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A bootstrap percolation process on a graph with infection threshold r ≥ 1
is a dissemination process that evolves in time steps. The process begins with
a subset of infected vertices and in each subsequent step every uninfected
vertex that has at least r infected neighbours becomes infected and remains
so forever.

Critical phenomena in bootstrap percolation processes were originally ob-
served by Aizenman and Lebowitz in the late 1980s as finite-volume phase
transitions in Zd that are caused by the accumulation of small local islands
of infected vertices. They were also observed in the case of dense (homoge-
neous) random graphs by Janson et al. [Ann. Appl. Probab. 22 (2012) 1989–
2047]. In this paper, we consider the class of inhomogeneous random graphs
known as the Chung-Lu model: each vertex is equipped with a positive weight
and each pair of vertices appears as an edge with probability proportional to
the product of the weights. In particular, we focus on the sparse regime, where
the number of edges is proportional to the number of vertices.

The main results of this paper determine those weight sequences for which
a critical phenomenon occurs: there is a critical density of vertices that are
infected at the beginning of the process, above which a small (sublinear) set
of infected vertices creates an avalanche of infections that in turn leads to
an outbreak. We show that this occurs essentially only when the tail of the
weight distribution dominates a power law with exponent 3 and we determine
the critical density in this case.
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1. Introduction. A bootstrap percolation process with infection threshold
r ≥ 1 is a dissemination process on a graph G which evolves in steps. Each ver-
tex may have one of two possible states: it is either infected or uninfected. At the
beginning, there is a subset A0 of initially infected vertices, and all remaining ver-
tices are uninfected. In each subsequent step, any uninfected vertex with at least r

infected neighbours also becomes infected, and never changes its state again. The
set of vertices infected until step t ≥ 0 is denoted by At . The process will stop once
there is a step in which no vertices became infected. In particular, if G is a finite
graph then the process always stops, and we denote by AF the set of all vertices
which became infected throughout the entire process.



992 FOUNTOULAKIS, KANG, KOCH AND MAKAI

The bootstrap percolation process was introduced in the context of magnetic
disordered systems by Chalupa, Leath and Reich (1979). Since then it has been
used as a model for several phenomena in various areas, from jamming transitions
[Toninelli, Biroli and Fisher (2006)] and magnetic systems [Sabhapandit, Dhar and
Shukla (2002)] to neuronal activity [Amini (2010a), Tlusty and Eckmann (2009)].
Certain variations of this process are related to the dynamics of the Ising model
at zero temperature [Fontes, Schonmann and Sidoravicius (2002), Morris (2009)].
A short survey regarding applications can be found in Adler and Lev (2003).

Several qualitative characteristics of bootstrap percolation, for instance the de-
pendence of the final set of infected vertices AF on the set A0 of initially in-
fected vertices, have been studied on a variety of families of graphs, such as trees
[Balogh, Peres and Pete (2006), Bollobás et al. (2014), Fontes and Schonmann
(2008)], grids [Balogh and Pete (1998), Balogh et al. (2012), Cerf and Manzo
(2002), Holroyd (2003)], lattices on the hyperbolic plane [Sausset et al. (2010)]
and hypercubes [Balogh and Bollobás (2006)], as well as on many models of ran-
dom graphs [Amini (2010b), Balogh and Pittel (2007), Janson et al. (2012)].

The most well-studied quantity is the probability that all vertices of the under-
lying graph are eventually infected. In particular, this quantity has been considered
as a function of the density p0 of initially infected vertices. More specifically, as-
suming that before the process begins each vertex of the graph is independently
infected with probability p0, what is the probability that the final set contains ev-
ery vertex? In other words, what is the probability that the process percolates?

In several families of infinite graphs, it turns out that there is a critical value for
p0 above which the probability of percolation is positive. This is the case for the
family of infinite regular trees with degree d + 1 and d ≥ r , as it was proved by
Balogh, Peres and Pete (2006), as well as for (infinite) Galton–Watson trees [this
was shown by Bollobás et al. (2014)]. Fontes and Schonmann (2008) showed that
infinite regular trees also exhibit two thresholds: a critical density pf [that was
proved in Balogh, Peres and Pete (2006)] above which percolation occurs almost
surely and a critical density pc < pf above which infinite infected clusters exist
almost surely.

A large part of the literature on bootstrap percolation processes has been devoted
to the d-dimensional integer lattice Zd . Schonmann (1992) showed that if the ele-
ments of A0 are selected independently with probability p0, then the evolution of
the process is in some sense “trivial”: if r ≤ d , then for every p0 > 0 all vertices
of the lattice become infected with probability 1, whereas if r > d , then this does
not happen unless p0 = 1. The former had already been shown by Enter (1987)
for d = r = 2. Moreover, for this case, Aizenman and Lebowitz (1988) identified
a phase-transition phenomenon when the process is restricted to a box of Z2 of
side-length n → ∞, which Holroyd (2003) later made precise. Let r = 2 and G be
the 2-dimensional grid with vertex set V = {1, . . . , n}2, and let A0 ⊆ V be a ran-
dom subset containing every element independently with probability p0 = p0(n).
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Holroyd (2003) showed that the probability I (n,p0) that the entire square is
eventually infected satisfies I (n,p0) → 1 if lim infn→∞ p0(n) logn > π2/18, and
I (n,p0) → 0 if lim supn→∞ p0(n) logn < π2/18. This result has been generalised
to higher dimensions by Balogh, Bollobás and Morris (2009) (when G is the 3-
dimensional grid on {1, . . . , n}3 and r = 3) and Balogh et al. (2012) (in general).
This is an instance of the so-called metastability phenomenon.

Similar thresholds have been identified in the case of the binomial random graph
G(n,p), where every edge on a set of n vertices is present independently with
probability p. Janson et al. (2012) presented a complete analysis of the bootstrap
percolation process for various ranges of p. Among other results they showed that
when 1/n � p � n−1/r , there is a critical function ac = ac(n) such that with high
probability5 the following occurs: if p0 � ac/n, then there is very little evolution
of the process, whereas if p0 	 ac/n, then eventually almost every vertex becomes
infected. For sparser graphs, this is not the case. When p = c/n (i.e., the average
degree is approximately constant) and if p0 = o(1), then only a sub-linear number
of vertices will ever be infected with high probability. In fact, no evolution occurs
with high probability. This had been observed previously by Balogh and Bollobás
[see Balogh and Pittel (2007)].

However, this is no longer the case if one considers sparse random graphs which
are inhomogeneous. We focus on random graphs which are defined through a se-
quence of weights assigned to the vertices: these weights determine the probabil-
ity that two vertices are adjacent. More specifically, we are interested in the case
where this probability is proportional to the product of the weights of these ver-
tices. Hence, pairs of vertices where at least one of them has high weight are more
likely to appear as edges. Of course, G(n,p) is a special case of such a random
graph, in which all vertices have the same weight. Amini and Fountoulakis (2014)
showed that such a threshold does exist when the sequence of weights follows a
power law distribution with exponent in the interval (2,3). They showed that there
is a function ac = ac(n) = o(n) such that if p0 � ac/n, then with high proba-
bility no evolution occurs, but if p0 	 ac/n, then even if p0 = o(1), with high
probability a constant fraction of all vertices become infected eventually. In ad-
dition, Amini, Fountoulakis and Panagiotou (2014) determined the value of this
constant. More general results which include those in Amini and Fountoulakis
(2014) were obtained by Karbasi, Lengler and Steger (2015). Similar behaviour
was also observed in geometric random graph models that exhibit a power law de-
gree distribution with such exponent [Candellero and Fountoulakis (2016), Koch
and Lengler (2016)] as well as in several versions of the preferential attachment
model [Abdullah and Fountoulakis (2014), Ebrahimi et al. (2014)].

The aim of this paper is to determine the conditions on the sequence of weights
which characterise the existence of such a threshold function. We show that a crit-

5With probability tending to one as n → ∞.
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ical droplet [in the terminology of Aizenman and Lebowitz (1988)] is formed by a
certain set of vertices of high weight, which we call the nucleus of the infection. In-
formally, this is a set consisting of vertices of high weight which become infected
at some stage and from this set the infection spreads to a positive fraction of the
vertices of the random graph. Effectively, we show that such a nucleus is formed,
if the tail of the empirical distribution function of the weight sequence dominates
the tail of a power law distribution with exponent equal to 3. Furthermore, we
determine the critical density of the initially infected vertices below which this
phenomenon does not occur.

2. Model and notation.

2.1. Inhomogeneous random graphs. The random graph model that we con-
sider is a special yet general enough version of an inhomogeneous random graph
introduced by Söderberg (2002) and studied in its full generality by Bollobás, Jan-
son and Riordan (2007). The model is asymptotically equivalent to a model consid-
ered by Chung and Lu (2002, 2003) and Chung, Lu and Vu (2004). They analysed
several typical properties of the resulting graphs, including the average distance
between two randomly chosen vertices that belong to the same component and the
distribution of the component sizes. Let n ∈ N and [n] := {1, . . . , n}. We consider
a graph G = (V,E) with vertex set V := [n] and a random edge set E defined as
follows: each vertex v is assigned a positive weight wv = wv(n) ∈ R+, and without
loss of generality we will assume throughout the paper that w1 ≤ w2 ≤ · · · ≤ wn.
We denote this weight sequence by w = w(n) := (w1, . . . ,wn) and the total weight
by W := ∑

v∈V wv . Any two distinct vertices u, v ∈ V form an edge, that is,
{u, v} ∈ E, independently with probability

(1) pu,v = pu,v(w) := min
{
wuwv

W
,1
}
.

We refer to this model as the Chung–Lu random graph CL(w). A fundamental
observation is that the weights (essentially) determine the expected degrees of all
vertices: if we ignore the minimum in (1), and also allow for a loop at vertex u,
then the expected degree of that vertex is

∑
v∈V wuwv/W = wu.

For the sake of a more concise exposition of the results and proofs, we assume
that the minimal weight w1 is at least 1 and the total weight satisfies

W = λn for some λ ≥ 1.(2)

Central in our results will be the distribution of the weight of a vertex selected
randomly with probability proportional to its weight. More formally, let X denote
a V-valued random variable whose distribution is given by P[X = u] = wu

W
for any

vertex u ∈ V of weight wu. Then the weight wX of this randomly chosen vertex X

is a R+-valued random variable wX whose distribution function is given by

P[wX ≤ a] = ∑
u:wu≤a

wu

W
,
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for any a ∈ R. This distribution (of wX) is called the size-biased distribution and
we denote a weight chosen randomly according to this distribution by Zw.

Let w = w(n) be a sequence of weight sequences. We will consider events on
the probability space that is the product of the space induced by CL(w) and the
one representing the set of initially infected vertices A0 ⊂ V, where each vertex is
initially infected independently with probability p0 = p0(n). We let �n denote the
sequence of these spaces. If {En}n∈N is a sequence of events with En ⊆ �n, we say
that they occur with high probability (whp) if the probability of En tends to 1 as
n → ∞. Moreover, any unspecified limits and asymptotics will be as n → ∞.

We will also be using a probabilistic version of the standard Landau notation.
Let Xn be a sequence of nonnegative random variables (where for each n the vari-
able Xn is defined on �n) and yn be a sequence of nonnegative real numbers. We
say that whp Xn = O(yn) if there exists C > 0 such that Xn ≤ Cyn whp, and whp
Xn = �(yn) if there exists C > 0 such that Xn ≥ Cyn whp. If both hold, we say
that whp Xn = �(yn). Furthermore, we say that whp Xn = o(yn) if for any ε > 0
whp Xn/yn < ε. In other words, Xn/yn converges to 0 in probability.

We sometimes also write xn � yn to denote xn = o(yn) and xn 	 yn to denote
xn = ω(yn) (as in the standard Landau notation), for two sequences of nonnegative
real numbers. Also, the meaning of “whp Xn � yn”, where {Xn} is a sequence of
nonnegative random variables on �n, is now obvious from the above.

2.2. Bootstrap processes. Consider an integer r ≥ 2 and a weight sequence
w = (w1, . . . ,wn). Let G ∼ CL(w) be a Chung–Lu random graph with weight se-
quence w. Given an initial infection rate p0 = p0(n) ∈ [0,1], we initially infect
a random subset A0 ⊆ V which contains each element with probability p0 inde-
pendently. As we already mentioned, a bootstrap process is a process evolving in
discrete time steps. At any time t ≥ 0, there is a set At of infected vertices, which
is defined iteratively by

At+1 := At ∪ {v ∈ V | v has at least r neighbours in At

}
for all t ≥ 0. Furthermore, we set AF :=⋃

t≥0 At .

Critical function. A function pc = pc(n), 0 ≤ pc ≤ 1, is called a critical func-
tion (with respect to the initial infection rate p0) if the following three conditions
are satisfied:

1. pc = o(1);
2. if p0 � pc, then whp |AF | = o(n);
3. if p0 	 pc, then whp |AF | = �(n).

We refer to the two latter cases as the subcritical and the supercritical regime,
respectively. Of course, the above definition yields a class of functions that have
the same order of magnitude. With slight abuse of notation, we will be referring to
the threshold pc, and treat it as if it was uniquely defined.
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2.3. Some more notation. Given an interval I ⊆ R+, we denote the set of ver-
tices having weight in I by

VI := {
v ∈ V : wv ∈ I

}
,

and in particular if I = [f,∞) for some f ∈ R+ we write “≥ f ” instead of
“[f,∞)”, and likewise for intervals (f,∞), (0, f ] and (0, f ).

For a set U ⊆ V of vertices, we write W[U ] for the sum of the weights of
the vertices in U and wmax[U ], wmin[U ] for their maximal and minimal weight,
respectively. Moreover, we denote by

Û := U ∩AF

the subset of all those vertices in U which eventually become infected. In case
U = VI for some interval I ⊆ R+, we also use the abbreviations

WI := W
[
VI

]
and ŴI := W

[
V̂I

]
.

We denote by
(U
�

)
the set of all �-element subsets of a set U and for a vertex

u ∈ V we denote by N(u) the set of neighbours of u in G. Furthermore, we write
X ∼D for a random variable with distribution D.

3. Main results and proof outline.

3.1. Main results. Our main result is to characterise two classes of weight se-
quences w: for the first class bootstrap percolation on the Chung–Lu random graph,
CL(w) exhibits a critical phenomenon, while for the second it does not. Roughly
speaking, the first class stochastically dominates the size-biased distribution asso-
ciated to a power law of exponent 3, with a suitable large constant. In contrast, the
second class is stochastically dominated by the size-biased distribution associated
to a power law of exponent 3, with a suitable small constant. In this sense, the
characterisation only has a constant “gap”.

Interestingly, there can be different types of nuclei, each leading to an outbreak
once infected, depending on some property of the weight sequence w, each pro-
viding its own candidate threshold, which if exceeded [by an ω(1)-factor] guaran-
tees an outbreak whp. This behaviour depends sensitively on the following weight
bound φH = φH (n) defined (pointwise) by

(3) φH (n) := min
{
x ∈ R+ : ∣∣V≥x

∣∣≥ ( W

4x2

)r}
,

where we use the convention that φH (n) := wn + 1 if this set is empty. Vertices
whose weight is at least φH are called heavy. The subgraph spanned by the heavy
vertices will be called the dense subgraph, while the subgraph spanned by all non-
heavy vertices will be called the sparse subgraph.
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If we consider the bootstrap process restricted to the sparse subgraph, we obtain
the first candidate threshold

(4) ps = ps(n) :=
(

W∑
u∈V<φH

wr+1
u

)1/(r−1)

,

which always exists. On the other hand, studying the process restricted to the dense
subgraph yields the second candidate threshold

(5) pd = pd(n) :=
(

1∑
u∈V≥φH

wr
u

)1/r

,

provided this quantity is finite. This happens if and only if φH ≤ wn. Should both
candidate thresholds exist, the threshold will always be the smallest of the two.

In fact, in Example 9.1, we show that which of the candidates is smaller actually
depends on the weight sequence. Even though it is a priori not obvious why, con-
sidering these two candidate thresholds turns out to be sufficient, due to a matching
lower bound on the threshold pc.

THEOREM 3.1. Let r ≥ 2 be an integer, let α > 0, C ≥ 64r(min{α,1/2})−3,
and C1 > 0. Furthermore, let w = w(n) be a sequence of ordered weight sequences
satisfying 1 ≤ w1 ≤ · · · ≤ wn → ∞, wn−r+1 ≥ αwn, and

(6) P[Zw ≥ x] ≥ C

x
,

for all C1 ≤ x ≤ wn. Consider the Chung–Lu random graph G ∼ CL(w). Then
the bootstrap process on G with infection threshold r and initial infection rate
p0 = p0(n) has a critical function pc.

Furthermore, if φH ≤ wn, then min{ps,pd} = o(1) and pc = �(min{ps,pd});
otherwise ps = o(1) and pc = �(ps).

Condition (6) on Zw essentially states that the distribution of the weights in
the weight sequence stochastically dominates a distribution that has power law tail
with exponent equal to 3. Indeed, recall that a distribution function F(x) has a
power law tail with exponent equal to τ > 0 if there exist constants γ > 0 and
x0 > 0 such that 1 − F(x) ≥ γ

xτ−1 , for any x > x0. Assume that τ > 2 (otherwise
the distribution has infinite expected value). If F ∗ denotes the distribution function
of the size-biased version of a random variable whose distribution is F , then for
any x > x0

1 − F ∗(x) ≥ γ

∫ ∞
x

1

zτ−1 dz = �

(
1

xτ−2

)
.

Hence, our claim is verified if τ = 3.
However, such a critical function does not always exist. In particular, if the

size-biased distribution associated to the weight sequence is dominated by a sized-
biased distribution associated to a power law with exponent 3 with a suitably small
constant, then there is no critical phenomenon.
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THEOREM 3.2. Let r ≥ 2 be an integer and let w = w(n) be a sequence of
ordered weight sequences satisfying 1 ≤ w1 ≤ · · · ≤ wn → ∞. Consider a boot-
strap process on the random graph CL(w) with infection threshold r and initial
infection rate p0 = p0(n). If there exist constants 0 < c < 1/30 and c1 > 0 and a
function h = h(n) → ∞ such that the size-biased distribution associated with w
satisfies

P[Zw ≥ f ] ≤ c

f

for every c1 ≤ f ≤ h, then no critical function exists.

3.2. Proof outline. Theorem 3.1 states that the following holds whp: if p0 	
pc, then a constant fraction of all vertices become infected by the end of the pro-
cess, and if p0 � pc, then only few additional vertices become infected.

In the supercritical regime, that is, p0 	 pc, there are two phases. In the first
phase, we show that if p0 	 pc, then there exists a weight-bound φK = φK(n)

such that the subset of vertices V≥φK
has the property that whp “almost all”6 of its

vertices become infected. The set V≥φK
is called a nucleus of the process. For the

construction of a nucleus V≥φK, we first observe that the behaviour of the infection
process on the subgraph spanned by the nonheavy vertices [i.e., the vertices with
weight less than φH , defined in (3)] is quite different from that on the subgraph
spanned by the heavy vertices. This is due to the fact that the vertices of weight
less than φH span a “sparse” subgraph, while the vertices of weight at least φH

span a “dense” subgraph. We show that either of these restricted processes creates
a nucleus on its own under some suitable condition on p0. Therefore, the actual
threshold cannot be (substantially) larger than the minimum of these two candidate
thresholds. However, this is already sufficient because we will prove a matching
lower bound for the threshold in Section 7.

In Section 5.2, we analyse the sparse process. We show that if p0 	 ps , then
the sum of the weights of the infected vertices with weight less than φH increases
until whp “almost all” vertices of weight at least φK become infected.

The dense process provides a candidate threshold if φH ≤ wn, that is, pd exists,
and p0 	 pd , then we use one of the following two approaches. In the first case,
we use the important observation that the subgraph spanned by V≥φH

stochastically
dominates the binomial random graph G(|V≥φH

|, φ2
H/W). For binomial random

graphs, the evolution of bootstrap percolation is well understood [see Janson et al.
(2012)]. In particular, it follows (cf. Theorem 4.6 below) that if we can find ω(1)

infected vertices with weight at least φH , then whp every vertex of weight φH

becomes infected. However, in the second case, when the number of vertices of
weight at least φH is small, then this result is not applicable. The condition that
wn−r+1 ≥ αwn essentially states that the r highest weights are the same up to a

6With respect to the total weight.
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multiplicative constant. This is a technical condition which ensures that there are r

vertices of approximately the same weight which will become infected whp. Since
every vertex with weight at least W/wn−r+1 is connected to each of these vertices
with probability one, they also become infected. The proof appears in Section 5.3.

Thereafter, in the second phase, we show that the condition on the size-biased
distribution ensures that whp a set of linear size becomes infected. This is achieved
by partitioning the vertices according to their weights and showing that the infec-
tion spreads from one part to the next, that is, the one containing vertices of slightly
smaller weight. In particular, we show that most vertices of a given part have at
least r neighbours in the previous part. The structure we discover there is very
reminiscent of the construction of a giant r-core, that is, a subgraph of minimum
degree at least r that has linear order. This concept has been studied extensively in
the random graph literature; see, for example, Pittel, Spencer and Wormald (1996).
The details can be found in Section 6.

For the subcritical regime, that is, when p0 � pc, we show in Section 7 that the
number of infected vertices can be approximated by the total progeny of a sub-
critical branching process. Considering the current generation of newly infected
vertices, we expose sequentially their uninfected neighbours. If an uninfected ver-
tex is adjacent to a newly infected vertex and in addition, it has r − 1 neighbours
within the infected set, then we declare this vertex to be an offspring of the newly
infected vertex. The event that a given vertex becomes infected in a certain step,
conditional on the history of the process is the intersection of nondecreasing and
nonincreasing events. At this point, we make use of the FKG inequality (cf. Theo-
rem 4.7 below) to deduce that these events are negatively correlated, whereby we
can obtain a simple upper bound on the probability of infection at a certain step.
We show that if the initial density of infected vertices is asymptotically below the
threshold function, the process has expected progeny per vertex that is less than 1,
and thus the infection spreads only to a few additional vertices (Section 7.2).

The proof of Theorem 3.2 follows a similar argument. In this case, its assump-
tion on the distribution of the weights implies that the process we just described is
again subcritical. With little more work, we show that this implies that the boot-
strap process terminates after a small number of steps and ends with a set of in-
fected vertices that is sublinear whp. The details can be found in Section 8.2.

4. Fundamental properties and tools. We first perform some fundamental
calculations, which we will be using throughout the paper. We continue with a
collection of concentration inequalities (from the literature) that we will make use
of at some point in our arguments.

4.1. Fundamental properties of the weight sequence. We start out by observ-
ing that the weight-bound φH defined in (3), which characterises heavy vertices
tends to infinity.
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CLAIM 4.1. Let φH be defined as in (3). Then we have φH → ∞ and φH +
1 ≤ 2

3

√
W for any sufficiently large n.

PROOF. Assume that φH ≤ wn, then we have

φ2r
H ≥ Wr

4r |V≥φH
|

(2)≥ λrnr−1

4r
→ ∞,

since there are only n vertices in total; otherwise we have φH > wn → ∞.
Now for the second statement, note that if wn ≤ 2

3

√
W − 2, then we obtain

φH +1 ≤ wn+2 ≤ 2
3

√
W ; on the other hand, if wn > 2

3

√
W −2 then |V≥ 2

3

√
W−2| ≥

1, and thus (
W

4(2
3

√
W − 2)2

)r

≤ (1 + o(1)
)( 9

16

)r

≤ 1,

where the last inequality holds for any sufficiently large n. Consequently, by the
definition of φH we have φH +1 ≤ 2

3

√
W −1 < 2

3

√
W , and thus the claim follows.

�

REMARK 4.2. Claim 4.1 implies that for any nonheavy vertices u, v ∈ V<φH

we may drop the minimum in (1), that is, they form an edge with probability pu,v =
wuwv/W .

Next, we relate sums of powers of vertex weights to the size-biased distribution.
Recall the following standard formula for the moments of a nonnegative random
variable.

LEMMA 4.3 [e.g., Williams (1991)]. Let k ≥ 1 be an integer and X be a non-
negative random variable. Then

E
[
Xk]= k

∫ ∞
0

xk−1P[X ≥ x]dx.

PROPOSITION 4.4. Let 0 < a < b and let ϑ ≥ 2 be an integer. Then

(7)

W−1
∑

v∈V[a,b)

wϑ
v = P[a ≤ Zw < b]aϑ−1

+ (ϑ − 1)

∫ b

a
xϑ−2P[x ≤ Zw < b]dx.

In particular, for b = φH defined in (3) and r ≤ ϑ ≤ 2r − 1, we obtain the upper
bound ∑

v∈V[a,φH )

wϑ
v ≤ 4rWraϑ−2r .
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PROOF. We write∑
v∈V[a,b)

wϑ
v = W

∑
v∈V[a,b)

wϑ−1
v

wv

W
= WE

[
Zϑ−1

w 1{a≤Zw<b}
]
.

Hence, using Lemma 4.3 with k = ϑ −1 for the random variable Zw1{a≤Zw<b} the
first claim (7) follows.

For the upper bound, we will apply (7) with b = φH . As a first step, we prove
the following bound on the size-biased distribution for any 0 < y < φH :

(8) P[y ≤ Zw < φH ] < 2Wr−1/y2r−1.

To prove this, we observe that for any 0 < y1 < y2 we have

(9) P[y1 ≤ Zw ≤ y2] = W−1
∑

u∈V[y1,y2]
wu ≤ W−1∣∣V≥y1

∣∣y2.

First, note that if φH/2 ≤ y < φH , then we have something stronger than (8):

(10) P[y ≤ Zw < φH ] (9)≤ |V≥y |φH

W

y<φH
<

Wr−1φH

2y2r

y≥φH /2≤ Wr−1

y2r−1 .

Now let S = {y < φH : P[y ≤ Zw < φH ] ≥ 2Wr−1/y2r−1} and assume for contra-
diction that S is not empty. Note that (10) implies that for any element y′ ∈ S we
have y′ < φH/2. Therefore, there exists a y′ ∈ S with y′ < φH/2 such that 2y′ /∈ S
and 2y′ < φH .

Since 2y′ /∈ S and 2y′ < φH , we have

P
[
2y′ ≤ Zw < φH

]≤ 2Wr−1

(2y′)2r−1 .

Furthermore,

P
[
y′ ≤ Zw < 2y′] (9)

<
2y′|V≥y′ |

W

y′<φH
<

Wr−1

(y′)2r−1 .

Consequently, we obtain

P
[
y′ ≤ Zw < φH

]
<

Wr−1

(y′)2r−1 + 2Wr−1

(2y′)2r−1 <
2Wr−1

(y′)2r−1 ,

resulting in a contradiction, and hence (8) holds for all 0 < y < φH .
Next, note that ∫ φH

a

2Wr−1

x2r−1 xϑ−2 dx
ϑ<2r≤ 2Wr−1aϑ−2r

2r − ϑ
,

and thus we obtain the upper bound∑
v∈V[a,φH )

wϑ
v

(7),(8)≤ W
2Wr−1

a2r−1 aϑ−1 + W(ϑ − 1)

∫ φH

a
xϑ−2 2Wr−1

x2r−1 dx

≤ 2Wraϑ−2r(1 + (ϑ − 1)/(2r − ϑ)
) ϑ<2r≤ 4rWraϑ−2r . �
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Note that a priori it is not clear by the definition of the candidate thresholds ps

and pd defined in (4) and (5), respectively, that the claimed critical function pc in
Theorem 3.1 satisfies pc = o(1). However, this is an almost direct consequence of
Proposition 4.4.

COROLLARY 4.5. Under the assumptions of Theorem 3.1 if in addition φH >

wn, then

ps = o(1).

If instead of φH > wn, we have φH ≤ wn then

min{ps,pd} = o(1).

PROOF. Assume that φH > wn. Then we have that P[a ≤ Zw < φH ] = P[a ≤
Zw]. Proposition 4.4 implies that under the assumptions of Theorem 3.1 we have∑

u∈V<φH

wr+1
u ≥ rW

∫ wn

C1

Cxr−2 dx = �
(
Wwr−1

n

)
,

and since wn → ∞ we have

ps = O
(
w−1

n

) C.4.1= o(1).

Now, if wn ≥ φH , by the definition in (5) we have

min{ps,pd} ≤ pd = O
(
φ−1

H

) C.4.1= o(1). �

4.2. Tools. We will need the following result due to Janson et al. (2012) for
bootstrap percolation on the binomial random graph G(n,p). The result holds
for any choice (both random and deterministic) of the set A0 of initially infected
vertices.

THEOREM 4.6 [Theorems 5.6 and 5.8 in Janson et al. (2012)]. Consider a
bootstrap percolation process with threshold r ≥ 2 on G(n,p), where p ≥ bn−1/r

for some constant b > 0, and the number a of initially infected vertices satisfies
a → ∞. Then whp all n vertices become infected eventually.

We also apply the FKG inequality several times in our proofs. We consider the
following setting. Let G = (V ,E) be a random graph where every pair of distinct
vertices u, v ∈ V appears as an edge in E independently with some probability
pu,v ∈ [0,1].

A graph property is called nondecreasing if it is preserved under the addition of
edges, and it is nonincreasing if it is preserved under the removal of edges.
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THEOREM 4.7 [FKG inequality, see, e.g., Janson, Łuczak and Ruciński (2000)].
Let A be a nonincreasing graph property and B be a nondecreasing graph prop-
erty. Consider the random graph G and denote by A and B the events that G has
property A or B , respectively. Then we have

P[A∩B] ≤ P[A]P[B].

Throughout the paper, the proofs will rely on the following collection of con-
centration inequalities. Often we deal with sums of independent random variables
which guarantee exponentially small bounds on the probability of nonconcentra-
tion.

THEOREM 4.8 [Chernoff inequality, e.g., Janson, Łuczak and Ruciński (2000)].
Let Xi , for 1 ≤ i ≤ m, be independent Bernoulli random variables with mean 0 ≤
pi ≤ 1, and let X =∑m

i=1 Xi denote their sum. Then for any s > 0 we have

P
[
X ≤ E[X] − s

]≤ exp
(
− s2

2E[X]
)

and

P
[
X ≥ E[X] + s

]≤ exp
(
− s2

2(E[X] + s/3)

)
.

A similar bound due to McDiarmid (1998) applies also in a more general setting.

THEOREM 4.9 [McDiarmid (1998)]. Let Xi , for 1 ≤ i ≤ m, be independent
random variables satisfying Xi ≤ E[Xi] + M for some constant M , and let X =∑m

i=1 Xi denote their sum. Then, for any s > 0 we have

P
[
X ≥ E[X] + s

]≤ exp
(
− s2

2(Var[X] + Ms/3)

)
.

When the order of magnitude of each individual random variable varies strongly
the following bound may prove to be stronger.

THEOREM 4.10 [Azuma–Hoeffding inequality, e.g., Janson, Łuczak and Ru-
ciński (2000)]. Let Xi , for 1 ≤ i ≤ m, be independent random variables satisfy-
ing ai ≤ Xi ≤ bi , and let X =∑m

i=1 Xi denote their sum. Then, for any s > 0 we
have

P
[
X ≤ E[X] − s

]≤ exp
(
− s2

2
∑m

i=1(bi − ai)2

)
.
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5. Nuclei. As we described in Section 3.2, the first step towards proving that
an outbreak occurs whp is to show that a subset of vertices of high weight becomes
almost completely infected. We shall call this set a nucleus (see Definition 5.1
below). The total weight of this set is high enough, so that it functions as a source
of the infection of a large part of the random graph. Moreover, the density within
the set is high enough, so that the bootstrap process restricted to the subgraph
induced by these vertices results in its almost complete infection.

DEFINITION 5.1. Let φK = φK(n) satisfy φK ≤ min{wn−r+1,W/wn−r+1}
and φK = o(

√
W). We call the quantity φK the weight-bound of the nucleus if

there exists a function ε = ε(n) : N → [0,1), tending to 0 as n → ∞, such that
whp

Ŵ≥φK
≥ (1 − ε)W≥φK

.

In addition, the set V≥φK
is called a nucleus.

The goal of this section is to prove the existence of a nucleus in the supercritical
regime.

THEOREM 5.2. Suppose that the assumptions of Theorem 3.1 hold. If addi-
tionally

φH > wn and p0 	 ps,

or

φH ≤ wn and p0 	 min{ps,pd},
then there exists a nucleus with weight-bound φK .

The proof of this theorem is rather sophisticated and requires some preparation.
Hence, we defer it to Section 5.4. Its proof consists of two theorems (Theorems
5.12 and 5.16) depending on certain properties of the weight sequence. In fact, it
is these two theorems that we use towards the proof of Theorem 3.1. However, we
also prove Theorem 5.2, as we believe it is of independent interest.

5.1. Modified process. The existence of a nucleus will be shown in several
stages. The first stage is a restriction of the bootstrap process to a carefully se-
lected set of vertices and its analysis therein. We modify the percolation process
by restricting it to some breeding ground S for some number of steps. The steps
when this restriction holds is called the breeding phase. The actual definitions of
the breeding ground S used in the sparse and dense process will differ: in the for-
mer it consists of vertices of intermediate weight, while in the latter it is the set of
all heavy vertices.
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More formally, let S ⊆ V be a subset of vertices, and let φ0 = φ0(n) be a lower
bound on their weights, that is, φ0 ≤ wmin[S]. Then we initially infect any ver-
tex with weight less than φ0 independently with probability p0 (but no vertices
of larger weight). They form the set B0 and for convenience of notation we define
B−1 := ∅. Now, for any t ≥ 0 we denote by Bt the set of all vertices which became
infected either initially or in some step 1 ≤ t ′ ≤ t in the following process: in the
t th step, t ≥ 1, we infect all (uninfected) vertices in S having at least r infected
neighbours in Bt−1 \Bt−2 (but no other vertices are infected). Note that apart from
the vertices in B0 which were infected initially, only vertices within the breeding
ground S ever become infected in this restricted process. Furthermore, whether a
vertex u ∈ V \Bt−1 becomes infected at time t depends only on the edges connect-
ing u to any of the vertices in Bt−1 \ Bt−2 (none of which has been revealed so
far). Thus all these events are independent.

Because this restriction of the process can only delay the time at which any par-
ticular vertex becomes infected (if it becomes infected at all), we have Bt ∩ VI ⊆
At ∩ VI , for any t ≥ 0 and any interval I ⊆ R+. In particular, this holds at the end
of the breeding phase. At this point, it will be necessary to return to the original
process instead (or another subprocess). Considering these modifications is suf-
ficient for showing that a candidate nucleus is indeed a nucleus, since this only
depends on a lower bound on the total weight of the vertices within the candidate
nucleus which become infected eventually.

We will give a few results that will allow us to control the evolution of the
modified process. We will start with a concentration result on the weight of B0.
Recall that we consider a breeding ground S of minimum weight that is bounded
from below by φ0.

LEMMA 5.3. If φ0 → ∞ and np0 → ∞, then whp W[B0] ≥ np0/2.

PROOF. Since φ0 	 1, we have |V≥φ0 | ≤ W/φ0 = o(n). Therefore, (1 +
o(1))n vertices have weight less than φ0 and each of these vertices is infected inde-
pendently with probability p0. Since np0 	 1, the Chernoff bound (Theorem 4.8)
implies that whp at least np0/2 of these vertices become infected. Since the weight
of every vertex is at least 1, the result follows. �

Next, we show that the probability of a vertex u becoming infected in step t + 1
is essentially determined by its weight wu and the total weight of the vertices which
became infected in the previous steps, that is, W[Bt ]. The upper bound is almost
immediate.

LEMMA 5.4. For any t ≥ 0 and any vertex u ∈ S \Bt, we have

P[u ∈ Bt+1 | Bt ] ≤ wr
uW[Bt ]r
r!Wr

.
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PROOF. By a union bound, we have

P[u ∈ Bt+1 | Bt ] ≤ ∑
R∈(Bt

r )

∏
v∈R

wuwv

W
≤ wr

u

Wr

∑
R∈(Bt

r )

∏
v∈R

wv ≤ wr
u

Wr

W[Bt ]r
r! .

�

For the lower bound, we use the following intuition which turns out to be justi-
fied: the total weight of infected vertices should increase substantially in each step,
and it should not be dominated by a few vertices of very large weight. So assume
for now that this heuristic applies. In this case, we prove that if the total weight of
infected vertices is already large enough, then u becomes infected whp. Otherwise,
the total weight of infected vertices is still sufficiently large and the upper bound
in Lemma 5.4 is actually tight.

LEMMA 5.5. Let ξ = ξ(n), ξ1 = ξ1(n), ξ2 = ξ2(n) be three functions such that
ξ, ξ1, ξ2 → ∞. Let t ≥ 0 and assume that

W[Bt ] ≥ ξ1W[Bt−1] and(11)

wmax[Bt ] ≤ W[Bt ]
ξ2

.(12)

Furthermore, let u ∈ S \Bt be such that

W[Bt ] ≤ (W/wu)
√

log ξ and(13)

wmax[Bt ] ≤ 4

9

W

wu

.(14)

Then we have

P[u ∈ Bt+1 | Bt ,Bt−1] ≥ wr
uW[Bt ]r
r!Wr

exp(−1.9
√

log ξ).

If u ∈ V \Bt is such that

(15) W[Bt ] ≥ (W/wu)
4
√

log ξ,

instead of (13), then we have

P
[∣∣N(u) ∩ (Bt \Bt−1)

∣∣≥ r | Bt ,Bt−1
]≥ 1 − o(1/

√
log ξ),

and consequently, if u ∈ S, then

P[u ∈ Bt+1 | Bt ,Bt−1] ≥ 1 − o(1/
√

log ξ).

PROOF. In order to prove the first statement, consider a vertex u of weight
wu. Next, observe that for any vertex v ∈ Bt we have wuwv/W < 1 by (14),
and thus we may drop the minimum in (1), that is, u and v form an edge with
probability pu,v = wuwv/W , independently. Furthermore, since W[Bt \Bt−1] =
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(1 + o(1))W[Bt ] by (11), and W[Bt ] 	 wmax[Bt ] by (12), there are at least r ver-
tices in Bt \ Bt−1. We bound the probability that u has exactly r infected neigh-
bours in Bt \Bt−1:

P[u ∈ Bt+1 | Bt ,Bt−1] ≥ P
[∣∣N(u) ∩ (Bt \Bt−1)

∣∣= r | Bt ,Bt−1
]
.(16)

To compute the right-hand side of (16), we sum over all sets R of r distinct vertices
in Bt \Bt−1 the probability that the event {N(u)∩ (Bt \Bt−1) = R} holds, because
these events are mutually exclusive for different r-tuples of vertices. This provides
a lower bound on (16)

P[u ∈ Bt+1 | Bt ,Bt−1] ≥ ∑
R∈(Bt \Bt−1

r )

∏
v∈R

wuwv

W

∏
v′∈Bt\(Bt−1∪R)

(
1 − wuwv′

W

)
.

Furthermore, by (14) we have wuwv′/W ≤ 4/9. Because 1 − x ≥ exp(−x/(1 −
x)), for any x < 1, the innermost product is therefore bounded by∏

v′∈Bt\(Bt−1∪R)

(
1 − wuwv′

W

)

≥ ∏
v′∈Bt\(Bt−1∪R)

exp
(
−wuwv′

W

/(
1 − wuwmax[Bt ]

W

))
(14)≥ exp

(
−9

5
wu

∑
v′∈Bt

wv′

W

)

= exp
(
−9

5
wu

W[Bt ]
W

)
(13)≥ exp

(
−9

5

√
log ξ

)
.

Note that this lower bound holds uniformly over all choices of R. Hence, it suffices
to bound∑

R∈(Bt \Bt−1
r )

∏
v∈R

wuwv

W
= wr

u

Wr

∑
R∈(Bt \Bt−1

r )

∏
v∈R

wv

≥ wr
u

r!Wr

(
W[Bt \Bt−1]r − W[Bt ]r−2

∑
wv∈Bt

w2
v

)
(11)= wr

u

r!Wr

(
W[Bt ]r(1 − o(1)

)− W[Bt ]r−2
∑

wv∈Bt

w2
v

)
.

The first claim follows from the fact that

W[Bt ]2 (12)	 wmax[Bt ]W[Bt ] = wmax[Bt ]
∑
u∈Bt

wu ≥ ∑
u∈Bt

w2
u.
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For the second statement, let u be a vertex of weight wu and note that if there
are at least r vertices in Bt \Bt−1 with weight at least W/wu, then all of them will
be neighbours of u with probability 1. Otherwise, consider B′

t ⊆ Bt \ Bt−1 where
all such vertices have been removed. We have

W
[
B′

t

]≥ W[Bt ] − W[Bt−1] − (r − 1)wmax[Bt ] (11),(12)= (
1 − o(1)

)
W[Bt ].

We have

E
[∣∣N(u) ∩B′

t

∣∣]= ∑
v∈B′

t

wuwv

W
= wuW[B′

t ]
W

= (
1 + o(1)

)wuW[Bt ]
W

(15)= �
(
(log ξ)1/4).

Since |N(u)∩B′
t | is the sum of independent indicator random variables, the Cher-

noff bound (Theorem 4.8) implies

P
[∣∣N(u) ∩B′

t

∣∣< r | Bt ,Bt−1
]≤ exp

(
−(E[X] − r)2

2E[X]
)

= o(1/
√

log ξ),

and the second claim follows. �

In the analysis of the sparse process, the breeding ground is chosen to be a spe-
cific subset S ⊆ V(φs,φH ] for some suitably chosen function φs = φs(n) → ∞. We
show that whp the total weight of infected vertices (in S) increases significantly in
every step until it is large enough so that in the following step “almost all” vertices
in the (candidate) nucleus V≥φK

become infected. We first show that this holds
in expectation, and then using Chebyshev’s inequality we deduce concentration
around the expected value. However, since heavy vertices, that is, the ones with
weight at least φH , increase the variance significantly we need to exclude them.
The details can be found in Section 5.2.

Our approach for the dense process is different. Here, the breeding ground S

is formed by all heavy vertices, that is, the ones with weight at least φH . Because
these induce a dense graph only the number of infected vertices matters, while their
total weight becomes irrelevant. By Theorem 4.6, we have that if at some point
there are ω(1) infected heavy vertices, then every heavy vertex becomes infected
eventually, hence the set of all heavy vertices forms a nucleus V≥φK

. We show that
whp there are ω(1) infected heavy vertices as long as there are ω(1) heavy vertices
in total. However, this is not guaranteed. If there are only O(1) heavy vertices, then
we can still ensure that the r vertices of largest weight, n − r + 1, . . . , n, become
infected because their weights differ by at most a constant factor. These will in
turn automatically infect any vertex u of weight wu ≥ W/wn−r+1, because u is
connected to n − r + 1, . . . , n with probability 1 by (1), providing a nucleus V≥φK

also in this case.
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5.2. Sparse process. Ultimately, we want to show that if the initial infection
rate 0 ≤ p0 ≤ 1 satisfies

p0 	 ps,(17)

where ps is the candidate threshold defined in (4), then there is an outbreak. As
a first step, we show that (17) implies the existence of a nucleus V≥φK

. Since the
details of the proof are very delicate, we split it into three parts: the first contains
all relevant definitions, the second addresses some preliminary calculations which
allow for a more concise exposition of the main argument proving Theorem 5.12
in the final part. How this nucleus triggers an outbreak will be shown in Section 6.

5.2.1. Setup. First of all, we assume that (17) holds, and introduce the param-
eter

(18) νs := p0/ps → ∞.

Furthermore, in order to define the breeding ground S we observe that roughly
speaking Lemmas 5.4 and 5.5 imply that for some time the probability that a vertex
u of some intermediate weight wu becomes infected is proportional to wr

u and,
therefore, the expected total weight of infected vertices of this type is essentially
given by the sum of the (r + 1)st powers of their weights.

With this in mind, we define an auxiliary weight bound φs = φs(n) as the fol-
lowing (pointwise) maximum:

φs(n) := max
{
x ∈ R+ : ∑

V[x,φH )

wr+1
u ≥ 1

2

∑
V<φH

wr+1
u

}
,(19)

and note that we have φs < φH and V[φs,φH ) �= ∅. Now we define S to be a
nonempty subset of V[φs,φH ). In particular, assume that the vertices in V[φs,φH )

are vjs , vjs+1, . . . , vjH
arranged in nondecreasing order of weight. Let

S′ := {vjs , vjs+2, . . . , } ∪ {vjH
},(20)

that is, we include in S′ every other vertex of V[φs,φH ) starting from the first one
(the lightest), but we always include the last one. For r ≥ 3, we take S = S ′.

Recall that the infection of the vertices in a given step is independent and that
the probability that a vertex u of some intermediate weight wu becomes infected is
proportional to wr

u. Therefore, the variance is proportional to the (r +2)nd powers.
Since vertices with large weight give rise to large variance we have to exclude
some heavy vertices. In the r ≥ 3 case, we show that it is enough to exclude the
vertices of weight at least φH . On the other hand, for r = 2, we need to be a bit
more careful and choose S according to the following procedure. We include in S

each vertex in S′ following the ordering as it appears in (20), so that S is maximal
with respect to

(21)
∑
u∈S

w4
u ≤ 9W 2.
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Note that since φ4
H ≤ W 2 by Claim 4.1, this greedily chosen breeding ground S

contains at least one vertex. Furthermore, by construction we have for any v ∈
S ′ \ S

(22) w4
v +∑

u∈S

w4
u > 9W 2.

Now we use νs to define the weight-bound φ0 = φ0(n), which provides an upper
bound on the weights of initially infected vertices in the modified process, by

(23) φ0 := min
{
φs, np0ν

−1/2
s

}
.

5.2.2. Preliminaries. First of all, we want to guarantee that we can apply
Lemma 5.5 for t = 0.

CLAIM 5.6. We have np0 → ∞ as n → ∞. Furthermore, whp W[B0] ≥
np0/2 and wmax[B0] ≤ 2W[B0]ν−1/2

s = o(W[B0]).

PROOF. We first show that φs → ∞. For this, note that for x > 0, we have

(24)
∑

u∈V<x

wr+1
u ≤ xr

∑
u∈V<x

wu ≤ xr
∑
u∈V

wu ≤ xrW.

Setting m0 := (p1−r
s /2)1/r , we thus obtain∑

u∈V<m0

wr+1
u

(24)≤ mr
0W = 1

2
p1−r

s W
(4)= 1

2

∑
u∈V<φH

wr+1
u

and thus ∑
u∈V[m0,φH )

wr+1
u = ∑

u∈V<φH

wr+1
u − ∑

u∈V<m0

wr+1
u ≥ 1

2

∑
u∈V<φH

wr+1
u .

Therefore, by the definition (19) of φs , we have φs ≥ m0. Due to Corollary 4.5, we
have ps = o(1), and thus m0 = �(p

(1−r)/r
s ) 	 1.

Using this, we prove that φ0 	 1. By Proposition 4.4, for ϑ = r + 1 and a = 1,
we have ∑

u∈V<φH

wr+1
u ≤ 4rWr,

and, therefore, by (18) and (2) we also have

np0ν
−1/2
s ≥ W

λ
ν1/2

s ps
(4)= ν

1/2
s

λ

(
Wr∑

u∈V<φH
wr+1

u

)1/(r−1)

≥ ν
1/2
s

4rλ
→ ∞,

implying φ0 → ∞ and np0 → ∞.
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Now, we apply Lemma 5.3, which implies that whp

W[B0] L.5.3≥ np0/2.

Conditional on W[B0] ≥ np0/2 by (23), we have

wmax[B0] ≤ φ0 ≤ np0ν
−1/2
s ≤ 2W[B0]ν−1/2

s . �

However, we need some more preparation for the inductive argument. The fol-
lowing lower bound of the sums of the (r + 1)st powers of the vertex weights in S

is reminiscent of the definition of φs in (19). In fact, for r ≥ 3 the bound follows
from this. However, the proof for r = 2 is nontrivial due to the slightly different
construction of the breeding ground S.

LEMMA 5.7. For any integer r ≥ 2, we have∑
u∈S

wr+1
u ≥ 1

8

∑
u∈V<φH

wr+1
u .

PROOF. Let r ≥ 3. The definition of φs in (19) implies that∑
u∈V[φs ,φH )

wr+1
u ≥ 1

2

∑
u∈V<φH

wr+1
u .

Now, note that the set S in (20) contains every other vertex (ordered by weight),
and moreover, the vertex of largest weight within V[φs,φH ), hence this implies that

(25)
∑
u∈S

wr+1
u ≥ 1

2

∑
u∈V[φs ,φH )

wr+1
u .

The same is true if r = 2 and S = S′.
Hence, consider r = 2 and assume that S � S′, that is, there exists a vertex

v ∈ S′ \ S. For any such vertex, we have that w4
v < φ4

H ≤ W 2 by Claim 4.1 and by
(22) we have

∑
v∈S w4

v ≥ 8W 2. Therefore,∑
u∈S

w3
u ≥∑

u∈S

w4
u/wmax[S] ≥ 8W 2/wmax[S].

On the other hand, since we picked the elements of S in a nondecreasing order of
the weights, we have for any v ∈ S′ \ S that wv ≥ wmax[S], and thus∑

v∈S′\S
w3

v ≤ ∑
v∈V[wmax[S],φH )

w3
v

P.4.4,ϑ=3≤ 8W 2/wmax[S].

But this implies by the pigeon-hole principle that∑
u∈S

w3
u ≥ 1

2

∑
u∈S′

w3
u

(25)≥ 1

4

∑
u∈V[φs ,φH )

w3
u

(19)≥ 1

8

∑
u∈V<φH

w3
u

as desired. �
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The following lemma will be used later in the proof of Lemma 5.9 as an upper
bound on the second moment of the total weight of the newly infected vertices
during the modified process. The bound will be used along with Chebyshev’s in-
equality in order to show that whp the weight of these vertices is at least a certain
multiple of the current generation.

LEMMA 5.8. For any integer r ≥ 2, we have∑
u∈S

wr+2
u ≤ 2r+7W 2p2−r

s .

PROOF. If r = 2, then by (21) we have
∑

u∈S w4
u ≤ 9W 2 < 29W 2, and thus

the claim is immediate.
If r ≥ 3, then recall that S = S′. We abbreviate

(26) ϒ := pr−1
s W−1

∑
u∈S

wr+2
u .

Note that ϒ =∑
u∈S wr+2

u /
∑

u∈V<φH
wr+1

u by the definition of ps [cf. (4)], and
hence ϒ ≤ φH .

Moreover, since r + 2 ≤ 2r − 1 for any r ≥ 3, applying Proposition 4.4 with
a = ϒ/2, ϑ = r + 1 and ϑ = r + 2, respectively, implies that

(27)
∑

u∈V[ϒ/2,φH )

wr+1
u ≤ 4rWrϒ1−r ≤ 2r+2Wrϒ1−r

and

(28)
∑

u∈V[ϒ/2,φH )

wr+2
u ≤ 4rWrϒ2−r ≤ 2r+2Wrϒ2−r .

Now if ∑
u∈V<ϒ/2

wr+1
u ≤ 2r+6Wrϒ1−r ,

then (27) implies∑
u∈V<φH

wr+1
u = ∑

u∈V<ϒ/2

wr+1
u + ∑

u∈V[ϒ/2,φH )

wr+1
u ≤ 2r+7Wrϒ1−r .

Moreover, expressing the left-hand side using ps [cf. (4)] and the right-hand side
using (26) we obtain

p1−r
s W ≤ 2r+7p−(r−1)2

s W 2r−1
(∑

u∈S

wr+2
u

)1−r

and the claim follows by taking the (r − 1)st root and solving for the sum.
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Otherwise, we may assume that

(29)
∑

u∈V<ϒ/2

wr+1
u > 2r+6Wrϒ1−r .

However, we will show that this leads to a contradiction. First, note that this implies∑
u∈V[ϒ/2,φH )

wr+2
u

(28)≤ 2r+4Wrϒ2−r (29)
<

1

4
ϒ

∑
u∈V<ϒ/2

wr+1
u

and we also have∑
u∈V<φH

wr+2
u ≥∑

u∈S

wr+2
u

(26)= ϒ
∑

u∈V<φH

wr+1
u ≥ ϒ

∑
u∈V<ϒ/2

wr+1
u .

Therefore, we obtain a lower bound on the difference∑
u∈V<φH

wr+2
u − ∑

u∈V[ϒ/2,φH )

wr+2
u ≥ 3

4
ϒ

∑
u∈V<ϒ/2

wr+1
u .

However, at the same time this difference satisfies∑
u∈V<φH

wr+2
u − ∑

u∈V[ϒ/2,φH )

wr+2
u

ϒ≤φH= ∑
u∈V<ϒ/2

wr+2
u ≤ 1

2
ϒ

∑
u∈V<ϒ/2

wr+1
u ,

a clear contradiction, since ϒ
∑

u∈V<ϒ/2
wr+1

u > 0 by (26) and (29), and since
S �=∅. �

5.2.3. Main argument. Now we show that until almost every vertex with
weight at least φH/(logνs)

1/4 becomes infected whp in every step of the process,
the weight of the infected set increases significantly. For simplicity of notation, we
define the scaled total weight νt by

(30) νt = νt (n) := 2W[Bt ]
psn

.

Note that by Claim 5.6 and (18) we have whp ν0 = 2W[B0]/(psn) ≥ νs (this is
why there is a factor 2 in the definition) and, therefore, these scaled total weights
satisfy

(31) 1 � p0/ps = νs ≤ ν0 ≤ ν1 ≤ . . . .

LEMMA 5.9. Let t ≥ 0, r ≥ 2 be integers and assume that

W[Bt ] ≥ 1

2
νr−1

s exp(−2
√

logνs)W[Bt−1],(32)

wmax[Bt ] ≤ 1

2 logνs

W[Bt ],(33)
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and

W[Bt ] ≤ (W/φH )
√

logνs.(34)

Then conditional on the random sets Bt and Bt−1 with probability at least 1−ν1−r
t

we have

(35) W[Bt+1] ≥ 1

2
νr−1
t W[Bt ] exp(−2

√
logνs)

and

(36) wmax[Bt+1] ≤ νr−1
t W[Bt ] exp(−2

√
logνs)/ logνs.

PROOF. We first calculate the total weight of vertices that become infected
in step t + 1. Afterwards, we use a second moment argument to show that it is
actually concentrated around its expectation, thereby proving the first statement.
Then we use a first moment argument to guarantee that no vertices of too large
weight became infected whp.

Let t ≥ 0 be an integer and assume that Bt and Bt−1 have been realised. Fur-
thermore, recall that we consider the process in which only vertices within the
breeding ground S become infected (apart from those being infected initially).
Moreover, observe that Conditions (32), (33) and (34) imply that their counter-
parts, (11), (12) and (13), respectively, are satisfied. Also, Condition (14) holds
since any two vertices u,u′ ∈ S have weight at most φH and by Claim 4.1, the
product of their weights satisfies wuwu′ ≤ 4

9W . Thereby, Lemma 5.5 is applicable
for all vertices u ∈ S, that is, we have

P[u ∈ Bt+1 | Bt ,Bt−1] ≥ exp(−1.9
√

logνs)
wr

uW[Bt ]r
r!Wr

.

Consequently,

E
[
W[Bt+1] | Bt ,Bt−1

]≥ exp(−1.9
√

logνs)
∑
u∈S

wr+1
u W[Bt ]r

r!Wr
− W[Bt ],

where the last term is a (crude) upper bound on the contribution of the vertices in
S which are already infected at time t . Now observe that

(37)

W[Bt ]r−1

Wr

∑
u∈S

wr+1
u

L.5.7≥ W[Bt ]r−1

8Wr

∑
u∈V<φH

wr+1
u

(4)= W[Bt ]r−1

8(psW)r−1

(30)= νr−1
t

8

(
1

2λ

)r−1
,
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where in particular the right-hand side grows polynomially in νt . Hence, because
νs ≤ νt, and thus also exp(−1.9

√
logνs)ν

r−1
t → ∞, we obtain

(38)

E
[
W[Bt+1] | Bt ,Bt−1

]≥ exp
(−1.9

√
logνs + O(1)

)W[Bt ]r
Wr

∑
u∈S

wr+1
u

(37)≥ exp
(−1.9

√
logνs + O(1)

)
νr−1
t W[Bt ]

≥ exp(−2
√

logνs)ν
r−1
t W[Bt ]

for any sufficiently large n, because νs → ∞.
Next, we want to apply Chebyshev’s inequality, so we need to provide an upper

bound on the variance of W[Bt+1]. Because infections (at time t + 1) take place
independently for all vertices in S \ W[Bt ], we have

(39)

Var
[
W[Bt+1] | Bt ,Bt−1

]≤ ∑
u∈S\Bt

w2
uP[u ∈ Bt+1 | Bt ,Bt−1]

L.5.4≤ ∑
u∈S

wr+2
u

(
W[Bt ]/W

)r
L.5.8≤ 2r+7p2−r

s W 2(W[Bt ]/W
)r

(30),W≥n≤ 2r+7W[Bt ]2νr−2
t .

By Chebyshev’s inequality, we thus obtain

P
[
W[Bt+1] ≤ E

[
W[Bt+1]]/2

] (38),(39)≤ 2r+9W[Bt ]2νr−2
t

(exp(−2
√

logνs)ν
r−1
t W[Bt ])2

≤ ν−r
t exp(5

√
logνs),

and the first statement follows since νs ≤ νt .
For the second part of the statement, we define

ζ := νr−1
t W[Bt ] exp(−2

√
logνs)/ logνs

and note that by Lemma 5.4 the expected number of vertices in S of weight at least
ζ becoming infected at time t + 1 is at most∑

u∈V[ζ,φH )

wr
u

W[Bt ]r
Wr

P.4.4,ϑ=r≤ 4rW[Bt ]rζ−r ≤ (ν1−r
t exp(3

√
logνs) logνs

)r
.

Because νs ≤ νt the second statement follows from Markov’s inequality.
In fact, both error terms are sufficiently small so that by a union bound, both

statements hold simultaneously with probability at least 1 − ν1−r
t . �
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Note that (35) and (36) imply that Conditions (32), (33) hold for t +1. We apply
Lemma 5.9 repeatedly in order to show that the total weight of the infected ver-
tices becomes large enough so that every vertex of large enough weight becomes
infected in the next step whp.

LEMMA 5.10. For any integer r ≥ 2, there exists an integer T ≥ 0 such that
whp

W[BT ] > (W/φH )
√

logνs.

PROOF. We show that in every step τ ≥ 0 there are two possibilities: either
this condition is satisfied, that is, we can stop and use T = τ , or else we can ap-
ply Lemma 5.9 once more; note that this ensures that W[Bτ+1] = ω(W[Bτ ]) and
wmax[Bτ+1] = o(W[Bτ+1]) for the next step. In this spirit, we denote the event that
we stopped by time τ ≥ 0 by Tτ (and by ¬Tτ its complement), and define a family
of good events

Gτ := {∀0 ≤ t ≤ τ : (35) and (36) hold}
for τ ≥ 0. The core of the proof is formed by the following recursive argument,
whose proof we will postpone for a moment.

CLAIM 5.11. If ¬T0, then

(40) P[G0 | B0] ≥ 1 − o(1) − ν1−r
0 .

Similarly, for any τ ≥ 1,

(41) P[Gτ | Gτ−1,¬Tτ ,Bτ ,Bτ−1] ≥ 1 − ν1−r
τ .

Now assume that Claim 5.11 holds. Then we observe that by definition of the
scaled total weights

νt

νt−1

(30)= W[Bt ]
W[Bt−1]

Gt−1≥ 1

2
νr−1
t−1 exp(−2

√
logνs) ≥ 1

2
νr−1

s exp(−2
√

logνs) → ∞

for any t ≥ 1, and thus by a union bound

P[Gτ | ¬Tτ ,Bτ , . . . ,B0] ≥ 1 − o(1) −
∞∑
t=0

ν1−r
t = 1 − o(1).

Since we have W[Bt ] ≤ W for any time t ≥ 0, the recursion must end in finite
time; however, this can only happen because there exists a T ≥ 0 such that TT

holds, proving the statement of the lemma.
It remains to prove Claim 5.11. By Claim 5.6, we initially have W[B0] ≥

np0/2 → ∞ and wmax[B0] ≤ 2W[B0]ν−1/2
s .
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If in addition W[B0] ≤ (W/φH )
√

logνs , then Lemma 5.9 is applicable for t =
0, and thus G0 holds with probability at least 1 − o(1) − ν1−r

0 . Otherwise, we
must have W[B0] > (W/φH )

√
logνs , and, therefore, T0 holds. Both cases together

prove (40).
The induction step is proven analogously: let τ ≥ 1 and assume Gτ−1 holds,

then if additionally W[Bτ ] ≤ (W/φH )
√

logνs , then Lemma 5.9 with t = τ im-
plies that with sufficiently high probability Gτ holds. Otherwise, we have W[Bτ ] >

(W/φH )
√

logνs and, therefore, Tτ holds. Both cases together prove the induction
step (41). �

Next, we construct a nucleus (cf. Definition 5.1) for the sparse process. We
consider the candidate nucleus V≥φK

given by the weight-bound

(42) φK :=
{
W/wn−r+1 if φH (logνs)

−1/4η > W/wn−r+1,

φH (logνs)
−1/4 if φH (logνs)

−1/4η ≤ W/wn−r+1,

where η = η(n) is an arbitrarily slowly growing function, satisfying η → ∞ but
(logνs)

−1/4η = o(1).7 We do so by determining a subset UK ⊆ V≥φK
∩ AF of

weight

(43) W[UK ] ≥ (1 − o(1)
)
W≥φK

.

It will be crucial that this construction requires us to only expose a specific subset
of edge indicator variables.

THEOREM 5.12. Under the assumptions of Theorem 3.1, suppose that p0 	
ps . Then whp the following two statements hold:

• There exists a set UK ⊆ (V≥φK
∩AF ) [where V≥φK

is defined as in (42)] which
satisfies (43), contains {n − r + 1, . . . , n}, and is constructed by only exposing
edge-indicator random variables corresponding to edges in S′ × (B0 ∪ S′ ∪
V≥φK

).
• The weight-bound φK satisfies φK ≤ min{wn−r+1,W/wn−r+1} and φK =

o(
√

W).

In particular, this means that whp V≥φK
is a nucleus.

PROOF. For this proof, we abbreviate φ′
H := φH (logνs)

−1/4 for convenience
of notation. We first show that the two conditions on the weight-bound φK [defined
in (42)] are satisfied. Because wn−r+1 = αwn and φH ≤ wn + 1 [cf. (3)] we have

(44) φ′
Hη = φH (logνs)

−1/4η = o(φH ) = o(wn−r+1),

7Such an η exists since νs → ∞ by (31).
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since (logνs)
−1/4η = o(1). Now if φK = φ′

H , then we have

φK = φ′
H

(42)≤ W/(ηwn−r+1) = o(W/wn−r+1) and φK = φ′
H

(44)= o(wn−r+1).

Otherwise, if φK = W/wn−r+1, then by (42) we obtain

φK = W/wn−r+1 < φ′
Hη

(44)= o(wn−r+1).

Thus in both cases the first property of φK is satisfied. Furthermore, the previous
argument also showed φK = o(φH ) and since φH = O(

√
W) by Claim 4.1 the

second property follows.
It remains to construct the set UK , or, in other words, show that a significant pro-

portion of the candidate nucleus becomes infected eventually. For this, let T ≥ 0 be
an integer satisfying W[BT ] ≥ (W/φH )

√
logνs as in Lemma 5.10 and condition

on this (high probability) event. In particular, we have

(45) W[BT ] ≥ (W/φH )
√

logνs ≥ (W/wu)
4
√

logνs,

for any wu ≥ φ′
H .

First, assume that we have φK = W/wn−r+1. We consider the r vertices of
largest weight and observe that

wn ≥ · · · ≥ wn−r+1
(44)	 φ′

Hη 	 φ′
H

and thus the assertion in (45) is true for each of them. Therefore, the second state-
ment of Lemma 5.5 is applicable (with t = T and ξ = νs → ∞) showing that
whp {n − r + 1, . . . , n} ⊆ AT +1 [using only edges between {n − r + 1, . . . , n} and
(BT \BT −1) ⊆ S′]. Moreover, we certainly have V≥φK

= V≥W/wn−r+1 ⊆ AT +2, be-
cause every vertex in this set is connected to each vertex in {n− r + 1, . . . , n} with
probability 1. Thus we set UK := V≥φK

, which obviously satisfies (43). Since the
process {Bt } exposes only edges in S′ × (B0 ∪ S′) and the last step only depends
on edges in S′ × V≥φK

the statement follows in this case.
Otherwise, we have φK = φ′

H and we need to consider the vertices in V≥φ′
H

\
BT . We observe that (45) shows that the weight of any vertex u ∈ V≥φ′

H
\ BT is

sufficiently large to apply the second statement of Lemma 5.5 (with t = T and ξ =
νs → ∞). Hence, whp each of them has at least r neighbours in BT \ BT −1, and
this events depend only on mutually disjoint sets of edges. So now define UK :=
{u ∈ V≥φ′

H
| u ∈ BT or |N(u) ∩ (BT \ BT −1)| ≥ r}, and note that E[W[UK ]] =

(1 − o(1))W≥φ′
H

.
Consequently, since the weight of each vertex is at most wn, McDiarmid’s

inequality (Theorem 4.9) is applicable (with Xu = 1{u∈UK }, M = wn, and s =√
wnW≥φ′

H
) yielding

(46)

P
[
W[UK ] ≤ (1 − o(1)

)
W≥φ′

H
−
√

wnW≥φ′
H

]
≤ exp

(
− wnW≥φ′

H

2(W≥φ′
H
(1 − o(1)) + wn

√
wnW≥φ′

H
/3)

)
.



A CRITICAL PHENOMENON IN BOOTSTRAP PROCESSES 1019

Observe that by the assumption on the size-biased distribution in Theorem 3.1 we
have

(47) W≥φ′
H

= W
∑

u∈V≥φ′
H

wu

W
= WP

[
Zw ≥ φ′

H

]≥ CW

φ′
H

.

Furthermore, since φK = φ′
H we have φ′

Hη ≤ W/wn−r+1 by (42), and this in turn
shows that W/φ′

H = ω(wn), because wn−r+1 = αwn and η → ∞. Combined with
(47) this provides W≥φ′

H
= ω(wn), and consequently the right-hand side of (46) is

o(1). Because UK ⊆ (V≥φ′
H

∩AF ), we thus obtain whp Ŵ≥φK
= (1 − o(1))W≥φK

also in this case. Because the process {Bt } exposes only edges in S′ × (B0 ∪ S′)
and the last step only depends on edges in S′ × V≥φK. This completes the proof.

�

5.3. Dense process. In this section, we want to show that if the candidate
threshold pd for the dense process—as defined in (4)—exists, in other words,

(48) φH ≤ wn,

and the initial infection rate 0 ≤ p0 = p0(n) ≤ 1 satisfies

p0 	 pd,

then there exists a nucleus V≥φK
. Throughout this section, we assume that these

two conditions hold, and introduce the parameter

(49) νd := p0/pd → ∞.

Furthermore, we observe that the candidate threshold for the dense process satisfies

pdW
(5)=
(

Wr∑
u∈V≥φH

wr
u

)1/r

≥ 1,

and thus, since W = λn for some constant λ > 0, we have

(50) np0 = (W/λ)νdpd ≥ νd/λ → ∞.

The setup for the dense process is much simpler than that for the sparse process.
We use the set

(51) S := V≥φH

as breeding ground and define the weight-bound for the initial infection by

(52) φ0 := min{φH ,
√

np0}.
Similarly, as in Section 5.2, we establish some basic properties of W[B0], which

for instance guarantee that Lemma 5.5 is applicable at time t = 0.

CLAIM 5.13. Whp np0/2 ≤ W[B0] < (λ + 1)np0 and wmax[B0] = o(W[B0]).
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PROOF. In order to apply Lemma 5.3, it suffices to show that φH → ∞, since
we already showed in (50) that np0 → ∞. To do so, we observe that φH = O(1)

(over a subsequence) would imply∣∣V≥φH

∣∣ (3)≥
(

W

4φ2
H

)r

= �
(
Wr)= ω(n),

yielding a contradiction since there are only n vertices in total. Hence, Lemma 5.3
is applicable and we have whp

W[B0] L.5.3≥ np0/2 	 √
np0

(52)≥ φ0 ≥ wmax[B0],
since only vertices of weight at most φ0 are infected initially. On the other hand,
we have

Var
[
W[B0]]= ∑

u∈V<φ0

(
w2

up0 − (wup0)
2)≤ ∑

u∈V<φ0

w2
up0 ≤ φ0p0W.

Theorem 4.9 implies

P
[
W[B0] ≥ (λ + 1)np0

]≤ exp
(
− (np0)

2

3φ0p0W

)
(52)≤ exp

(−√
np0/(3λ)

) (50)= o(1),

that is, the claimed upper bound on W[B0] holds whp. �

The crucial observation for the dense process is the following consequence of
Theorem 4.6, asserting that once a substantial number of heavy vertices become
infected, all of them will be infected eventually.

LEMMA 5.14. Assume that there is a function a = a(n) such that a → ∞ for
which |B1 ∩ V≥φH

| ≥ a. Conditional on this, whp there exists a time T ≥ 1 such
that V≥φH

⊆ AT .

PROOF. Consider the random graph induced by the vertex set V≥φH
, and note

that it stochastically dominates the binomial random graph G(n′,p′), with

n′ := ∣∣V≥φH

∣∣≥ ∣∣B1 ∩ V≥φH

∣∣≥ a → ∞
and

p′ := φ2
H/W

(3)≥ ∣∣V≥φH

∣∣−1/r
/4 = (

n′)−1/r
/4.

Now we consider bootstrap process with parameter r on G(n′,p′) where the set
of initially infected vertices is B1 ∩ V≥φH

. So |B1 ∩ V≥φH
| ≥ a → ∞. Hence,

Theorem 4.6 is applicable. Since all vertices which become infected by this process
within τ ≥ 0 steps are contained in A1+τ , we obtain

P
[∃T ≥ 1 : V≥φH

⊆ AT

]→ 1,

as n′ → ∞ and the claim follows since n′ → ∞ as n → ∞. �
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Next, we show that a significant number of heavy vertices become infected whp
if either one of the following additional assumptions holds:

(λ + 1)p0wn ≤ (logνd)1/2;(53)

wn−r+1 ≤ W 1/2(logνd)1/16 ∧ φH ≤ W 1/2(logνd)−1/8.(54)

Before we make this statement precise, we perform some calculations motivat-
ing the first assumption. It allows us to distinguish the two regimes of Lemma 5.5
(which is applicable at time t = 0 by Claim 5.13): if (53) holds, then since W = λn,
for some λ ≥ 1 [cf. (2)] we have

(55) W[B0] C.5.13
< (λ + 1)p0W

(53)≤ (W/wn)(logνd)1/2,

and thus we also obtain

wmax[B0]
(52)≤ √

np0
C.5.13≤ 2W[B0]√

np0

(50)≤ 2W[B0]λ1/2

ν
1/2
d

(55)≤ 2λ1/2W(logνd)1/2

wnν
1/2
d

(49)≤ W

4wn

,

for any n large enough. This together with Claim 5.13 implies that the first asser-
tion of Lemma 5.5 holds (with ξ = νd ) for all vertices u ∈ V≥φH

(other vertices
are not considered in the restricted process), that is, we have

P[u ∈ B1 | B0] ≥ wr
uW[B0]r
r!Wr

exp(−1.9
√

logνd).

Because W[B0]/W ≥ p0/(2λ) = νdpd/(2λ), this implies

(56) P[u ∈ B1 | B0]
(49)	 wr

up
r
d

(5)= wr
u∑

v∈V≥φH
wr

v

.

On the other hand, if (53) does not hold, that is, we have (λ + 1)p0wn >

(logνd)1/2, then we obtain

W[B0] C.5.13≥ np0/2 >
W(logνd)1/2

2(λ + 1)λwn

	(W/wu)(logνd)1/4,

for any vertex u whose weight satisfies wu 	 wn(logνd)−1/4. Thus the second
assertion of Lemma 5.5 (with ξ = νd ) holds for any such vertex showing that

(57) P[u ∈ B1 | B0] ≥ 1 − o(1/
√

logνd).

Using these two observations, we prove the following result.

LEMMA 5.15. If either (53) or (54) holds, then there exists a function a =
a(n) such that a → ∞ for which whp we have |B1 ∩ V≥φH

| ≥ a.
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PROOF. The idea of this proof is to show that whp a significant number of
heavy vertices becomes infected and, therefore, by Lemma 5.14 all heavy vertices
become infected. The proof is split into two cases.

Case I. Assume that (53) holds and, therefore, also (56). Summing (56) over all
u ∈ V≥φH

we have that E[|B1 ∩ V≥φH
| | B0] 	 1. Consequently, as |B1 ∩ V≥φH

|
is the sum of independent Bernoulli random variables, the Chernoff bound (Theo-
rem 4.8) yields that whp |B1 ∩ V≥φH

| 	 1, completing Case I.
Case II. Now assume that (54) holds, but (53) does not hold which implies that

(57) holds. We consider vertices of weight at least w′ := √
W(logνd)−1/8, and

observe that by (54) all of them are heavy, that is, w′ ≥ φH . Moreover by the
assumptions of Theorem 3.1 the number of these vertices satisfies∣∣V≥w′

∣∣≥ WP[Zw ≥ w′]
wn

≥ αCW

wn−r+1w′
(54)= �

(
(logνd)1/16)→ ∞.

Now note that any such vertex u satisfies

wu ≥ w′ (54)≥ αwn(logνd)−3/16 	 wn(logνd)−1/4,

and thus by (57) it becomes infected at time t = 1 with probability at least 1 −
o(1/

√
logνd). Applying a union bound to a sufficiently small but growing number

of these vertices implies that there is a function a → ∞ such that whp∣∣B1 ∩ V≥φH

∣∣≥ ∣∣B1 ∩ V≥w′
∣∣≥ a,

completing the proof of the lemma. �

With this preparation, we will now construct a nucleus (cf. Definition 5.1) for
the dense process. We consider the candidate nucleus V≥φK

given by the weight-
bound

(58) φK :=
{
W/wn−r+1 if wn−r+1 > W 1/2(logνd)1/16,

φH if (54) holds.

Note that this does not always define a weight-bound φK ; however, we will demon-
strate in Section 5.4 that this suffices to guarantee the existence of a nucleus.

THEOREM 5.16. Under the assumptions of Theorem 3.1, suppose also that
p0 	 pd . Then whp V≥φK

as defined in (58) is a nucleus with weight-bound φK

such that φK ≤ min{wn−r+1,W/wn−r+1} and φK = o(
√

W). Moreover, the nu-
cleus is completely infected whp and no edges in G[V≤φ0] have been exposed yet.

PROOF. We start by showing that the weight-bound φK is sufficiently small.
Recall that νd → ∞ by (49). Now if φK = W/wn−r+1, then

φK = W/wn−r+1 < W 1/2(logνd)−1/16 = o(
√

W) = o(wn−r+1),
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and both conditions are satisfied. On the other hand, if φK = φH , then we have

φK = φH ≤ W 1/2(logνd)−1/8 ≤ W 1/2(logνd)−1/16 ≤ W/wn−r+1.

Furthermore, by (3) the number of heavy vertices satisfies∣∣V≥φH

∣∣≥ ( W

4φ2
H

)r

≥ 4−r (logνd)r/4 → ∞,

and thus, in particular, we also obtain

φK = φH ≤ wn−r+1.

Therefore, the weight-bound φK is sufficiently small in this case as well.
We will prove that whp all vertices of the candidate nucleus becomes infected

eventually. Again, we first assume that φK = W/wn−r+1. In this case, we start by
showing that there is a T ≥ 0 at which whp the r vertices of largest weight become
infected, that is,

(59) {n − r + 1, . . . , n} ⊆AT .

If (53) holds, then Lemma 5.15 implies in particular that the number of heavy
vertices is ω(1) and by Lemma 5.14 they all become infected by some time T ≥ 0,
hence (59) holds. On the other hand, if (53) does not hold, then (57) holds for each
of the r vertices of largest weight (since wn−r+1 = αwn, for some constant α > 0),
and thus a union bound shows that whp {n− r + 1, . . . , n} ⊆ B1 ⊆A1, that is, (59)
holds.

Now consider any vertex u ∈ V≥W/wn−r+1 and note that u is connected to each
vertex in {n − r + 1, . . . , n} with probability 1 [cf. (1)]. Consequently, we have
V≥φK

= V≥W/wn−r+1 ⊆ AT +1 implying Ŵ≥φK
= W≥φK

, in other words V≥φK
is a

nucleus.
Now suppose that φK = φH , that is, (54) holds. Then Lemmas 5.15 and 5.14

imply that whp all heavy vertices become infected eventually, and thus Ŵ≥φK
=

W≥φK
, completing the proof. �

We conclude this section by proving that if we cannot apply Theorem 5.16, then
the premises of Theorem 5.12 are met, justifying the previous case distinction.

CLAIM 5.17. Assume that we have wn−r+1 ≤ √
W(logνd)1/16 and addition-

ally φH >
√

W(logνd)−1/8. Then we have

pd(logνd)2r ≥ ps,

and in particular

p0 = ω(ps).
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PROOF. First, set w′ := √
W(logνd)−1/8 < φH and note that

(60)
∣∣V≥φH

∣∣≤ ∣∣V≥w′
∣∣ (3)
<

(
W

4(w′)2

)r

= 4−r (logνd)r/4,

and consequently

(61) pd
(5)=
(

1∑
u∈V≥φH

wr
u

)1/r

≥
(

1

|V≥φH
|wr

n

)1/r
(60)= �

(
W−1/2(logνd)−5/16),

since wn−r+1 = αwn, for some constant α > 0 by the assumptions of Theorem 3.1.
Therefore,

W≥φH

(60)≤ 4−r (logνd)r/4wn = O
(√

W(logνd)r/4(logνd)1/16)
= o

(√
W(logνd)r/2)

and thus P[Zw ≥ φH ] = o((log νd)r/2/
√

W). By Proposition 4.4, we have∑
u∈V<φH

wr+1
u ≥ rW

(∫ φH

C1

P[φH > Zw ≥ μ]μr−1 dμ

)

≥ rW

(∫ w′/(logνd)r/2

C1

(
C

μ
− o

(
(logνd)r/2

√
W

))
μr−1 dμ

)
w′=o(

√
W)= �

(
W(w′)r−1

(logνd)(r−1)r/2

)
.

Combining (61) with this, we obtain the first statement. Moreover, this then
implies

p0
(49)= νdpd ≥ νd

(logνd)2r
ps = ω(ps),

that is, the second statement holds as well. �

5.4. The existence of a nucleus: Proof of Theorem 5.2. In the preceding sec-
tions, we gave several constructions for a nucleus, and we will now demonstrate
how these results can be combined into the proof of Theorem 5.2. It is structured
in three steps: at the beginning of each step, we check whether some condition is
satisfied. If it is, then whp one of the preceding results guarantees the existence of
a nucleus; if not, we gained some information and proceed to the next step.

PROOF OF THEOREM 5.2. We intend to use the subsubsequence principle
[cf., e.g., Janson, Łuczak and Ruciński (2000)], which states that in order to show
that a certain property holds whp, it suffices to show that for every sequence of
natural numbers there exists a subsequence along which the property holds whp.
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So let N ⊆ N be an arbitrary (infinite) sequence of natural numbers satisfying the
conditions of Theorem 3.1. Then it must contain an (infinite) subsequence N0 ⊆ N

satisfying either

(62) φH > wn and p0 	 ps,

or

(63) φH ≤ wn and p0 	 min{ps,pd}.
We thus distinguish two cases.
Case I. If along N0, we have

φH > wn,

then by (62) we have p0 	 ps , and furthermore Corollary 4.5 implies ps = o(1).
Therefore, we consider the sparse process and note that Theorem 5.12 is applica-
ble, proving that whp there exists a nucleus V≥φK

. In this case, we call N0 sparse.
Case II. Assume now that φH ≤ wn along N0 and, therefore, also p0 	

min{ps,pd} by (63). Similarly as before, Corollary 4.5 provides min{ps,pd} =
o(1). We split N0 into two subsequences: let N1 = {n ∈ N0 : pd ≥ ps} and
N2 = {n ∈ N0 : pd < ps} = N0 \ N1.

If N1 is infinite, then we have

p0 	 ps

along N1. In this case, we consider the sparse process and observe that since ps =
o(1) Theorem 5.12 is applicable, proving that whp there exists a nucleus V≥φK

.
Once again, we call N0 sparse.

Otherwise, N2 must be infinite, and we have

(64) p0 	 pd

along N2. Now, if

wn−r+1 >
√

W(logνd)1/16,

along an infinite subsequence of N2, then we consider the dense process. It follows
from Theorem 5.16 that along this subsequence whp there exists a nucleus V≥φK

.
In this case, we call N0 dense.

Thus, we may assume that there exists an infinite subsequence N3 of N2 along
which we have wn−r+1 ≤ √

W(logνd)1/16. We consider two more cases. If there
exists an infinite subsequence of N3 along which we have

φH ≤ √
W(logνd)−1/8,

then we also consider the dense process and apply Theorem 5.16, thus showing
that whp there exists a nucleus V≥φK

. Again we call N0 dense.
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Therefore, we finally assume that N3 contains an infinite subsequence N4 along
which φH >

√
W(logνd)−1/8 is satisfied. But this tells us that the requirements

of Claim 5.17 are met along N4. Hence, it would imply that over N4 we also have
p0 	 ps . Thereby, Theorem 5.12 is again applicable, proving that whp there exists
a nucleus V≥φK

. In this final case, we call N0 sparse.
By the subsubsequence principle, the statement of Theorem 5.2 holds along N.

�

Inspired by the case distinction in the above proof of Theorem 5.2, we define
another partition of the set all infinite sequences of natural numbers, which we will
use in Section 6.

DEFINITION 5.18. Let Ns := {N ⊆ N : |N | = ∞ and N is sparse} and Nd :=
{N ⊆ N : |N | = ∞ and N is dense}.

6. Outbreak. In the previous section, we proved that in the supercritical
regime there exists a nucleus which gets infected almost entirely. In this section,
we show that once this happens, whp it also causes an outbreak.

THEOREM 6.1. Suppose that the premises of Theorem 3.1 hold. If p0 	 pc,
then whp there is an outbreak, that is, we have

|AF | = �(n).

Again we use the subsubsequence principle to prove Theorem 6.1. So we fix
an arbitrary infinite sequence of natural numbers N0 and show that it contains a
subsequence along which the probability of an outbreak is 1−o(1). To this end, we
use the distinction between N0 being sparse or dense provided by Definition 5.18.

In both cases, the proof is based on partitioning the vertex set V≥C1 , where the
constant C1 > 0 is the one from Theorem 3.1, into several layers, each correspond-
ing to a subinterval of [C1,∞), and then showing that the infection spreads from
layer to layer, starting from a completely or an almost completely infected nucleus.

More precisely, assume that most of the vertices in each of the, say i, heaviest
layers are infected eventually. We prove that also most of the vertices in the (i +
1)st layer must become infected eventually. Some of the details depend sensitively
on the relation of various error-terms. We begin with the definitions of these in the
next subsection.

6.1. Setup. Recall that by the assumptions of Theorem 3.1 there are constants
α > 0 and C satisfying

(65) C ≥ 64r
(
min{α,1/2})−3
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and C1 > 0 such that wn−r+1 = αwn and for any C1 ≤ x ≤ wn we have

(66) P[Zw ≥ x] ≥ C

x
.

Next, abbreviate

(67) C′ := C min{α,1/2}/2,

and use this constant to recursively define a nonincreasing sequence of layer
weight-bounds.

More specifically, we set ψ1 := min{φK,W/wn} and

(68) ψi+1 := C′

P[Zw ≥ ψi]
for any i ≥ 1 as long as

(69) ψi ≥ 2 max{C1, λ},
where λ ≥ 1 is the constant in (2). We denote the maximal such i by i∗ and observe
that for each 1 ≤ i ≤ i∗ we obtain

ψi+1 ≤ ψi

C′

C
< ψi.

This implies, in particular, that

(70) ψi+1 ≤ ψ1

(
C′

C

)i

.

Moreover, for convenience of notation we also set ψ0 := φK and note that we have

(71) ψ0 ≥ ψ1 > ψ2 > · · · > ψi∗+1 > 0.

Furthermore, recall that the weight-bound ψ0 satisfies

(72) ψ0 ≤ min{wn−r+1,W/wn−r+1} and ψ0 = o(
√

W).

If N0 is sparse, then we consider a subsequence Ns which witnesses this fact,
that is, Theorem 5.12 is applicable along Ns . In this case, we set S′ as in Section 5.2
(and recall that S ⊆ S′). On the other hand, if N0 is dense, then we consider a sub-
sequence Nd which witnesses this fact, that is, Theorem 5.16 is applicable along
Nd , and define S′ := ∅. For the remainder of this section, all asymptotic statements
will be with respect to Ns or Nd , respectively.

Then for any 1 ≤ i ≤ i∗ such that ψi < ψi−1 we call the set

(73) Si := V[ψi,ψi−1) \ S′

the ith layer, and in case ψi = ψi−1 the ith layer is the empty set. We also set
S0 := V≥φK

. We let Ki :=⋃
0≤j≤i Si be the union of the first i + 1 layers and let

W(i) := W[Ki] be its total weight.
The following claim will be useful later in our argument.
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CLAIM 6.2. For any 0 ≤ i ≤ i∗, we have

W(i) ≥ 1

4
W
[
V≥ψi

]
.

PROOF. For N0 ∈ Nd , we have S′ = ∅, whereby W(i) = W[V≥ψi
], and hence

the statement holds trivially.
So now assume N0 ∈ Ns . Recall that we consider all vertices in V to be ordered

by weight. By the definition of S′, the set Ki contains at least every other vertex
of V≥ψi

together with all vertices in V≥φK
. Therefore, for every vertex in Ki \K0

its preceding vertex could belong to S′. Thus, roughly speaking, W(i) is approxi-
mately at least half of W[V≥ψi

]. More precisely, by excluding either the last vertex
or the last two vertices of V[ψi,φK) (if the penultimate vertex is not contained in
Ki), we obtain the lower bound

W(i) ≥ 1

2

(
W
[
V≥ψi

]− 2φK

)= 1

2

(
WP[Zw ≥ ψi] − 2φK

)
,

as the excluded vertices have weight at most φK . Now, we would like to show that

WP[Zw ≥ ψi] − 2φK ≥ 1

2
WP[Zw ≥ ψi]

or, equivalently,

(74)
1

2
WP[Zw ≥ ψi] ≥ 2φK.

Recall that by (66) we have
1

2
WP[Zw ≥ ψi] ≥ 1

2

CW

ψi

.

Furthermore, (71) implies ψi ≤ φK and by Theorem 5.12 we have φK = o(
√

W).
Hence, φK = o(W/ψi) and inequality (74) follows. �

Now, for some subset U ⊂ V≥φK
, we consider the restricted process AU

t on
G[Ki∗] with initially infected set AU

0 := U . In fact, we will use either U = V≥φK

(for N0 ∈ Nd ) or U = UK (for N0 ∈Ns ).
Finally, for any i ≥ 0 we introduce two error-terms: we set

δi := 1

4

(
C′

C

)i

and εi :=
i∑

j=0

δj

and note that this implies

(75)

1

4
= ε0 ≤ ε1 ≤ · · · ≤ εi∗+1 ≤

∞∑
j=0

δj

= 1

4

∞∑
j=0

(
C′

C

)j

= 1

4
· 1

1 − C′/C

(67)≤ 1/2,
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and also, for any 1 ≤ i < i∗, the following estimate (which will be used later):

(76) δi+1ψ
−2
i

(70)≥ 1

4
ψ−2

1

(
C′

C

)3−i (67)≥ 2i−7ψ−2
1 α2.

Using these we define, for any 0 ≤ i ≤ i∗, the event

Wi := {
W
[
AU

i ∩Ki

]≥ (1 − εi)W
(i)},

that is, Wi asserts that the union of the nucleus and the first i layers got infected
almost entirely in the first i steps. Hence, the goal will be to prove that Wi∗ holds
whp. We do so inductively in Section 6.2. Depending on the total weight of a layer
(in comparison to the union of the nucleus and the previous layers) the induction
steps can be straightforward or rather complicated.

More precisely, for any 1 ≤ i ≤ i∗ we say that the ith layer has property Li if

W(i) ≥ (1 + δi)W
(i−1).

We will prove in Section 6.2 that if this property holds, then with sufficiently high
probability a large enough fraction of the total weight in the ith layer becomes
infected eventually.

6.2. Infecting large layers. First, we show that if the (i + 1)st layer has
property Li+1, then conditional on Wi the expected number of eventually in-
fected neighbours of a vertex in the ith layer is not too small. More precisely,
for 0 ≤ i < i∗ and a vertex v ∈ Si+1 we denote the number of its neighbours in
AU

i ∩Ki by

d̂(i)(v) := ∑
u∈AU

i ∩Ki

1{{u,v}∈E}.

CLAIM 6.3. Let 0 ≤ i < i∗. If Li+1 holds, then for every v ∈ Si+1 \ B0 we
have E[d̂(i)(v) | Wi] ≥ (1 − εi)C

′/4.

PROOF. Let 0 ≤ i < i∗ and let v ∈ Si+1 \ B0. Assume that the event Wi has
been realised. Observe that each one of the indicator random variables satisfies

P[1{{u,v}∈E} = 1 | Wi] = min
{
wvwu

W
,1
}

≥ min
{
ψi+1wu

W
,1
}

= ψi+1wu

W

since ψi+1 ≤ ψ1 ≤ W/wn. Thus, we have

E
[
d̂(i)(v) | Wi

]≥ ∑
u∈AU

i ∩Ki

ψi+1wu

W
= ψi+1W[AU

i ∩Ki]
W

Wi≥ (1 − εi)ψi+1W
(i)

W
.

(77)
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By Claim 6.2, we have

(78) W(i) ≥ 1

4
WP[Zw ≥ ψi].

This implies that

(79) E
[
d̂(i)(v) | Wi

]≥ (1 − εi)
1

4
ψi+1P[Zw ≥ ψi].

Now, for any i ≥ 1 the claim follows directly by plugging (68) into the right-
hand side of (79).

Thus, it remains to consider the case i = 0. First, observe that W/wn ≥ ψ0
would imply ψ1 = ψ0, and thus the first layer would be empty contradicting prop-
erty L1. Hence, we may also assume that ψ1 = W/wn, and consequently

E
[
d̂(0)(v) | W0

]≥ (1 − ε0)WP[Zw ≥ ψ0]/wn

(66)≥ (1 − ε0)
CW

ψ0wn

.

But recall that ψ0 = φK ≤ W/wn−r+1 = W/(αwn), which, in turn, implies that

E
[
d̂(0)(v) | W0

]≥ (1 − ε0)αC
(67)≥ (1 − ε0)C

′,

proving the claim also in this case, completing the proof. �

Claim 6.3 allows us to compute a suitable lower bound on the expected total
infected weight within the (i + 1)st layer. More precisely, for 0 ≤ i < i∗ and a
vertex v ∈ Si+1 we consider the random variables

X̂i,v := wv1{d̂(i)(v)≥r}

and note that these satisfy 0 ≤ X̂i,v ≤ wv . Note that

W
[
AU

i+1 ∩ Si+1
]= ∑

v∈Si+1\B0

X̂i,v + ∑
v∈Si+1∩B0

wv.

For each v ∈ Si+1 ∩ B0 we define the random variable X̂i,v = wvIv , where Iv is
the indicator random variable such that P[Iv = 1] = P[∑u∈AU

i ∩Ki
Iu,v ≥ r], where

{Iu,v}v∈Si+1,u∈Ki
is a collection of independent indicator random variables with

Iu,v = 1 with probability given by (1).
Hence, setting

X̂i+1 := ∑
v∈Si+1

X̂i,v

conditional on Wi the random variable W[AU
i+1 ∩ Si+1] stochastically dominates

X̂i+1. In the next two lemmas, we will use the stochastic domination in order to
deduce that whp W[AU

i+1 ∩ Si+1] is a significant proportion of W[Si+1].
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CLAIM 6.4. For any 0 ≤ i < i∗, we have E[X̂i+1 | Wi] ≥ (1 − ε2
i )W[Si+1].

PROOF. First, consider a vertex v ∈ Si+1\B0. Since d̂(i)(v) is a sum of inde-
pendent indicator random variables, we have

Var
[
d̂(i)(v) | Wi

]≤ E
[
d̂(i)(v) | Wi

]
.

Consequently, we obtain from Chebyshev’s inequality that

(80)

P
[
d̂(i)(v) < r | Wi

]≤ E[d̂(i)(v) | Wi]
(E[d̂(i)(v) | Wi] − r)2

C.6.3≤ 4

(1 − εi)C′
1

(1 − 4r/((1 − εi)C′))2

(75)≤ 8

C′
1

(1 − 8r/C′)2 .

Now observe that from (67) and (65) we obtain the following lower bounds:

C′ ≥ 64r
(
min{α,1/2})−2 ≥ 27r.

The second inequality implies (1 − (8r/C′))−2 ≤ 2 and also the following upper
bound on the right-hand side in (80)

16

C′ ≤ 1

8r

r≥2≤ ε2
0.

Hence, since ε0 < εi , for i > 0, we have 16
C′ ≤ ε2

i . We therefore obtain

P
[
d̂(i)(v) ≥ r | Wi

]≥ 1 − ε2
i ,

for any 0 ≤ i < i∗. The random variable
∑

u∈AU
i ∩Ki

Iu,v also satisfies Claim 6.3
and, therefore, the above argument also holds there. By summing up over all ver-
tices v ∈ Si+1, the statement follows. �

Next, we extend Claim 6.4 and show that the probability that the total infected
weight in the (i + 1)st layer is not large enough is sufficiently small.

LEMMA 6.5. For any 0 ≤ i < i∗ for which property Li+1 holds, we have

P
[
W
[
AU

i+1 ∩ Si+1
]≤ (1 − εi)W[Si+1] | Wi

]≤ exp
(−2i−6Wψ−2

1

)
.

PROOF. Let 0 ≤ i < i∗ and recall that X̂i+1 is a sum of independent ran-
dom variables X̂i,v satisfying 0 ≤ X̂i,v ≤ wv for v ∈ Si+1. Moreover, note that
Claim 6.4 implies

(1 − εi)W[Si+1] ≤ E[X̂i+1 | Wi] − εi(1 − εi)W[Si+1].
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Therefore, using the above stochastic domination and applying the Azuma–
Hoeffding inequality (Theorem 4.10) to X̂i+1 we obtain

P
[
W
[
AU

i+1 ∩ Si+1
]≤ (1 − εi)W[Si+1] | Wi

]
≤ P

[
X̂i+1 ≤ (1 − εi)W[Si+1] | Wi

]≤ exp
(
−ε2

i (1 − εi)
2

2

W[Si+1]2∑
u∈Si+1

w2
u

)
.

(81)

We proceed by bounding the argument of the exponential function on the right-
hand side from below by splitting it into three factors. First, note that we have

W[Si+1]∑
u∈Si+1

w2
u

≥ ψ−1
i

and also

W[Si+1] = W(i+1) − W(i)
Li+1≥ δi+1W

(i)
C.6.2,(66)≥ δi+1

4
ψ−1

i CW.

Multiplying these two factors we obtain

(82)
W[Si+1]2∑

u∈Si+1
w2

u

≥ δi+1

4
ψ−2

i CW
(76)≥ 2i−9ψ−2

1 CWα2 ≥ 2i+1ψ−2
1 Wα2,

because C ≥ 210 by (65). Consequently, it remains to bound the last factor

ε2
i (1 − εi)

2/2
(75)≥ 2−7,

and since W[AU
i+1 ∩ Si+1] ≥ X̂i+1 this yields

P
[
W
[
AU

i+1 ∩ Si+1
]≤ (1 − εi)W[Si+1] | Wi

] (81),(82)≤ exp
(−2i−6α2Wψ−2

1

)
,

as desired. �

We will use the above construction to show inductively the following.

LEMMA 6.6. If U ⊆ V≥φK
satisfies

(83) W[U ] ≥ (1 − o(1)
)
W≥ψ0,

then Wi∗ holds whp.

PROOF. We proceed by induction on i and show that Wi holds for all 0 ≤ i ≤
i∗ with sufficiently high probability. The statement for the base case i = 0 holds
since V≥φK

is a nucleus, and thus W0 holds (with probability 1) by (83).
So now assume that 0 ≤ i < i∗ and Wi holds. Additionally, suppose that

W(i+1) < (1 + δi+1)W
(i),
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that is, the property Li+1 does not hold. Then deterministically we have

W
[
AU

i+1 ∩Ki+1
] (71)≥ W

[
AU

i ∩Ki

]Wi≥ (1 − εi)W
(i) ¬Li+1

>
1 − εi

1 + δi+1
W(i+1)

> (1 − εi+1)W
(i+1),

implying Wi+1.
Otherwise, property Li+1 holds, and so Lemma 6.5 is applicable, showing that

W
[
AU

i+1 ∩ Si+1
]
> (1 − εi)W[Si+1]

with (conditional) probability at least 1− exp(−2i−6α2Wψ−2
1 ). However, this im-

plies

W
[
AU

i+1 ∩Ki+1
]= W

[
AU

i+1 ∩ Si+1
]+ W

[
AU

i ∩Ki

]
> (1 − εi)

(
W[Si+1] + W(i))

≥ (1 − εi+1)W
(i+1),

and Wi+1 follows since εi+1 ≥ εi .
Therefore, Wi∗ holds with probability at least

(
1 − o(1)

) i∗−1∏
i=0

(
1 − exp

(−2i−6α2Wψ−2
1

))≥ 1 − o(1) −
∞∑
i=1

exp
(−Wψ−2

1 2i−6α2),
by a union bound. Because ψ1 ≤ ψ0 = φK = o(

√
W), by (72), the right-hand side

is 1 − o(1), that is, whp we have W[AU
i∗ ∩Ki∗] ≥ (1 − εi∗)W(i∗). �

REMARK 6.7. Observe that in the proofs of Claims 6.3 and 6.4 and Lemmas
6.5 and 6.6 we only exposed edge-indicator random variables corresponding to
edges in the set Ki∗ ×⋃i∗

i=1(Si \B0).

Now, observe that we have the (deterministic) lower bound

(84)

1

2
W(i∗) C.6.2≥ 1

8
W
[
V≥ψi∗

]= W

8
P[Zw ≥ ψi∗] = W

8

C′

ψi∗+1

(68)≥ C′W
16 max{C1, λ} .

In other words, we have already proven that the total weight of all eventually in-
fected vertices is at least a constant fraction of the total weight W . It remains to
show that this guarantees that whp a constant fraction of all vertices become in-
fected eventually, that is, there is an outbreak.
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6.3. Witnessing the outbreak. To witness the outbreak, we consider the ver-
tices in V<ψi∗ \B0 of which there are at least

n − ∣∣V≥ψi∗
∣∣− |B0| ≥ n − W

ψi∗
− o(n)

(69),(2)≥
(

1 − λ

2 max{C1, λ,1} − o(1)

)
n

≥ 1

3
n.

(85)

For any vertex u ∈ V<ψi∗ \B0, we will consider the random variables

Ŷu := 1{d̂(i∗)(u)≥r}
and denote their sum by

(86) Ŷ := ∑
u∈V<ψi∗ \B0

Ŷu.

LEMMA 6.8. There exists a constant γ > 0 such that for any U ⊆ V≥φK
sat-

isfying (83) and such that {n − r + 1, . . . , n} ⊆ U , conditional on Wi∗ , whp we
have

Ŷ > γ n.

PROOF. As the Ŷus are independent, we will deduce this by applying the Cher-
noff bound (Theorem 4.8).

First of all, observe that if we replace u by a vertex u0 of weight wu0 := 1 ≤ wu,
then we have

(87) P[Ŷu = 1 | Wi∗] ≥ P
[
d̂(i∗)(u) ≥ r | Wi∗

]≥ P
[
d̂(i∗)(u0) = r | Wi∗

]
.

Because wu0 = 1 and also

(88) wn

(85),w1≥1≤ W − n/3
(2)= (

1 − 1/(3λ)
)
W,

we can drop the minimum in (1), and thus the above probability can be computed
as

P
[
d̂(i∗)(u0) = r | Wi∗

]= ∑
R∈(AU

i∗∩Ki∗
r )

∏
v∈R

wv

W

∏
v′∈(AU

i∗∩Ki∗ )\R

(
1 − w′

v

W

)
.(89)

Because 1 − x ≥ exp(−x/(1 − x)), for any x < 1, for the innermost product we
obtain

(90)

∏
v′∈(AU

i∗∩Ki∗ )\R

(
1 − wv′

W

)
≥ exp

(
−
∑

v′∈Ki∗ wv′

W(1 − wn

W
)

)

≥ exp
(
−1
/(

1 − wn

W

))
(88)≥ exp(−3λ),
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independently of u. Moreover, we have

(91)
∑

R∈(AU
i∗∩Ki∗

r )

∏
v∈R

wv ≥
((
AU

i∗ ∩Ki∗
)r − (AU

i∗ ∩Ki∗
)r−2 ∑

v∈AU
i∗∩Ki∗

w2
v

)/
r!

since the sum on the left-hand side ranges only over monomials corresponding to
r distinct vertices. Furthermore, we have

(92)
∑

v∈AU
i∗∩Ki∗

w2
v ≤ wnW

[
AU

i∗ ∩Ki∗
]
,

and thus in order for the right-hand side of (89) to be at least a (small) positive
constant, it suffices to show that

(93) wn ≤ (1 − η)W
[
AU

i∗ ∩Ki∗
]
,

for η := 1 − 1/(1 + (r − 1)α) (and note that 0 < η < 1).
We distinguish two cases, first assume that

W(0) − W
[{n − r + 1, . . . , n}]< wn−r+1/2.

Then we observe that wn−r+1 ≥ ψ0 ≥ ψi∗ by (71) and (72). Since wn ≥ · · · ≥
wn−r+1 ≥ ψ0 and the r vertices of largest weight are infected, that is, {n − r +
1, . . . , n} ⊆ U , we obtain

W
[
AU

i∗ ∩Ki∗
]≥ W[U ] ≥ W

[{n − r + 1, . . . , n}]≥ (1 + (r − 1)α
)
wn,

implying (93).
Otherwise, we have

W(0) ≥ W
[{n − r + 1, . . . , n}]+ wn−r+1/2 ≥ (1 + (r − 1/2)α

)
wn,

and (83) implies

W
[
AU

i∗ ∩Ki∗
]≥ W[U ] ≥ (1 − o(1)

)(
1 + (r − 1/2)α

)
wn ≥ (1 + (r − 1)α

)
wn,

for any sufficiently large n. Hence, (93) also holds in this case.
Combining the bounds (90), (91), (92) and (93), it follows from (87) and (89)

that

P[Ŷu = 1 | Wi∗] ≥ exp(−3λ)η
(W[AU

i∗ ∩Ki∗])r
r!Wr

(84)≥ exp(−3λ)η

(
C′

16 max{C1, λ}
)r/

r!,
where we define the right-hand side to be 4γ , which is positive and independent
of U . Thus, by (85) and (86) we have

4γ n

3
≤ E[Ŷ | Wi∗] ≤ n,
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and hence applying the Chernoff bound (Theorem 4.8) on Ŷ yields

P[Ŷ ≤ γ n | Wi∗] ≤ exp
(
−(γ n/3)2

2n

)
= o(1). �

REMARK 6.9. Observe that in the proof of Lemma 6.8 we only exposed edge-
indicator random variables corresponding to edges in (V<ψi∗ \B0) ×Ki∗ .

Now we combine the above two lemmas and prove Theorem 6.1

PROOF OF THEOREM 6.1. Let Ed be the event of Theorem 5.16, and Es denote
the event of Theorem 5.12. For a given set U ⊆ V≥φK

satisfying (83), let EU be
the event that the random variable Ŷ > γ n, where γ > 0 is as in Lemma 6.8. Now
Lemmas 6.6 and 6.8 imply that if U satisfies (83) and {n− r +1, . . . , n} ⊆ U , then
P[EU ] = 1 − o(1).

Recall that we are aiming to use the subsubsequence principle. Hence, consider
an infinite sequence N0 ⊆ N.

If N0 ∈ Nd , then whp (over a subsequence of N0) the event Ed is realised,
that is, we have complete infection of the nucleus V≥φK

. Using U = V≥φK
and

{wn−r+1, . . . ,wn} ⊆ U , a union bound implies

P[Ed ∩ EV≥φK
] = 1 − o(1).

The definition of Ŷ implies that if the event Ed ∩EV≥φK
is realised, then every vertex

contributing to Ŷ will eventually be infected, and thus we have |AF | ≥ Ŷ > γ n, in
other words, there is an outbreak.

On the other hand, let N0 ∈ Ns . Then whp (over a subsequence of N0) the event
Es is realised, that is, we have shown almost complete infection of the nucleus
V≥φK

through the breeding ground S ⊆ S′. Let UK ⊆ V≥φK
be the random subset

of V≥φK
as in Theorem 5.12.

Next, we observe that the sets B0 ∪S′ ∪K0 and (
⋃i∗

i=1 Si )∪V<ψi∗)\B0 are dis-
joint. Moreover, note that {UK = U} depends only on edges in S′ × (B0 ∪S′ ∪K0),
whereas EU depends on edges in Ki∗ × ((

⋃i∗
i=1 Si ) ∪ V<ψi∗) \ B0) (cf. Remarks

6.7 and 6.9). Therefore, the two events are independent. Thus, we have

P[Es ∩ EUK
] ≥ ∑

U⊆V≥φK
:

W[U ]≥ 1
2 W≥ψ0

P
[
EU ∩ {UK = U}]

= ∑
U⊆V≥φK

:
W[U ]≥ 1

2 W≥ψ0

P[EU ]P[UK = U ]

= (
1 − o(1)

) ∑
U⊆V≥φK

:
W[U ]≥ 1

2 W≥ψ0

P[UK = U ] = 1 − o(1).
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Similar to the previous case, if the event Es ∩ EUK
is realised, then every vertex

contributing to Ŷ will eventually be infected, and thus |AF | ≥ Ŷ > γ n, that is,
there is an outbreak completing the proof of Theorem 6.1. �

7. Subcritical regime: No linear outbreak. The goal of this section is to
show that in the subcritical regime whp there is no outbreak.

THEOREM 7.1. Under the assumptions of Theorem 3.1, if additionally either

φH ≤ wn and p0 � min{ps,pd}
or

φH > wn and p0 � ps,

then there is no outbreak, that is, whp we have

|AF | = o(n).

We will use the parameter

(94) μ :=
{

min{ps,pd}/p0 if φH ≤ wn,

ps/p0 if φH > wn.

Since we consider the subcritical regime, we have

(95) μ → ∞.

Instead of tracking the infection process, we relate it to a branching process,
motivated by the following observation: if vertex v becomes infected at time t > 0
it must have at least one neighbour u which became infected at time t −1; actually
one can show that typically it has exactly one such neighbour. Hence, we may
consider the vertex v a child of this unique neighbour u (and in case there are
several, choose the smallest among them). Then for each vertex the number of its
children is a random variable, however, they may have different distributions and
be dependent on each other.

We will show that the condition on p0 implies that this process is subcritical and
whp it dies out quickly, thereby proving that the total infected population remains
small.

Some of these arguments require us to work on the subgraph spanned by all non-
heavy vertices, and then argue separately for the heavy vertices. We will show that
whp no heavy vertex becomes infected during the process, and thus the relevant
part of the proof is to analyse the behaviour of bootstrap process on the subgraph
spanned by the nonheavy vertices.

We run the bootstrap process on G[V<φH
] in the usual way (cf. Section 2.2)

and we denote the set of vertices that have become infected by time t ≥ 0 by
C̊t ⊆ V<φH

. Let C̊F denote the set of infected vertices at the end of the process.
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7.1. A branching process approximation. In this section, we will prove that
the total infected weight of the C̊-process will not be significantly larger than the
total weight of the initially infected vertices.

LEMMA 7.2. Whp we have W[C̊F ] = o(μWp0).

We will prove this lemma by coupling the evolution of the bootstrap process
with a stochastic process that is reminiscent of a branching process, where the
offspring distribution depends on the current state.

For t ≥ 0, let It := C̊t \ C̊t−1 denote the set of vertices that belong to the t th
generation and let It = W[It ]. In other words, the set It consists of the vertices
that become infected in step t . Thus, I0 = C̊0 and C̊t =⋃t

s=0 Is .
Now, let us condition on C̊t−1. For every vertex y ∈ It−1, following the ordering

of the vertices, we expose its neighbours in V<φH
\ C̊t−1. For every v ∈ V<φH

\ C̊t−1

adjacent to y, we expose whether or not there are at least r −1 other edges between
v and C̊t−1. If this is the case, then we include v into It and, in particular, we
include the vertex v among the offspring of y – we write v ∈ Xy , where Xy denotes
the set of offspring of y. This leads to a partition of It into sets Xy of children for
y ∈ It−1, that is, we have

It = ⋃̇
y∈C̊t−1\C̊t−2

Xy.

Using the FKG inequality (Theorem 4.7), we will show the following lemma,
which bounds the probability that v ∈ Xy .

LEMMA 7.3. For any t ≥ 0, let v ∈ V≤φH
\ C̊t−1. We have

P[v ∈ Xy | C̊t−1] ≤ wyW[C̊t−1]r−1
(

wv

W

)r

.

PROOF. We will condition on a realisation of C̊t−1. Consider the conditional
space where Ii = Si , for i = 0, . . . , t − 1 and v /∈⋃t−1

i=0 Si = C̊t−1. In order for the
event v ∈Xy to hold, we need the following three conditions to hold:

(i) y is a neighbour of v;
(ii) v has r − 1 additional infected neighbours;

(iii) there exists no z ∈ C̊t−1\C̊t−2 with z < y such that v ∈ Xz.

We write D(v) for the event that
∑t−2

j=0 dSj
(v) < r , where dSj

(v) is the degree of v

in Sj . So, if we ignore the third condition, the conditional probability of the event
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v ∈Xy can be bounded as

P

[
v ∈Xy

∣∣∣∣ t−1⋂
i=0

{Ii = Si}
]

≤ P

[
{y, v} ∈ E,∃y1, . . . , yr−1 ∈

t−1⋃
i=0

Si :
r−1⋂
i=0

{{yi, v} ∈ E
} ∣∣∣∣D(v),�

]
,

where � is some event which does not depend on edges incident to v. Thus, we
can omit � from the conditioning.

We bound the latter probability from above using the FKG inequality (Theo-
rem 4.7). Note that the event {y, v} ∈ E,∃y1, . . . , yr−1 ∈⋃t−1

i=0 Si :⋂t−1
i=0{{yi, v} ∈

E is nondecreasing, whereas the event D(v) is nonincreasing. Therefore, Theo-
rem 4.7 implies that

P

[
{y, v} ∈ E,∃y1, . . . , yr−1 ∈

t−1⋃
i=0

Si :
r−1⋂
i=0

{{yi, v} ∈ E
} ∣∣∣∣D(v)

]

≤ P

[
{y, v} ∈ E,∃y1, . . . , yr−1 ∈

t−1⋃
i=0

Si :
r−1⋂
i=0

{{yi, v} ∈ E
}]

≤ wyw
r
v

(
t−1∑
i=0

W[Si]
)r−1(

1

W

)r

.

In other words, we have

P

[
v ∈Xy

∣∣∣∣ t−1⋂
i=0

{Ii = Si}
]

≤ wy

(
t−1∑
i=0

W[Si]
)r−1(

wv

W

)r

and the lemma follows. �

PROOF OF LEMMA 7.2. We now provide a stochastic upper bound on It using
a process that is very similar to a branching process except the offspring distribu-
tion depends on the history of the process. Moreover, the number of offspring of
each individual in each generation are not independent.

Consider the family of Bernoulli random variables Iy,v(t), where y ∈ It−1
and v is any vertex, which satisfies Iy,v(t) = 1 if and only if v ∈ Xy . Hence, by
Lemma 7.3

E
[
Iy,v(t) | C̊t−1

]≤ wyW[C̊t−1]r−1
(

wv

W

)r

.

Given C̊t−1, we write

It = ∑
y∈It−1

∑
v∈V<φH

\C̊t−1

Iy,v(t)wv.
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This implies that

E[It | C̊t−1] ≤ It−1W[C̊t−1]r−1
W−r

∑
v∈V<φH

wr+1
v .(96)

Now, we introduce the stopping time T which is the first step t where either It = 0
or W[C̊t ] > μ1/2Wp0. Note that T < μ1/2Wp0, since if It > 0, then in fact It ≥ 1.

Now, let Î (t) be equal to It , if t ≤ T and equal to 0 otherwise. In other words,
Î (t) = It1{t≤T }. Let

χ(t) := W[C̊t−1]r−1
W−r

∑
v∈V<φH

wr+1
v .

If t ≤ T , then

(97) χ(t) ≤ (μ1/2Wp0
)r−1

W−r
∑

v∈V<φH

wr+1
v =: χ̂ ,

and furthermore this implies

(98) E
[
Î (t) | C̊t−1

]≤ χ̂ Î (t − 1).

Next, we show that

(99) χ̂ ≤ μ−1/2.

Indeed, since p0 ≤ μ−1ps we have that

(Wp0)
r−1 ≤ μ−(r−1)Wr−1pr−1

s

= μ−(r−1)Wr−1 W∑
v∈V<φH

wr+1
v

= μ−(r−1) Wr∑
v∈V<φH

wr+1
v

.

This together with (97) imply

χ̂ ≤ μ−(r−1)/2,

and (99) follows since r ≥ 2.
Therefore, taking expectations on both sides of (98) we deduce that

E
[
Î (t)

]≤ χ̂E
[
Î (t − 1)

]
.

Repeating this inequality, we obtain

E
[
Î (t)

]≤ χ̂ tE
[
Î (0)

]= χ̂ tE
[
W[C̊0]].

Note that E[W[C̊0]] ≤ Wp0, and thus

E
[
Î (t)

]≤ χ̂ tWp0,
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implying

(100) E
[
W[C̊T ]]= E

[
T∑

t=0

Î (t)

]
≤
(

T∑
t=0

χ̂ t

)
Wp0 ≤ 1

1 − χ̂
Wp0.

Now, let B be the event
∑T

t=0 Î (t) ≥ μ1/2Wp0. We have

E

[
1{B}

T∑
t=0

Î (t)

]
≥ μ1/2Wp0E[1{B}].

This together with (100) imply that

E[1{B}] = O
(
μ−1/2)= o(1).

Therefore, Markov’s inequality implies that whp the process stops before the total
weight of the infected vertices reaches μ1/2Wp0, as desired. �

7.2. No outbreak: Proof of Theorem 7.1. Now we consider the process on the
whole vertex set V . Until this point, we showed that if we restrict ourselves to the
nonheavy vertices, then no linear outbreak occurs. We now have to take care of the
heavy vertices. The first observation is that initially whp none of them are infected.

CLAIM 7.4. Whp A0 ∩ V≥φH
= ∅.

PROOF. In the case φH > wn, there is nothing to prove, hence assume φH ≤
wn. Recall that in this case pd is well defined and by its definition (5) we have

(101) p−r
d = ∑

u∈V≥φH

wr
u ≥ ∣∣V≥φH

∣∣φr
H

(3)≥
(

W

4φH

)r

.

Thus, since |V≥φH
| ≤ W/φH , we obtain

E
[∣∣A0 ∩ V≥φH

∣∣]= ∣∣V≥φH

∣∣p0
(94)≤ pdW

μφH

(101)≤ 4

μ

(95)= o(1).

Therefore, the claim follows from Markov’s inequality. �

PROOF OF THEOREM 7.1. Now we consider the unrestricted process as de-
scribed in Section 2.2, but starting with A′

0 := C̊F as the initial set of infected
vertices. This defines a sequence of sets A′

τ for τ ≥ 0 and a final set A′
F . Now

Claim 7.4 implies that whp A0 ⊆ C̊F = A′
0, and thus

(102) AF ⊆ A′
F .

Lemma 7.2 implies that whp the total weight of C̊F satisfies

W
[
A′

0
]= W[C̊F ] = o(μWp0).(103)
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Moreover, this shows that C̊F contains only few vertices

(104)
∣∣A′

0
∣∣≤ W

[
A′

0
]
/w1

w1≥1,(94),Cor.4.5= o(W)
(2)= o(n).

The last step is to show that whp

(105) A′
1 = A′

0,

because due to (102) and (104) this will imply

|AF | ≤ ∣∣A′
F

∣∣= ∣∣A′
0
∣∣= o(n).

It remains to prove (105). In other words, we have to show that whp in the next
step none of the heavy vertices become infected. Once again, in case φH > wn

there is nothing to be shown, so assume φH ≤ wn. For any vertex v ∈ V≥φH
we

have

P
[
v ∈ A′

1 | A′
0
] L.5.4≤ wr

vW[A′
0]r

r!Wr

and note that only heavy vertices can become infected in this step. Thus, summing
over all heavy vertices and using (103), we obtain

E
[
A′

1 \A′
0 | A′

0
]= o

(
(μp0)

r
∑

v∈V≥φH

wr
v

)
.

Moreover, we have

μp0
(94)≤ pd

(5)= 1∑
u∈V≥φH

wr
u

,

implying

E
[
A′

1 \A′
0 | A′

0
]= o(1).

Therefore, Markov’s inequality implies that whp (105) holds, and as argued previ-
ously this completes the proof of Theorem 7.1. �

8. Proof of main results.

8.1. Proof of Theorem 3.1. Theorem 3.1 follows directly from Theorems 5.2
and 6.1.

8.2. Proof of Theorem 3.2. Recall that the assumption on the weight sequence
in Theorem 3.2 is that there exist constants c < 1/30, c1 and a function h = ω(1)

such that for c1 ≤ f ≤ h we have P[Zw ≥ f ] ≤ c/f .
For the remainder of the section, assume that p0 ≥ h−1 and p0 = ω(W−1/2).

Clearly, if whp there is no outbreak for such a p0, then this is the case for any
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p0 = o(1). Moreover, note that if there is no linear outbreak for r = 2, then there
is no linear outbreak for r > 2. So we may restrict ourselves to the r = 2 case.

We aim to apply the branching process argument from Section 7 here as well.
Similarly, as before we could construct the branching process, but unlike the pre-
vious case the typical vertex would have multiple parents during the early stages
of the process. We use Theorem 4.9 instead to track the total weight of the infected
vertices during the early stages of the process. After a point, due to the rapid de-
crease in the sum of the weight of the vertices which become infected in a given
step, a typical vertex which becomes infected in step t −1 has on average less than
one child in the next generation (in the sense we discussed in Section 7), giving
rise to a subcritical process which dies out quickly. In turn, this implies that the
bootstrap process stops quickly.

We modify the initial step of the process slightly which leads to a stochastic
upper bound: in the initial step, we infect every vertex with weight at least p−1

0
and in addition we infect every vertex with weight less than p−1

0 with probability
p0 independently. We denote this set by Ã0. More generally, for any t ≥ 0 we let
Ãt be the set of infected vertices after the t th step. As usual, we set Ã−1 := ∅.

Let

κk := W−1
∑

v∈V
<p

−1
0

wk+1
v .

Using Proposition 4.4, we bound κk from above by

(106)

κk ≤ k

∫ p−1
0

0
μk−1P[Zw ≥ μ]dμ

≤ k

∫ p−1
0

c1

μk−1P[Zw ≥ μ]dμ + k

∫ c1

0
μk−1 dμ

≤
⎧⎨⎩c ln

(
p−1

0

)+ c1, k = 1,

c
k

k − 1
p−k+1

0 + ck
1, k ≥ 2.

LEMMA 8.1. Whp W[Ã0] ≤ (1 + 2c)Wp0.

PROOF. Since p−1
0 ≤ h and p−1

0 → ∞, we have
∑

u∈V≥p
−1
0

wu ≤ cW/p−1
0 =

cWp0. Clearly, E[W[Ã0 ∩ V
<p−1

0
]] ≤ Wp0. Theorem 4.9 implies that for large n

we have

P
[
W
[
Ã0 ∩ V

<p−1
0

]≥ Wp0 + cWp0
]

≤ exp
(
− (cWp0)

2

2(
∑

u∈V≤p
−1
0

w2
up0 + p−1

0 cWp0/3)

)
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(106)≤ exp
(
− (cWp0)

2

2(c(1 + o(1))Wp0 lnp−1
0 + p−1

0 cWp0/3)

)

≤ exp
(
−(cWp0)

2

cW

)
≤ exp

(−cWp2
0
)= o(1),

because p2
0 = ω(W−1). �

LEMMA 8.2. If v /∈ Ãt , then

P[v ∈ Ãt+1 | Ãt , Ãt−1] ≤ w2
v

W 2

W[Ãt ]2 − W[Ãt−1]2

2
.

PROOF. Given a vertex v, in order for v to become infected at step t + 1 it
must neighbour at least 2 vertices in Ãt and at least one of these vertices must be
contained in Ãt \ Ãt−1. For a set of vertices U , let EU be the event that for every
u ∈ U we have that the pair (u, v) is an edge. If v /∈ Ãt , then we have

P[v ∈ Ãt+1 | Ãt , Ãt−1] ≤
2∑

k=1

∑
U∈(Ãt \Ãt−1

k )

∑
U ′∈(Ãt−1

2−k )

P[EU,EU ′ | Ãt , Ãt−1].

The event EU is independent of EU ′ , Ãt , Ãt−1, because it depends on edges that
have not been exposed up to time t . Now, the event EU ′ is nondecreasing, whereas
Ãt , Ãt−1’s only connection to EU ′ is the event that v has at most one neighbour
in At−1. But the latter is a nonincreasing event. Hence, the FKG inequality (The-
orem 4.7) implies that P[EU ′ | Ãt , Ãt−1] ≤ P[EU ′ ]. Thus, we have

P[EU,EU ′ | Ãt , Ãt−1] ≤ P[EU ]P[EU ′ ] = w2
v

W 2

∏
u∈U

wu

∏
u′∈U ′

wu′ .

Therefore,

P[v ∈ Ãt+1 | Ãt , Ãt−1] ≤
2∑

k=1

∑
U∈(Ãt \Ãt−1

k )

∑
U ′∈(Ãt−1

2−k )

w2
v

W 2

∏
u∈U

wu

∏
u′∈U ′

wu′

≤ w2
v

W 2

2∑
k=1

W[Ãt \ Ãt−1]k
k!

W[Ãt−1]2−k

(2 − k)!

= w2
v

W 2

W[Ãt ]2 − W[Ãt−1]2

2
,

where the last equality follows, by writing W[Ãt ] = W[Ãt \ Ãt−1] + W[Ãt−1].
�
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Since c < 1/30, we have that 3c(1 + 2c) < 1/8. Set β = 1/4 and note that

(107) (1 − 2β)β = 1/8 > 3c(1 + 2c).

LEMMA 8.3. Assume that W[Ãτ \ Ãτ−1] ≤ (1 + 2c)(2β)τWp0 for every
τ ≤ t . Conditional on Ãt , Ãt−1, with probability at least

1 − exp
(
−β(2β)t (1 + 2c)Wp2

0

3

)
,

we have

W[Ãt+1 \ Ãt ] ≤ (2β)t+1(1 + 2c)Wp0.

PROOF. From Lemma 8.2, we have

E
[
W[Ãt+1 \ Ãt ] | Ãt , Ãt−1

]≤ ∑
v∈V

<p
−1
0

w3
v

W 2

W[Ãt ]2 − W[Ãt−1]2

2
.

Clearly, for n sufficiently large, by (106) we have∑
v∈V

<p
−1
0

w3
v ≤ (1 + o(1)

)
2cWp−1

0

and thus

E
[
W[Ãt+1 \ Ãt ] | Ãt , Ãt−1

]≤ (1 + o(1)
)
2c(Wp0)

−1 W[Ãt ]2 − W[Ãt−1]2

2

≤ (1 + o(1)
)
2c(Wp0)

−1(W[Ãt ] − W[Ãt−1])W[Ãt ],
because W[Ãt−1] + W[Ãt ] ≤ 2W[Ãt ].

From the assumptions, we have

E
[
W[Ãt+1 \ Ãt ] | Ãt , Ãt−1

]
≤ (1 + o(1)

)
2c(Wp0)

−1(W[Ãt ] − W[Ãt−1])W[Ãt ]
Ã−1=∅= (

1 + o(1)
)
2c(Wp0)

−1(W[Ãt ] − W[Ãt−1]) t∑
τ=0

W[Ãτ \ Ãτ−1]

≤ (1 + o(1)
)
2c(Wp0)

−1(W[Ãt ] − W[Ãt−1])
(
(1 + 2c)Wp0

t∑
τ=0

(2β)τ

)

≤ (W[Ãt ] − W[Ãt−1])3c(1 + 2c)/(1 − 2β)

(107)≤ β
(
W[Ãt ] − W[Ãt−1])

≤ β(2β)t (1 + 2c)Wp0.
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A similar argument provides

Var
[
W[Ãt+1 \ Ãt ]]≤ ∑

v∈V
<p

−1
0

w4
v

W 2

W[Ãt ]2 − W[Ãt−1]2

2
≤ β(2β)t (1 + 2c)W.

Now all we have to show is concentration. We will use Theorem 4.9 for
the sum of the weighted Bernoulli-distributed random variables, which gives
W[Ãt+1 \ Ãt ]. Each summand is bounded from above by p−1

0 . Hence, we can
take M = p−1

0 in Theorem 4.9 and deduce that

P
[
W[Ãt+1 \ Ãt ] ≥ (2β)t+1(1 + 2c)Wp0 | Ãt , Ãt−1

]
≤ exp

(
− (β(2β)t (1 + 2c)Wp0)

2

2(β(2β)t (1 + 2c)W + p−1
0 β(2β)t (1 + 2c)Wp0/3)

)

≤ exp
(
−(β(2β)t (1 + 2c)Wp0)

2

3β(2β)t (1 + 2c)W

)

≤ exp
(
−β(2β)t (1 + 2c)Wp2

0

3

)
. �

PROOF OF THEOREM 3.2. Fix a function T := T (n) satisfying T → ∞, but
(2β)T Wp2

0 = ω(1). Note that such a function exists, because Wp2
0 = ω(1). Let

E denote the event W[ÃT −1] ≤ (1 + 2c)Wp0/(1 − 2β) and W[ÃT \ ÃT −1] =
o(Wp0).

Now, by Lemma 8.3, with probability

1 − O

(
exp

(
−β(2β)T (1 + 2c)Wp2

0

3

))
= 1 − o(1)

we have W[Ãτ \ Ãτ−1] ≤ (2β)τ (1 + 2c)Wp0 for every τ ≤ T , and thus E holds
whp as well. From this point on, we will condition on the event E .

We will give a stochastic upper bound on the evolution of the bootstrap process
after step T , using the branching process framework we introduced in Section 7.

Recall that Xv denotes the children of v. Consider the family of Bernoulli
random variables Iv,u(t), where v ∈ It−1 and u is any vertex, which satisfies
Iv,u(t) = 1 if and only if u ∈ Xv .

Following the steps of Lemma 7.3, one can show that

P[u ∈Xv | Ãt−1,E] ≤ wvW[Ãt−1]
(

wu

W

)2
.

Hence,

E
[
Iv,u(t) | Ãt−1,E

]≤ wvW[Ãt−1]
(

wu

W

)2
.
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Let S be the stopping time which is the first step t after T where either Ãt =
Ãt−1 or W[Ãt ] > 4Wp0. In other words, S is the first time where either the process
dies out or the total weight of the set Ãt exceeds 4Wp0.

Denote by Iv(t) the total weight of the offspring of v, that is,

Iv(t) = ∑
u∈V

<p
−1
0

\Ãt−1

Iv,u(t)wu.

Now, we show that if t ≤ S, then provided that c is small enough, the expected
value of Iv(t) is smaller than 1. We have conditional on E

E
[
Iv(t) | Ãt−1

]≤ wv

W[Ãt−1]
W 2

∑
u∈V

<p
−1
0

w3
u

(106)≤ 3wvcW[Ãt−1](Wp0)
−1.

Now, as long as t ≤ S, we have W[Ãt−1] ≤ 4Wp0. We deduce that

E
[
Iv(t)1{t≤S} | Ãt−1,E

]≤ 12cwv.

Set z = 12c. Since 12c < 1 (from our assumption that c < 1/30), we have z < 1,
for any n sufficiently large. Denote by I (t) the total weight of the vertices in the
t th generation. Then this is equal to the sum of the random variables Iv(t) over all
v which belong to the (t − 1)th generation. Therefore, we have

E
[
I (t)1{t≤S} | Ãt−1,E

]≤ zI (t − 1)1{t≤S}.

Now, we set Î (t) = I (t)1{t≤S}. Taking expectations on both sides of the above
inequality implies that for t > T

E
[
Î (t) | E]≤ zE

[
Î (t − 1) | E]≤ · · · ≤ zt−TE

[
Î (T ) | E].

The random variable

XS =
∞∑

t=T

Î (t)

is the total progeny (but without the first T generations) until the stopping time S.
We deduce that

E[XS | E] ≤ E
[
Î (T ) | E] ∞∑

t=T

zt−T = 1

1 − z
E
[
Î (T ) | E]= o(Wp0),

as Î (T ) ≤ I (T ) = W[ÃT \ ÃT −1] = o(Wp0) when E holds.
Markov’s inequality implies P[XS > Wp0 | E] = o(1). Recall that E also im-

plies that W[ÃT −1] ≤ 3Wp0. The result follows as E holds whp. �
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9. Concluding remarks. To sum up, we have considered the evolution of the
classical bootstrap percolation processes on a general class of inhomogeneous ran-
dom graphs, which is known as the Chung–Lu model. In this model, the vertices
are equipped with positive weights and each potential edge is present with proba-
bility proportional to the product of the weights. Essentially, the typical properties
of the resulting random graph are determined by the sequence of the weights and
its asymptotic properties.

We gave an approximate characterisation of those weight sequences for which
the evolution of a bootstrap process exhibits a critical phenomenon. This is con-
nected to the existence of a critical density of the initial set of infected vertices
such that when the initial density crosses this value then an outbreak occurs whp
even if the initial set is small. Our main finding has to do with the existence of
constants c and C such that if P[Zw ≥ f ] < c/f , then no such critical value exists
whereas if P[Zw ≥ f ] > C/f , then it does exist.

The results we have shown assume that W = λn and the minimum weight is
at least 1. However, the results also hold under the more general assumption that
W = (1 + o(1))λn and the minimal weight is bounded away from 0. However,
if we remove the condition that the minimum weight is at least 1, then the lower
bound on C in Theorem 3.1 should also depend on this quantity.

As mentioned earlier, the smaller of the two candidate thresholds gives the criti-
cal threshold. In the following example, we demonstrate that either of the candidate
thresholds can be the minimum.

EXAMPLE 9.1. Fix r = 2 and take a weight sequence such that it contains
W 1/9 vertices of weight W 7/12, W 2/3/20 vertices of weight W 1/3 and each of
the remaining vertices has weight 1. Note that |V≥W 1/3 | = (1 + o(1))W 2/3/20 <

W 2/3/24 = W 2/(2W 1/3)4 and |V≥1| = n = o(W 2). In addition, |V≥√
W | =

W 1/9 ≥ 2−4 = W 2/(2
√

W)4. Therefore, W 1/2 > φH > W 1/3. Thus,∑
u∈V<φH

w3
u = �

(
W 5/3).

Clearly,
∑

u∈V≥φH
w2

u = W 23/18. This gives us

W∑
u∈V<φH

w3
u

= �
(
W−2/3)= o

(
W−23/36)= o

((
1∑

u∈V≥φH
w2

u

)1/2)
.

Thus, the minimum in Theorem 3.1 is achieved by the vertices of weight less than
φH .

Now replace the W 1/9 vertices of weight W 7/12 by W 1/9 vertices of weight
W 3/4. Note that this has no effect on the value of φH . However, we have(

1∑
u∈V≥φH

w2
u

)1/2
= �

(
W−29/36)= o

(
W−2/3),

so this time the minimum is achieved by the vertices of weight at least φH .
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Several open questions still remain. The first concerns the exact values of c

and C. In particular, is c = C? If not, then what happens in the case where the
weight sequences satisfies P[Zw ≥ f ] = c′/f for c < c′ < C.

Furthermore, our analysis does not consider the case where the initial density
has the same order of magnitude as the critical density. We believe that in this case
an outbreak occurs with probability that is asymptotically bounded away from 0
and 1. If this is the case, it would be interesting to know whether a limiting value
exists for this probability and how it depends upon the parameters of the model.

Acknowledgement. We would like to thank an anonymous referee for making
helpful comments on the presentation of the paper.
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