Open Access
October 2014 Long-term stability of sequential Monte Carlo methods under verifiable conditions
Randal Douc, Eric Moulines, Jimmy Olsson
Ann. Appl. Probab. 24(5): 1767-1802 (October 2014). DOI: 10.1214/13-AAP962
Abstract

This paper discusses particle filtering in general hidden Markov models (HMMs) and presents novel theoretical results on the long-term stability of bootstrap-type particle filters. More specifically, we establish that the asymptotic variance of the Monte Carlo estimates produced by the bootstrap filter is uniformly bounded in time. On the contrary to most previous results of this type, which in general presuppose that the state space of the hidden state process is compact (an assumption that is rarely satisfied in practice), our very mild assumptions are satisfied for a large class of HMMs with possibly noncompact state space. In addition, we derive a similar time uniform bound on the asymptotic $\mathsf{L}^{p}$ error. Importantly, our results hold for misspecified models; that is, we do not at all assume that the data entering into the particle filter originate from the model governing the dynamics of the particles or not even from an HMM.

References

1.

[1] Bain, A. and Crisan, D. (2009). Fundamentals of Stochastic Filtering. Stochastic Modelling and Applied Probability 60. Springer, New York. MR2454694[1] Bain, A. and Crisan, D. (2009). Fundamentals of Stochastic Filtering. Stochastic Modelling and Applied Probability 60. Springer, New York. MR2454694

2.

[2] Cappé, O., Moulines, E. and Rydén, T. (2005). Inference in Hidden Markov Models. Springer, New York. MR2159833[2] Cappé, O., Moulines, E. and Rydén, T. (2005). Inference in Hidden Markov Models. Springer, New York. MR2159833

3.

[3] Chopin, N. (2002). A sequential particle filter method for static models. Biometrika 89 539–551. MR1929161 10.1093/biomet/89.3.539[3] Chopin, N. (2002). A sequential particle filter method for static models. Biometrika 89 539–551. MR1929161 10.1093/biomet/89.3.539

4.

[4] Crisan, D. and Heine, K. (2008). Stability of the discrete time filter in terms of the tails of noise distributions. J. Lond. Math. Soc. (2) 78 441–458. MR2439634 10.1112/jlms/jdn032[4] Crisan, D. and Heine, K. (2008). Stability of the discrete time filter in terms of the tails of noise distributions. J. Lond. Math. Soc. (2) 78 441–458. MR2439634 10.1112/jlms/jdn032

5.

[5] Del Moral, P. (2004). Feynman–Kac Formulae. Genealogical and Interacting Particle Systems with Applications. Springer, New York. MR2044973[5] Del Moral, P. (2004). Feynman–Kac Formulae. Genealogical and Interacting Particle Systems with Applications. Springer, New York. MR2044973

6.

[6] Del Moral, P. and Guionnet, A. (1999). Central limit theorem for nonlinear filtering and interacting particle systems. Ann. Appl. Probab. 9 275–297. MR1687359 10.1214/aoap/1029962742 euclid.aoap/1029962742 [6] Del Moral, P. and Guionnet, A. (1999). Central limit theorem for nonlinear filtering and interacting particle systems. Ann. Appl. Probab. 9 275–297. MR1687359 10.1214/aoap/1029962742 euclid.aoap/1029962742

7.

[7] Del Moral, P. and Guionnet, A. (2001). On the stability of interacting processes with applications to filtering and genetic algorithms. Ann. Inst. Henri Poincaré Probab. Stat. 37 155–194. MR1819122 10.1016/S0246-0203(00)01064-5[7] Del Moral, P. and Guionnet, A. (2001). On the stability of interacting processes with applications to filtering and genetic algorithms. Ann. Inst. Henri Poincaré Probab. Stat. 37 155–194. MR1819122 10.1016/S0246-0203(00)01064-5

8.

[8] Del Moral, P., Jacod, J. and Protter, P. (2001). The Monte-Carlo method for filtering with discrete-time observations. Probab. Theory Related Fields 120 346–368. MR1843179 10.1007/PL00008786[8] Del Moral, P., Jacod, J. and Protter, P. (2001). The Monte-Carlo method for filtering with discrete-time observations. Probab. Theory Related Fields 120 346–368. MR1843179 10.1007/PL00008786

9.

[9] Del Moral, P. and Ledoux, M. (2000). Convergence of empirical processes for interacting particle systems with applications to nonlinear filtering. J. Theoret. Probab. 13 225–257. MR1744985 10.1023/A:1007743111861[9] Del Moral, P. and Ledoux, M. (2000). Convergence of empirical processes for interacting particle systems with applications to nonlinear filtering. J. Theoret. Probab. 13 225–257. MR1744985 10.1023/A:1007743111861

10.

[10] Del Moral, P. and Miclo, L. (2000). Branching and interacting particle systems approximations of Feynman–Kac formulae with applications to nonlinear filtering. In Séminaire de Probabilités, XXXIV. Lecture Notes in Math. 1729 1–145. Springer, Berlin. MR1768060 10.1007/BFb0103798[10] Del Moral, P. and Miclo, L. (2000). Branching and interacting particle systems approximations of Feynman–Kac formulae with applications to nonlinear filtering. In Séminaire de Probabilités, XXXIV. Lecture Notes in Math. 1729 1–145. Springer, Berlin. MR1768060 10.1007/BFb0103798

11.

[11] Douc, R., Fort, G., Moulines, E. and Priouret, P. (2009). Forgetting the initial distribution for hidden Markov models. Stochastic Process. Appl. 119 1235–1256. MR2508572 10.1016/j.spa.2008.05.007[11] Douc, R., Fort, G., Moulines, E. and Priouret, P. (2009). Forgetting the initial distribution for hidden Markov models. Stochastic Process. Appl. 119 1235–1256. MR2508572 10.1016/j.spa.2008.05.007

12.

[12] Douc, R., Garivier, A., Moulines, E. and Olsson, J. (2011). Sequential Monte Carlo smoothing for general state space hidden Markov models. Ann. Appl. Probab. 21 2109–2145. MR2895411 10.1214/10-AAP735 euclid.aoap/1322057317 [12] Douc, R., Garivier, A., Moulines, E. and Olsson, J. (2011). Sequential Monte Carlo smoothing for general state space hidden Markov models. Ann. Appl. Probab. 21 2109–2145. MR2895411 10.1214/10-AAP735 euclid.aoap/1322057317

13.

[13] Douc, R., Guillin, A. and Najim, J. (2005). Moderate deviations for particle filtering. Ann. Appl. Probab. 15 587–614. MR2114983 10.1214/105051604000000657 euclid.aoap/1107271661 [13] Douc, R., Guillin, A. and Najim, J. (2005). Moderate deviations for particle filtering. Ann. Appl. Probab. 15 587–614. MR2114983 10.1214/105051604000000657 euclid.aoap/1107271661

14.

[14] Douc, R. and Moulines, E. (2008). Limit theorems for weighted samples with applications to sequential Monte Carlo methods. Ann. Statist. 36 2344–2376. MR2458190 10.1214/07-AOS514 euclid.aos/1223908095 [14] Douc, R. and Moulines, E. (2008). Limit theorems for weighted samples with applications to sequential Monte Carlo methods. Ann. Statist. 36 2344–2376. MR2458190 10.1214/07-AOS514 euclid.aos/1223908095

15.

[15] Douc, R. and Moulines, E. (2012). Asymptotic properties of the maximum likelihood estimation in misspecified hidden Markov models. Ann. Statist. 40 2697–2732. MR3097617 10.1214/12-AOS1047 euclid.aos/1359987535 [15] Douc, R. and Moulines, E. (2012). Asymptotic properties of the maximum likelihood estimation in misspecified hidden Markov models. Ann. Statist. 40 2697–2732. MR3097617 10.1214/12-AOS1047 euclid.aos/1359987535

16.

[16] Douc, R., Moulines, É. and Olsson, J. (2009). Optimality of the auxiliary particle filter. Probab. Math. Statist. 29 1–28. MR2552996[16] Douc, R., Moulines, É. and Olsson, J. (2009). Optimality of the auxiliary particle filter. Probab. Math. Statist. 29 1–28. MR2552996

17.

[17] Doucet A., de Freitas N. and Gordon N., eds. (2001). Sequential Monte Carlo Methods in Practice. Springer, New York. MR1847783[17] Doucet A., de Freitas N. and Gordon N., eds. (2001). Sequential Monte Carlo Methods in Practice. Springer, New York. MR1847783

18.

[18] Godsill, S. J., Doucet, A. and West, M. (2004). Monte Carlo smoothing for nonlinear time series. J. Amer. Statist. Assoc. 50 438–449. MR2054295 10.1198/016214504000000151[18] Godsill, S. J., Doucet, A. and West, M. (2004). Monte Carlo smoothing for nonlinear time series. J. Amer. Statist. Assoc. 50 438–449. MR2054295 10.1198/016214504000000151

19.

[19] Gordon, N., Salmond, D. and Smith, A. F. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc., F, Radar Signal Process. 140 107–113.[19] Gordon, N., Salmond, D. and Smith, A. F. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc., F, Radar Signal Process. 140 107–113.

20.

[20] Heine, K. and Crisan, D. (2008). Uniform approximations of discrete-time filters. Adv. in Appl. Probab. 40 979–1001. MR2488529 10.1239/aap/1231340161 euclid.aap/1231340161 [20] Heine, K. and Crisan, D. (2008). Uniform approximations of discrete-time filters. Adv. in Appl. Probab. 40 979–1001. MR2488529 10.1239/aap/1231340161 euclid.aap/1231340161

21.

[21] Johansen, A. M. and Doucet, A. (2008). A note on auxiliary particle filters. Statist. Probab. Lett. 78 1498–1504. MR2528342[21] Johansen, A. M. and Doucet, A. (2008). A note on auxiliary particle filters. Statist. Probab. Lett. 78 1498–1504. MR2528342

22.

[22] Kingman, J. F. C. (1973). Subadditive ergodic theory. Ann. Probab. 1 883–909. MR356192 10.1214/aop/1176996798[22] Kingman, J. F. C. (1973). Subadditive ergodic theory. Ann. Probab. 1 883–909. MR356192 10.1214/aop/1176996798

23.

[23] Kleptsyna, M. L. and Veretennikov, A. Yu. (2008). On discrete time ergodic filters with wrong initial data. Probab. Theory Related Fields 141 411–444. MR2391160 10.1007/s00440-007-0089-7[23] Kleptsyna, M. L. and Veretennikov, A. Yu. (2008). On discrete time ergodic filters with wrong initial data. Probab. Theory Related Fields 141 411–444. MR2391160 10.1007/s00440-007-0089-7

24.

[24] Künsch, H. R. (2005). Recursive Monte Carlo filters: Algorithms and theoretical analysis. Ann. Statist. 33 1983–2021. MR2211077 10.1214/009053605000000426 euclid.aos/1132936554 [24] Künsch, H. R. (2005). Recursive Monte Carlo filters: Algorithms and theoretical analysis. Ann. Statist. 33 1983–2021. MR2211077 10.1214/009053605000000426 euclid.aos/1132936554

25.

[25] LeGland, F. and Oudjane, N. (2003). A robustification approach to stability and to uniform particle approximation of nonlinear filters: The example of pseudo-mixing signals. Stochastic Process. Appl. 106 279–316. MR1989630 10.1016/S0304-4149(03)00041-3[25] LeGland, F. and Oudjane, N. (2003). A robustification approach to stability and to uniform particle approximation of nonlinear filters: The example of pseudo-mixing signals. Stochastic Process. Appl. 106 279–316. MR1989630 10.1016/S0304-4149(03)00041-3

26.

[26] Le Gland, F. and Oudjane, N. (2004). Stability and uniform approximation of nonlinear filters using the Hilbert metric and application to particle filters. Ann. Appl. Probab. 14 144–187. MR2023019 10.1214/aoap/1075828050 euclid.aoap/1075828050 [26] Le Gland, F. and Oudjane, N. (2004). Stability and uniform approximation of nonlinear filters using the Hilbert metric and application to particle filters. Ann. Appl. Probab. 14 144–187. MR2023019 10.1214/aoap/1075828050 euclid.aoap/1075828050

27.

[27] Olsson, J. and Rydén, T. (2008). Asymptotic properties of particle filter-based maximum likelihood estimators for state space models. Stochastic Process. Appl. 118 649–680. MR2394847 10.1016/j.spa.2007.05.007[27] Olsson, J. and Rydén, T. (2008). Asymptotic properties of particle filter-based maximum likelihood estimators for state space models. Stochastic Process. Appl. 118 649–680. MR2394847 10.1016/j.spa.2007.05.007

28.

[28] Oudjane, N. and Rubenthaler, S. (2005). Stability and uniform particle approximation of nonlinear filters in case of nonergodic signals. Stoch. Anal. Appl. 23 421–448. MR2140972 10.1081/SAP-200056643[28] Oudjane, N. and Rubenthaler, S. (2005). Stability and uniform particle approximation of nonlinear filters in case of nonergodic signals. Stoch. Anal. Appl. 23 421–448. MR2140972 10.1081/SAP-200056643

29.

[29] Pitt, M. K. and Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. J. Amer. Statist. Assoc. 94 590–599. MR1702328 10.1080/01621459.1999.10474153[29] Pitt, M. K. and Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. J. Amer. Statist. Assoc. 94 590–599. MR1702328 10.1080/01621459.1999.10474153

30.

[30] Pólya, G. and Szegő, G. (1976). Problems and Theorems in Analysis. Springer, New York.[30] Pólya, G. and Szegő, G. (1976). Problems and Theorems in Analysis. Springer, New York.

31.

[31] Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York. MR595165[31] Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York. MR595165

32.

[32] Shiryaev, A. N. (1996). Probability, 2nd ed. Springer, New York. MR1368405[32] Shiryaev, A. N. (1996). Probability, 2nd ed. Springer, New York. MR1368405

33.

[33] Tadić, V. B. and Doucet, A. (2005). Exponential forgetting and geometric ergodicity for optimal filtering in general state–space models. Stochastic Process. Appl. 115 1408–1436. MR2152381 10.1016/j.spa.2005.03.005[33] Tadić, V. B. and Doucet, A. (2005). Exponential forgetting and geometric ergodicity for optimal filtering in general state–space models. Stochastic Process. Appl. 115 1408–1436. MR2152381 10.1016/j.spa.2005.03.005

34.

[34] van Handel, R. (2009). The stability of conditional Markov processes and Markov chains in random environments. Ann. Probab. 37 1876–1925. MR2561436 10.1214/08-AOP448 euclid.aop/1253539859 [34] van Handel, R. (2009). The stability of conditional Markov processes and Markov chains in random environments. Ann. Probab. 37 1876–1925. MR2561436 10.1214/08-AOP448 euclid.aop/1253539859
Copyright © 2014 Institute of Mathematical Statistics
Randal Douc, Eric Moulines, and Jimmy Olsson "Long-term stability of sequential Monte Carlo methods under verifiable conditions," The Annals of Applied Probability 24(5), 1767-1802, (October 2014). https://doi.org/10.1214/13-AAP962
Published: October 2014
Vol.24 • No. 5 • October 2014
Back to Top