena in asynchronous networks. In Automata, Languages, and Programming. Part II. Lecture Notes in Computer Science 9135 688–700. Springer, Heidelberg. 06504630Karbasi, A., Lengler, J. and Steger, A. (2015). Normalization phenomena in asynchronous networks. In Automata, Languages, and Programming. Part II. Lecture Notes in Computer Science 9135 688–700. Springer, Heidelberg. 06504630

30.

Koch, C. and Lengler, J. (2016). Bootstrap percolation on geometric inhomogeneous random graphs. Preprint. Available at  http://arxiv.org/abs/1603.0205706820336Koch, C. and Lengler, J. (2016). Bootstrap percolation on geometric inhomogeneous random graphs. Preprint. Available at  http://arxiv.org/abs/1603.0205706820336

31.

McDiarmid, C. (1998). Concentration. In Probabilistic Methods for Algorithmic Discrete Mathematics. Algorithms Combin. 16 195–248. Springer, Berlin. 0927.60027McDiarmid, C. (1998). Concentration. In Probabilistic Methods for Algorithmic Discrete Mathematics. Algorithms Combin. 16 195–248. Springer, Berlin. 0927.60027

32.

Morris, R. (2009). Zero-temperature Glauber dynamics on $\mathbb{Z}^{d}$. Probab. Theory Related Fields 149 417–434.Morris, R. (2009). Zero-temperature Glauber dynamics on $\mathbb{Z}^{d}$. Probab. Theory Related Fields 149 417–434.

33.

Pittel, B., Spencer, J. and Wormald, N. (1996). Sudden emergence of a giant $k$-core in a random graph. J. Combin. Theory Ser. B 67 111–151. 0860.05065 10.1006/jctb.1996.0036Pittel, B., Spencer, J. and Wormald, N. (1996). Sudden emergence of a giant $k$-core in a random graph. J. Combin. Theory Ser. B 67 111–151. 0860.05065 10.1006/jctb.1996.0036

34.

Sabhapandit, S., Dhar, D. and Shukla, P. (2002). Hysteresis in the random-field Ising model and bootstrap percolation. Phys. Rev. Lett. 88 197202.Sabhapandit, S., Dhar, D. and Shukla, P. (2002). Hysteresis in the random-field Ising model and bootstrap percolation. Phys. Rev. Lett. 88 197202.

35.

Sausset, F., Toninelli, C., Biroli, G. and Tarjus, G. (2010). Bootstrap percolation and kinetically constrained models on hyperbolic lattices. J. Stat. Phys. 138 411–430. 1187.82029 10.1007/s10955-009-9903-1Sausset, F., Toninelli, C., Biroli, G. and Tarjus, G. (2010). Bootstrap percolation and kinetically constrained models on hyperbolic lattices. J. Stat. Phys. 138 411–430. 1187.82029 10.1007/s10955-009-9903-1

36.

Schonmann, R. H. (1992). On the behavior of some cellular automata related to bootstrap percolation. Ann. Probab. 20 174–193. 0742.60109 10.1214/aop/1176989923 euclid.aop/1176989923Schonmann, R. H. (1992). On the behavior of some cellular automata related to bootstrap percolation. Ann. Probab. 20 174–193. 0742.60109 10.1214/aop/1176989923 euclid.aop/1176989923

37.

Söderberg, B. (2002). General formalism for inhomogeneous random graphs. Phys. Rev. E 66 066121.Söderberg, B. (2002). General formalism for inhomogeneous random graphs. Phys. Rev. E 66 066121.

38.

Tlusty, T. and Eckmann, J.-P. (2009). Remarks on bootstrap percolation in metric networks. J. Phys. A 42 205004. 1168.82014 10.1088/1751-8113/42/20/205004Tlusty, T. and Eckmann, J.-P. (2009). Remarks on bootstrap percolation in metric networks. J. Phys. A 42 205004. 1168.82014 10.1088/1751-8113/42/20/205004

39.

Toninelli, C., Biroli, G. and Fisher, D. S. (2006). Jamming percolation and glass transitions in lattice models. Phys. Rev. Lett. 96 035702.Toninelli, C., Biroli, G. and Fisher, D. S. (2006). Jamming percolation and glass transitions in lattice models. Phys. Rev. Lett. 96 035702.

40.

Williams, D. (1991). Probability with Martingales. Cambridge Univ. Press, Cambridge. MR1155402 0722.60001Williams, D. (1991). Probability with Martingales. Cambridge Univ. Press, Cambridge. MR1155402 0722.60001
Copyright © 2018 Institute of Mathematical Statistics
Nikolaos Fountoulakis, Mihyun Kang, Christoph Koch, and Tamás Makai "A phase transition regarding the evolution of bootstrap processes in inhomogeneous random graphs," The Annals of Applied Probability 28(2), 990-1051, (April 2018). https://doi.org/10.1214/17-AAP1324
Received: 1 September 2016; Published: April 2018
Vol.28 • No. 2 • April 2018
Back to Top