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This paper discusses particle filtering in general hidden Markov models
(HMMs) and presents novel theoretical results on the long-term stability of
bootstrap-type particle filters. More specifically, we establish that the asymp-
totic variance of the Monte Carlo estimates produced by the bootstrap filter
is uniformly bounded in time. On the contrary to most previous results of this
type, which in general presuppose that the state space of the hidden state pro-
cess is compact (an assumption that is rarely satisfied in practice), our very
mild assumptions are satisfied for a large class of HMMs with possibly non-
compact state space. In addition, we derive a similar time uniform bound on
the asymptotic Lp error. Importantly, our results hold for misspecified mod-
els; that is, we do not at all assume that the data entering into the particle filter
originate from the model governing the dynamics of the particles or not even
from an HMM.

1. Introduction. This paper deals with estimation in general hidden Markov
models (HMMs) via sequential Monte Carlo (SMC) methods (or particle filters).
More specifically, we present novel results on the numerical stability of the boot-
strap particle filter that hold under very general and easily verifiable assumptions.
Before stating the results we provide some background.

Consider an HMM (Xn,Yn)n∈N, where the Markov chain (or state sequence)
(Xn)n∈N, taking values in some general state space (X,X ), is only partially ob-
served through the sequence (Yn)n∈N of observations taking values in another
general state space (Y,Y). More specifically, conditionally on the state sequence
(Xn)n∈N, the observations are assumed to be conditionally independent and such
that the conditional distribution of each Yn depends on the corresponding state
Xn only; see, for example, [2] and the references therein. We denote by Q and χ

the kernel and initial distribution of (Xn)n∈N, respectively. Even though n is not
necessarily a temporal index, it will in the following be referred to as “time.”

Any kind of statistical estimation in HMMs typically involves computation of
the conditional distribution of one or several hidden states given a set of observa-
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tions. Of particular interest are the filter distributions, where the filter distribution
φ̄χ 〈Yn

0 〉 at time n is defined as the conditional distribution of Xn given the corre-
sponding observation history Yn

0 = (Y0, . . . , Yn) (this will be our generic notation
for vectors). The problem of computing, recursively in n and in a single sweep
of the data, the sequence of filter distributions is referred to as optimal filtering.
Of similar interest are the predictor distributions, where the predictor distribution
φχ 〈Yn−1

0 〉 at time n is defined as the conditional distribution of the state Xn given
the preceding observation history Yn−1

0 (more precise definitions of filter and pre-
dictor distributions are given in Section 2). In this paper we focus on the compu-
tation of these distributions, which can be carried through in a recursive fashion
according to

φ̄χ

〈
Yn

0
〉
(A) =

∫
1A(x)g〈Yn〉(x)φχ 〈Yn−1

0 〉(dx)∫
g〈Yn〉(x)φχ 〈Yn−1

0 〉(dx)
, A ∈ X ,(1)

φχ

〈
Yn

0
〉
(A) =

∫
Q(x,A)φ̄χ

〈
Yn

0
〉
(dx), A ∈ X ,(2)

where g〈Yn〉 is the local likelihood of the hidden state Xn given the observation Yn.
Steps (1) and (2) are typically referred to as correction and prediction, respectively.
In the correction step, the predictor φχ 〈Yn−1

0 〉 is, as the new observation Yn be-
comes available, weighted with the local likelihood, providing the filter φ̄χ 〈Yn

0 〉;
in the prediction step, the filter φ̄χ 〈Yn

0 〉 is propagated through the dynamics Q
of the latent Markov chain, yielding the predictor φχ 〈Yn

0 〉 at the consecutive time
step. The correction and prediction steps form jointly a measure-valued mapping �

generating recursively the predictor distribution flow according to

φχ

〈
yn

0
〉= �

〈
Yn

〉(
φχ

〈
Yn−1

0

〉)
(we refer again to Section 2 for precise definitions).

Unless the HMM is either a linear Gaussian model or a model comprising only
a finite number of possible states, exact numeric computation of the predictor dis-
tributions is in general infeasible. Thus, one is generally confined to using finite-
dimensional approximations of these measures, and in this paper we concentrate
on the use of particle filters for this purpose. A particle filter approximates the pre-
dictor distribution at time n by the empirical measure φN

χ 〈Yn−1
0 〉 associated with

a finite sample (ξ i
n)

N
i=1 of particles evolving randomly and recursively in time. At

each iteration of the algorithm, the particle sample is updated through a selection
step and a mutation step, corresponding directly to correction and prediction, re-
spectively. The selection operation duplicates or eliminates particles with high or
low posterior probability, respectively, while the mutation operation disseminates
randomly the particles in the state space for further selection at the next iteration.
The most basic algorithm—proposed in [19] and referred to as the bootstrap parti-



LONG-TERM STABILITY OF SEQUENTIAL MONTE CARLO METHODS 1769

cle filter—performs selection by resampling multinomially the predictive particles
(ξ i

n)
N
i=1 with probabilities proportional to the local likelihood ωi

n = g〈Yn〉(ξ i
n) of

the particle locations; after this, the selected particle swarm is mutated according
to the dynamics Q of the latent Markov chain. Here the self-normalized impor-
tance sampling estimator φ̄N 〈Yn

0 〉 associated with the weighted particle sample
(ξ i

n,ω
i
n)

N
i=1 provides an approximation of the filter φ̄〈Yn

0 〉. Thus, subjecting the
particle sample (ξ i

n)
N
i=1 to selection and mutation is in the case of the bootstrap par-

ticle filter equivalent to drawing, conditionally independently given (ξ i
n)

N
i=1, new

particles (ξ i
n+1)

N
i=1 from the distribution �〈Yn〉(φN

χ 〈Yn−1
0 〉) obtained by plugging

the empirical measure φN
χ 〈Yn−1

0 〉 into the filter recursion, which we denote

(
ξ i
n+1

)N
i=1

i.i.d.∼ �
〈
Yn

〉(
φN

χ

〈
Yn−1

0

〉)⊗N
.(3)

Since the seminal paper [19], particle filters have been successfully applied to
nonlinear filtering problems in many different fields; we refer to the collection [17]
for an introduction to particle filtering in general and for miscellaneous examples
of real-life applications.

The theory of particle filtering is an active field and there is a number of avail-
able convergence results concerning, for example, Lp error bounds and weak con-
vergence; see the monographs [1, 5] and the references therein. Most of these
results establish the convergence, as the number of particles N tends to infinity,
of the particle filter for a fixed time step n ∈ N. For infinite time horizons, that
is, when n tends to infinity, convergence is less obvious. Indeed, each recursive
update (3) of the particles (ξ i

n)
N
i=1 is based on the implicit assumption that the

empirical measure φN
χ 〈Yn−1

0 〉 associated with the ancestor sample approximates

perfectly well the predictor φχ 〈Yn−1
0 〉 at the previous time step; however, since

the ancestor sample is marred by an error itself, one may expect that the errors
induced at the different updating steps accumulate and, consequently, that the to-
tal error propagated through the algorithm increases with n. This would make the
algorithm useless in practice. Fortunately, it has been observed empirically by sev-
eral authors (see, e.g., [34], Section 1.1) that the convergence of particle filters
appears to be uniform in time also for very general HMMs. Nevertheless, even
though long-term stability is essential for the applicability of particle filters, most
existing time uniform convergence results are obtained under assumptions that are
generally not met in practice. The aim of the present paper is thus to establish the
infinite time-horizon stability under mild and easy verifiable assumptions, satisfied
by most models for which the particle filter has been found to be useful.

1.1. Previous work. The first time uniform convergence result for bootstrap-
type particle filters was obtained by Del Moral and Guionnet [7] (see also [5] for
refinements) using contraction properties of the mapping �. We recall in some
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detail this technique. By writing

φN
χ

〈
Yn

0
〉− φχ

〈
Yn

0
〉= φN

χ

〈
Yn

0
〉− �

〈
Yn

〉(
φN

χ

〈
Yn−1

0

〉)︸ ︷︷ ︸
sampling error

+ �
〈
Yn

〉(
φN

χ

〈
Yn−1

0

〉)− �
〈
Yn

〉(
φχ

〈
Yn−1

0

〉)︸ ︷︷ ︸
initialization error

one may decompose the error φN
χ 〈Yn

0 〉−φχ 〈Yn
0 〉 into a first error (the sampling er-

ror) introduced by replacing �〈Yn〉(φN
χ 〈Yn−1

0 〉) by its empirical estimate φN
χ 〈Yn

0 〉
and a second error (the initialization error) originating from the discrepancy be-
tween empirical measure φN

χ 〈Yn−1
0 〉 associated with the ancestor particles and the

true predictor φχ 〈Yn−1
0 〉. The sampling error is easy to control. One may, for exam-

ple, use the Marcinkiewicz–Zygmund inequality to bound the Lp error by cN−1/2,
where c ∈ R

∗+ is a universal constant. Exponential deviation inequalities may also
be obtained. For the initialization error, we may expect that the mapping �〈Yn〉 is
in some sense contracting and thus downscales the discrepancy between φN

χ 〈Yn−1
0 〉

and φχ 〈Yn−1
0 〉. This is the point where the exponential forgetting of the predictor

distribution becomes crucial. Assume, for instance, that there exists a constant
ρ ∈]0,1[ such that ‖�〈Yn

m〉(μ) − �〈Yn
m〉(ν)‖ ≤ ρn−m+1‖μ − ν‖ for any integers

0 ≤ m ≤ n and any probability measures μ and ν, where ‖·‖ is some suitable norm
on the space of probability measures and �〈Yn

m〉 � �〈Yn〉 ◦�〈Yn−1〉 ◦ · · · ◦�〈Ym〉.
Since �〈Yn

m〉(μ) is the predictor distribution φμ〈Yn
m〉 obtained when the hidden

chain is initialized with the distribution μ at time m, this means that the predic-
tor distribution forgets the initial distribution geometrically fast. In addition, the
forgetting rate ρ is uniform with respect to the observations. The uniformity with
respect to the observations is of course the main reason why the assumptions on
the model are so stringent.

Now, decomposing similarly also the initialization error and proceeding recur-
sively yields the telescoping sum

φN
χ

〈
Yn

0
〉− φχ

〈
Yn

0
〉

= φN
χ

〈
Yn

0
〉− �

〈
Yn

〉(
φN

χ

〈
Yn−1

0

〉)
(4)

+
n−1∑
k=1

(
�
〈
Yn

k+1
〉(
φN

χ

〈
Y k

0
〉)− �

〈
Yn

k+1
〉 ◦ �

〈
Yk

〉(
φN

χ

〈
Y k−1

0

〉))
+ �

〈
Yn

1
〉(
φN

χ

〈
Y0
〉)− �

〈
Yn

1
〉(
φχ

〈
Y0
〉)
.

Now each term of the sum above can be viewed as a downscaling (by a factor
ρn−k) of the sampling error between φN

χ 〈Y k
0 〉 and �〈Yk〉(φN

χ 〈Y k−1
0 〉) through the

contraction of �〈Yn
k+1〉. Denoting by δn the Lp error of φN

χ 〈Yn
0 〉 and assuming that

the initial sample is obtained through standard importance sampling, implying that
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δ0 ≤ cN−1/2, provides, using the contraction of �〈Yn
k+1〉, the uniform Lp error

bound δn ≤ cN−1/2∑n
k=0 ρn−k ≤ cN−1/2(1 − ρ)−1.

Even though this result is often used as a general guideline on particle filter sta-
bility, it relies nevertheless heavily on the assumption that the kernel Q of hidden
Markov chain satisfies the following strong mixing condition, which is even more
stringent than the already very strong one-step global Doeblin condition: there ex-
ist constants ε+ > ε− > 0 and a probability measure ν on (X,X ) such that for all
x ∈ X and A ∈ X ,

ε−ν(A) ≤ Q(x,A) ≤ ε+ν(A).(5)

This assumption, which in particular implies that the Markov chain is uniformly
geometrically ergodic, restricts the applicability of the stability result in question
to models where the state space X is small. For Markov chains on separable metric
spaces, provided that the kernel is strongly Feller, condition (5) typically requires
the state space to be compact. Some refinements have been obtained in, for exam-
ple, [2, 4, 5, 16, 20, 25–28, 33].

The long-term stability of particle filters is also related to the boundedness of
the asymptotic variance. The first central limit theorem (CLT) for bootstrap-type
particle filters was derived by Del Moral and Guionnet [6]. More specifically, it
was shown that the normalized Monte Carlo error

√
N(φN

χ 〈Yn−1
0 〉h−φχ 〈Yn−1

0 〉h)

tends weakly, for a fixed n ∈N
∗ and as the particle population size N tends to infin-

ity, to a zero mean normal-distributed variable with variance σ 2
χ 〈Yn−1

0 〉(h). Here

we have used the notation μh �
∫

h(x)μ(dx) to denote expectations. The origi-
nal proof of the CLT was later simplified and extended to more general particle
filtering algorithms in [3, 14, 16, 21, 24]; in Section 2 we recall in detail the ver-
sion obtained in [14] and provide an explicit expression of the asymptotic variance
σ 2

χ 〈Yn−1
0 〉(h). As shown first by [7], Theorem 3.1, it is possible, using the strong

mixing assumption described above, to bound uniformly also the asymptotic vari-
ance σ 2

χ 〈Yn−1
0 〉(h) by similar forgetting-based arguments. Here a key ingredient

is that the particles (ξ i
n)

N
i=1 obtained at the different time steps become, asymp-

totically as N tends to infinity, statistically independent. Consequently, the total
asymptotic variance of

√
N(φN

χ 〈Yn−1
0 〉h−φχ 〈Yn−1

0 〉h) is obtained by simply sum-

ming up the asymptotic variances of the error terms
√

N(�〈Yn
k+1〉(φN

χ 〈Y k
0 〉)h −

�〈Yn
k+1〉 ◦ �〈Yk〉(φN

χ 〈Y k−1
0 〉)h) in the decomposition (4). Finally, applying again

the contraction of the composed mapping �〈Yn
m〉 yields a uniform bound on the

total asymptotic variance in accordance with the calculation above. In [12], a simi-
lar stability result was obtained for a particle-based version of the forward-filtering
backward-simulation algorithm (proposed in [18]); nevertheless, also the analysis
of this work relies completely on the assumption of strong mixing of the latent
Markov chain, which, as we already pointed out, does not hold for most models
used in practice.
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A first breakthrough toward stability results for noncompact state spaces was
made in [34]. This work establishes, again for bootstrap-type particle filters, a uni-
form time average convergence result of form

lim
N→∞ sup

n∈N
E

(
n−1

n∑
k=1

∥∥φ̄N
χ

〈
Y k

0
〉− φ̄χ

〈
Y k

0
〉∥∥

BL

)
= 0,(6)

where ‖ · ‖BL denotes the dual bounded-Lipschitz norm. This result, obtained as
a special case of a general approximation theorem derived in the same paper, was
established under very weak assumptions on the local likelihood (supposed to be
bounded and continuous) and the Markov kernel (supposed to be Feller). These
assumptions are, together with the basic assumption that the hidden Markov chain
is positive Harris and aperiodic, satisfied for a large class of HMMs with possibly
noncompact state spaces. Nevertheless, the proof is heavily based on the assump-
tion that the particles evolve according to exactly the same model dynamics as the
observations entered into the algorithm, in other words, that the model is perfectly
specified. This is of course never true in practice. In addition, the convergence re-
sult (6) does not, in contrast to Lp bounds and CLTs, provide a rate of convergence
of the algorithm.

1.2. Approach of this paper. In this paper we return to more standard con-
vergence modes and reconsider the asymptotic variance and Lp error of bootstrap
particle filters. As noticed by Johansen and Doucet [21], restricting the analysis
of bootstrap-type particle filters does not imply a significant loss of generality,
as the CLT for more general auxiliary particle filters [29] can be straightforwardly
obtained by applying the bootstrap filter CLT to a somewhat modified HMM incor-
porating the so-called adjustment multiplier weights of the auxiliary particle filter
into the model dynamics. Our aim is to establish that the asymptotic variance and
Lp error are stochastically bounded in the noncompact case. Recall that a sequence
(μn)n∈N of probability measures on (R,B(R)) is tight if for all ε > 0 there exists
a compact interval I = [−a, a] ⊂ R such that μn(Ic) ≤ ε for all n. In addition, we
call a sequence (Zn)n∈N of random variables, with Zn ∼ μn, tight if the sequence
(μn)n∈N of marginal distributions is tight. In this paper, we show that the sequence
(σ 2

χ 〈Yn−1
0 〉(h))n∈N∗ of asymptotic variances is tight for any stationary and ergodic

sequence (Yn)n∈N of observations. In particular, we do not at all assume that the
observations originate from the model governing the dynamics of the particle filter
or not even from an HMM.

Our proofs are based on novel coupling techniques developed in [15] (and going
back to [23] and [11]) with the purpose of establishing the convergence of the rel-
ative entropy for misspecified HMMs. In our analysis, the strong mixing assump-
tion (5) is replaced by the considerably weaker r-local Doeblin condition (19).
This assumption is, for instance, trivially satisfied (for r = 1) if there exist a mea-
surable set C ⊆ X, a probability measure λC on (X,X ) such that λC(C) = 1 and
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positive constants 0 < ε−
C < ε+

C such that for all x ∈ X and all A ∈X ,

ε−
C λC(A) ≤ Q(x,A ∩ C) ≤ ε+

C λC(A),(7)

a condition that is easily verified for many HMMs with noncompact state space
[we emphasize, however, that assumption (19) is even weaker than (7)].

REMARK 1. Finally, we remark that Del Moral and Guionnet [7] studied the
stability of SMC methods within the framework of a general normalized Feynman–
Kac prediction model consisting of a sequence (μn)n∈N of measures-defined recur-
sively on a sequence (En,En)n∈N of measurable spaces by

μn+1(A) =
∫

Gn(x)Kn(x,A)μn(dx)∫
Gn(x)μn(dx)

, A ∈ En+1,

where Gn is a positive potential function on En, and Kn is a Markov transition
kernel from (En,En) to (En+1,En+1); see also [5], Section 2.3. Conditionally on
the observations (Yn)n∈N, the flow of predictor distributions can obviously, by
(1)–(2), be formulated as a normalized Feynman–Kac prediction model by let-
ting (En,En) ≡ (X,X ), μn ≡ φχ 〈Yn−1

0 〉, Gn ≡ g〈Yn〉, and Kn ≡ Q, n ∈ N. Impos-
ing, as in [7], the assumption that the transition kernels (Kn)n∈N satisfy jointly
the global Doeblin condition (5) provides a mixing rate ρ that is uniform in the
observations, and any stability result obtained for fixed observations holds thus
automatically true also when the observations are allowed to vary randomly.

Similarly, we could in the present paper have taken directly the recursion (1)–(2)
as a starting point, by suppressing its connection with HMMs and describing the
same as a normalized Feynman–Kac prediction model indexed by a stationary and
ergodic sequence (Yn)n∈N of random parameters. However, as the results obtained
in [15], which are fundamental in our analysis, describes the convergence of the
normalized log-likelihood function for general HMMs, a quantity whose interpre-
tation is not equally clear in the context of Feynman–Kac models, we have chosen
to express our results in the language of HMMs as well.

To sum up, the contribution of the present paper is twofold, since:

• we present time uniform bounds providing also the rate of convergence in N of
the particle filter for HMMs with possibly noncompact state space;

• we establish long-term stability of the particle filter also in the case of mis-
specification, that is, when the stationary law of the observations entering the
particle filter differs from that of the HMM governing the dynamics of the par-
ticles (ξ i

n)
N
i=1.

1.3. Outline of the paper. The paper is organized as follows. Section 2 pro-
vides the main notation and definitions. It also introduces the concepts of HMMs
and bootstrap particle filters. In Section 3 our main results are stated together with
the main layouts of the proofs. Section 4 treats some examples, and Section 5 and
Section 5.2 provide the full details of our proofs.
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2. Preliminaries.

2.1. Notation. We preface the introduction of HMMs with some notation. Let
(X,X ) be a measurable space, where X is a countably generated σ -field. Denote
by F(X ) [resp., F+(X )] the space of bounded (resp., bounded and nonnegative)
X /B(R)-measurable functions on X equipped with the supremum norm ‖f ‖∞ �
supx∈X |f (x)|. In addition, denote by P(X ) the set of probability measures on
(X,X ). Let K : X×X → R+ be a finite kernel on (X,X ), that is, for each x ∈ X, the
mapping K(x, ·) :X � A �→ K(x,A) is a finite measure on X , and for each A ∈ X ,
the function K(·,A) : X � x �→ K(x,A) is X /B([0,1])-measurable. If K(x, ·) is a
probability measure on (X,X ) for all x ∈ X, then the kernel K is said to be Markov.
A kernel induces two integral operators, the first acting on the space M(X ) of
σ -finite measures on (X,X ) and the other on F(X ). More specifically, for μ ∈
M(X ) and f ∈ F(X ), we define the measure

μK :X � A �→
∫

K(x,A)μ(dx)

and the function

Kf : X � x �→
∫

f
(
x′)K(x,dx′).

Moreover, the composition (or product) of two kernels K and M on (X,X ) is
defined as

KM : X ×X � (x,A) �→
∫

M
(
x′,A

)
K
(
x,dx′).

2.2. Hidden Markov models. Let (X,X ) and (Y,Y) be two measurable spaces.
We specify the HMM as follows. Let Q : X × X → [0,1] and G : X × Y → [0,1]
be given Markov kernels, and let χ be a given initial distribution on (X,X ). In this
setting, define the Markov kernel

T
(
(x, y),A

)
�
∫ ∫

1A
(
x′, y′)Q(x,dx′)G(x′,dy′),

(x, y) ∈ X × Y,A ∈ X ⊗Y,

on the product space (X × Y,X ⊗ Y). Let (Xn,Yn)n∈N be the canonical
Markov chain induced by T and the initial distribution X ⊗ Y � A �→∫

1A(x, y)χ(dx)G(x,dy). The bivariate process (Xn,Yn)n∈N is what we refer
to as the HMM. We shall denote by Pχ and Eχ the probability measure and
corresponding expectation associated with the HMM on the canonical space
((X × Y)N, (X ⊗Y)⊗N). We assume that the observation kernel G is nondegener-
ated in the sense that there exist a σ -finite measure ν on (Y,Y) and a measurable
function g : X × Y →]0,∞[ such that

G(x,A) =
∫

1A(y)g(x, y)ν(dy), x ∈ X,A ∈ Y.
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For a given observation y ∈ Y, we let

g〈y〉 : X � x �→ g(x, y)

denote the local likelihood function of the state given the corresponding observa-
tion y.

When operating on HMMs we are in general interested in computing expecta-
tions of type Eχ(h(X


k)|Ym
0 ) for integers (k, 
,m) ∈ N

3 with k ≤ 
 and functions
h ∈ F(X
−k+1). Of particular interest are quantities of form Eχ(h(Xn)|Yn−1

0 ) or
Eχ(h(Xn)|Yn

0 ), and the term optimal filtering refers to problem of computing, re-
cursively in n, such conditional distributions and expectations as new data becomes
available. For any record ym

k ∈ Ym−k+1 of observations, let L〈ym
k 〉 be the unnor-

malized kernel on (X,X ) defined by

L
〈
ym
k

〉
(xk,A) �

∫
· · ·
∫

1A(xm+1)

m∏

=k

g〈y
〉(x
)Q(x
,dx
+1),

(8)
xk ∈ X,A ∈ X ,

with the convention

L
〈
ym
k

〉
(x,A) � δx(A) for k > m(9)

(where δx denotes the Dirac mass at point x). Note that the function yn−1
0 �→

χL〈yn−1
0 〉1X is exactly the density of the observations Yn−1

0 (i.e., the likelihood
function) with respect to ν⊗n. Also note that for any 
 ∈ {k, . . . ,m − 1},

L
〈
ym
k

〉= L
〈
y

k

〉
L
〈
ym

+1

〉
.(10)

Let φχ 〈ym
k 〉 be the probability measure defined by

φχ

〈
ym
k

〉
(A) � χL〈ym

k 〉1A

χL〈ym
k 〉1X

, A ∈ X .(11)

Note that this implies that φχ 〈ym
k 〉 = χ when k > m. Using the notation, it can be

shown (see, e.g., [2], Proposition 3.1.4) that for any h ∈ F(X ),

Eχ

(
h(Xn)|Yn−1

0

)= ∫
h(x)φχ

〈
Yn−1

0

〉
(dx),

that is, φχ 〈Yn−1
0 〉 is the predictor of Xn given the observations Yn−1

0 . From defini-
tion (11) one immediately obtains the recursion

φχ

〈
yn

0
〉
(A) = φχ 〈yn−1

0 〉L〈yn〉1A

φχ 〈yn−1
0 〉L〈yn〉1X

=
∫

g〈yn〉(x)Q(x,A)φχ 〈yn−1
0 〉(dx)∫

g〈yn〉(x)φχ 〈yn−1
0 〉(dx)

, A ∈ X ,

which can be expressed in condensed form as

φχ

〈
yn

0
〉= �〈yn〉(φχ

〈
yn−1

0

〉)
(12)



1776 R. DOUC, E. MOULINES AND J. OLSSON

with �〈yn〉 being the measure-valued transformation

�〈yn〉 :P(X ) � μ �→ �〈yn〉(μ)Q

and �〈yn〉 transforms a measure μ ∈P(X ) into the measure

�〈yn〉(μ) :X � A �→
∫

1A(x)g〈yn〉(x)μ(dx)∫
g〈yn〉(x)μ(dx)

in P(X ). By introducing the filter distributions

φ̄χ

〈
yn

0
〉
� �〈yn〉(φχ

〈
yn−1

0

〉)
,

satisfying, for all h ∈ F(X ),

Eχ

(
h(Xn)|Yn

0
)= ∫

h(x)φχ

〈
Yn

0
〉
(dx)

(see again [2], Proposition 3.1.4), we may express one iteration of the filter recur-
sion in terms of the two operations

φχ

〈
yn−1

0

〉 �〈yn〉−−−−→
Updating

φ̄χ

〈
yn

0
〉 Q−−−−−→

Prediction
φχ

〈
yn

0
〉
.

As mentioned in the Introduction, it is in general infeasible to obtain closed-
form solutions to the recursion (12). In the following section we discuss how ap-
proximate solutions to (12) can be obtained using particle filters, with focus set on
the bootstrap particle filter proposed in [19].

2.3. The bootstrap particle filter. In the following we assume that all random
variables are defined on a common probability space (�,A,P). The bootstrap
particle filter updates sequentially a set of weighted simulations in order to ap-
proximate online the flow of predictor and filter distributions. In order to describe
precisely how this is done for a given sequence (yn)n∈N of observations, we pro-
ceed inductively and assume that we are given a sample of X-valued random draws
(ξ i

n)
N
i=1 (the particles) such that the empirical measure

φN
χ

〈
yn−1

0

〉
� 1

N

N∑
i=1

δξi
n

associated with these draws targets the predictor φχ 〈yn−1
0 〉 in the sense that

φN
χ 〈yn−1

0 〉h = ∑N
i=1 h(ξ i

n)/N estimates φχ 〈yn−1
0 〉h for any h ∈ F(X ). In order

to form a new particle sample (ξ i
n+1)

N
i=1 approximating the predictor φχ 〈yn

0 〉 at

the subsequent time step, we replace, in (12), the true predictor φχ 〈yn−1
0 〉 by the

particle estimate φN
χ 〈yn−1

0 〉, and pass the latter through the updating and prediction
steps. This yields, after updating, the self-normalized approximation

φ̄N
χ

〈
yn

0
〉
� �〈yn〉(φN

χ

〈
yn−1

0

〉)= N∑
i=1

ωi
n

�N
n

δξi
n

(13)
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of the filter φ̄χ 〈yn
0 〉, where we have introduced the importance weights ωi

n �
g〈yn〉(ξ i

n), i ∈ {1,2, . . . ,N} and �N
n �∑N

i=1 ωi
n. Moreover, by propagating filter

approximation (13) through prediction step one obtains the approximation

N∑
i=1

ωi
n

�N
n

Q
(
ξ i
n, ·
)

(14)

of the predictor φχ 〈yn
0 〉. Finally, the sample (ξ i

n+1)
N
i=1 is generated by simulating

N conditionally independent draws from the mixture in (14) using the following
algorithm:

set �N
n ← 0

for i = 1 → N do
set ωi

n ← g〈yn〉(ξ i
n)

set �N
n ← �N

n + ωi
n

end for
for i = 1 → N do

draw I i
n ∼ (ω


n/�N
n )N
=1

draw ξ i
n+1 ∼ Q(ξ

I i
n

n , ·)
end for

After this, the empirical measure φN
χ 〈yn

0 〉 = ∑N
i=1 δξi

n+1
/N is returned as an ap-

proximation of φχ 〈yn
0 〉. In the scheme above, the operation ∼ means implicitly

that all draws (for different i’s) are conditionally independent. Moreover, the op-
eration I i

n ∼ (ω

n/�N

n )N
=1 means that each index I i
n is simulated according to the

discrete probability distribution generated by the normalized importance weights
(ω


n/�N
n )N
=1. The procedure described above is repeated recursively in order to

produce particle approximations of the predictor and filter distributions at all time
steps. The algorithm is typically initialized by drawing N i.i.d. particles (ξ i

0)
N
i=1

from the initial distribution χ and letting
∑N

i=1 δξi
0
/N be an estimate of χ .

As mentioned in the Introduction, the asymptotic properties, as the number N

of particles tends to infinity, of the bootstrap particle filter output are well inves-
tigated. When it concerns weak convergence, Del Moral and Guionnet [6] estab-
lished the following CLT. Define for h ∈ F(X ),

σ 2
χ

〈
yn−1

0

〉
(h) �

n∑
k=0

φχ

〈
yk−1

0

〉(L〈yn−1
k 〉h − φχ 〈yn−1

0 〉h × L〈yn−1
k 〉1X

φχ 〈yk−1
0 〉L〈yn−1

k 〉1X

)2

.(15)

THEOREM 2 [6]. For all h ∈ F(X ) and all yn−1
0 ∈ Yn such that

‖g〈y
〉‖∞ < ∞ for all y
, it holds, as N → ∞,
√

N
(
φN

χ

〈
yn−1

0

〉
h − φχ

〈
yn−1

0

〉
h
) D−→ σχ

〈
yn−1

0

〉
(h)Z,(16)
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where σχ 〈yn−1
0 〉(h) is defined in (15), and Z is a standard normal-distributed ran-

dom variable.

The next corollary states the corresponding CLT for the particle filter. Also this
result is standard and is an immediate consequence of Theorem 2, the fact that
�N

n /N converges, for all yn
0 ∈ Yn+1 and as N tends to infinity, in probability to

φχ 〈yn−1
0 〉g〈yn〉 (see, e.g., [14], Theorem 10), and Slutsky’s lemma. Let again σ 2

χ

be given by (15), and define for yn
0 ∈ Yn+1 and h ∈ F(X ),

σ̄ 2
χ

〈
yn

0
〉
(h) �

σ 2
χ 〈yn−1

0 〉(g〈yn〉{h − φ̄χ 〈yn
0 〉h})

(φχ 〈yn−1
0 〉g〈yn〉)2

.(17)

COROLLARY 3. For all h ∈ F(X ) and yn
0 ∈ Yn+1 such that ‖g〈y
〉‖∞ < ∞

for all y
 it holds, as N → ∞,
√

N
(
φ̄N

χ

〈
yn

0
〉
h − φ̄χ

〈
yn

0
〉
h
) D−→ σ̄χ

〈
yn

0
〉
(h)Z,(18)

where σ̄χ 〈yn
0 〉(h) is defined in (17) and Z is a standard normal-distributed random

variable.

When the observations (Yn)n∈N entering the particle filter are random, the
sequences (σ 2

χ 〈Yn−1
0 〉(h))n∈N and (σ̄ 2

χ 〈Yn
0 〉(h))n∈N of asymptotic variances are

(FY
n )n∈N-adapted stochastic processes, where (FY

n )n∈N is the natural filtration of
the observation process. The aim of the next section is to establish that these se-
quences are tight. Importantly, we assume in the following that the observations
(Yn)n∈N entering the particle filter algorithm is an arbitrary P-stationary sequence
taking values in Y. The stationary process (Yn)n∈N can be embedded into a sta-
tionary process (Yn)n∈Z with doubly infinite time. In particular, we do not at all
assume that the observations originate from the model governing the dynamics of
the particles; indeed, in the framework we consider, we do not even assume that
the observations originate from an HMM.

3. Main results and assumptions. Before listing our main assumptions, we
recall the definition of a r-local Doeblin set.

DEFINITION 4. Let r ∈ N
∗. A set C ∈ X is r-local Doeblin with respect to

{Q, g} if there exist positive functions ε−
C : Yr → R

+ and ε+
C : Yr → R

+, a family
{μC〈z〉; z ∈ Yr} of probability measures, and a family {ϕC〈z〉; z ∈ Yr} of positive
functions such that for all z ∈ Yr , μC〈z〉(C) = 1 and for all A ∈ X and x ∈ C,

ε−
C 〈z〉ϕC〈z〉(x)μC〈z〉(A) ≤ L〈z〉(x,A ∩ C)

(19)
≤ ε+

C 〈z〉ϕC〈z〉(x)μC〈z〉(A).
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(A1) The process (Yn)n∈Z is strictly stationary and ergodic. Moreover, there
exist an integer r ∈ N

∗ and a set K ∈ Y⊗r such that the following holds:

(i) The process (Zn)n∈Z, where Zn � Y
(n+1)r−1
nr , is ergodic and such that

P(Z0 ∈ K) > 2/3.
(ii) For all η > 0 there exists an r-local Doeblin set C ∈ X such that for all

yr−1
0 ∈ K,

sup
x∈Cc

L
〈
yr−1

0

〉
(x,X) ≤ η

∥∥L
〈
yr−1

0

〉
(·,X)

∥∥∞ < ∞(20)

and

inf
yr−1

0 ∈K

ε−
C 〈yr−1

0 〉
ε+

C 〈yr−1
0 〉 > 0,(21)

where the functions ε+
C and ε−

C are given in Definition 4.
(iii) There exists a set D ∈ X such that

E

(
ln− inf

x∈D
δxL

〈
Y r−1

0

〉
1D

)
< ∞.(22)

(A2) (i) g(x, y) > 0 for all (x, y) ∈ X × Y.
(ii) E(ln+ ‖g〈Y0〉‖∞) < ∞.

REMARK 5. Assumption (A1)(i) is inherited from [15]. To get some rationale
behind the constant 2/3 appearing in the assumption, note that the same is in fact
equivalent to 1 − P(Z0 ∈ K) < 2P(Z0 ∈ K) − 1. In that case there exist 0 < γ − <

γ + such that

1 − P(Z0 ∈ K) < γ − < γ + < 2P(Z0 ∈ K) − 1,

which is equivalent to P(Z0 ∈ K) > max{1−γ −, (1+γ +)/2}. The latter inequality
is essential when applying [15], Proposition 5; see also the proof of [15], Proposi-
tion 8.

REMARK 6. In the case r = 1 we may replace (A1) by the simpler assumption
that there exists a set K ∈ Y such that the following holds:

(i) P(Y0 ∈ K) > 2/3.
(ii) For all η > 0 there exists a local Doeblin set C ∈X such that for all y ∈ K,

sup
x∈Cc

g(x, y) ≤ η
∥∥g〈y〉∥∥∞ < ∞.(23)

(iii) There exists a set D ∈ X satisfying

inf
x∈D

Q(x,D) > 0 and E

(
ln− inf

x∈D
g(x,Y0)

)
< ∞.
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For the integer r ∈ N
∗ and the set D ∈X given in (A1), define

M(D, r)
(24)

�
{
χ ∈ P(X ) :E

(
ln− χL

〈
Y 
−1

0

〉
1D
)
< ∞ for all 
 ∈ {0, . . . , r}}.

A simple sufficient condition can be proposed to ensure that χ ∈ M(D, r).

PROPOSITION 7. Assume that there exist sets Du ∈X , u ∈ {0, . . . , r −1}, such
that (setting Dr = D for notational convenience) for some δ > 0,

inf
x∈Du−1

Q(x,Du) ≥ δ, u ∈ {1, . . . , r}(25)

and

E

(
ln− inf

x∈Du

g(x,Y0)
)

< ∞, u ∈ {0, . . . , r}.(26)

Then any initial distribution χ ∈ P(X ) satisfying χ(D0) > 0 belongs to M(D, r).

REMARK 8. To check (26) we typically assume that for any given y ∈ Y, g〈y〉
is continuous and that the sets Di , i ∈ {0, . . . , r − 1}, are compact. This condition
then translates into an assumption on some generalized moments of the process
(Yn)n∈Z.

REMARK 9. Assume that X = R
d for some d ∈ N

∗ (or more generally, X is a
locally compact separable metric space) and that X is the associated Borel σ -field.
Assume in addition that for any open set O ∈ X , the function x → Q(x,O) is
lower semi-continuous on the space X. Then for any δ > 0 and any compact set
D0 ∈ X , there exist compact sets Du, u ∈ {0, . . . , r − 1}, satisfying (25).

We are now ready to state our main results.

3.1. Tightness of asymptotic variance.

THEOREM 10. Assume (A1)–(A2). Then for all χ ∈ M(D, r) and all h ∈
F(X ), the sequence (σ 2

χ 〈Yn−1
0 〉(h))n∈N∗ [defined in (15)] is tight.

PROOF. Using definition (11) of the predictive distribution and the decompo-
sition (10) of the likelihood, we get for all k ∈ {0, . . . , n − 1},

φχ

〈
Yn−1

0

〉
h = χL〈Yn−1

0 〉h
χL〈Yn−1

0 〉1X

= χL〈Y k−1
0 〉L〈Yn−1

k 〉h
χL〈Y k−1

0 〉L〈Yn−1
k 〉1X

.

Plugging this identity into the expression (15) of the asymptotic variance yields

σ 2
χ

〈
Yn−1

0

〉
(h) =

n∑
k=0

∫
φχ

〈
Y k−1

0

〉
(dx)

[�
δx,φχ 〈Y k−1

0 〉〈Yn−1
k 〉(h,1X)

(φχ 〈Y k−1
0 〉L〈Yn−1

k 〉1X)2

]2

,(27)
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where for all sequences yn−1
k ∈ Yn−k , functions f and h in F(X ) and probability

measures χ and χ ′ in P(X ),

�χ,χ ′
〈
yn−1
k

〉(
f,h

)
(28)

� χL
〈
yn−1
k

〉
f × χ ′L

〈
yn−1
k

〉
h − χL

〈
yn−1
k

〉
h × χ ′L

〈
yn−1
k

〉
f.

Using (11), we obtain for all sequences yn−1
0 ∈ Yn,

φχ

〈
yk−1

0

〉
L
〈
yn−1
k

〉
1X = χL〈yn−1

0 〉1X

χL〈yk−1
0 〉1X

=
n−1∏

=k

χL〈y

0〉1X

χL〈y
−1
0 〉1X

=
n−1∏

=k

πχ

〈
y
−1

0

〉
(y
),

where πχ 〈y
−1
0 〉(y
) is the density of the conditional distribution of Y
 given Y 
−1

0
(i.e., the one-step observation predictor at time 
) defined by

πχ

〈
y
−1

0

〉
(y
) �

∫
φχ

〈
y
−1

0

〉
(dx)g(x, y
).(29)

With this notation, the likelihood function χL〈yn−1
0 〉1X equals the product∏n−1

k=0 πχ 〈yk−1
0 〉(yk) [where we let πχ 〈y−1

0 〉(y0) denote the marginal density of Y0].
Now, using coupling results obtained in [15] one may prove that the predictor

distribution forgets its initial distribution exponentially fast under the r-local Doe-
blin assumption (19). Moreover, this implies that also the log-density of the one-
step observation predictor forgets its initial distribution exponentially fast; that is,
for all initial distributions χ and χ ′ there is a deterministic constant β ∈]0,1[ and
an almost surely bounded random variable Cχ,χ ′ such that for all (k,m) ∈ N

∗ ×N

and almost all observation sequences,∣∣lnπχ

〈
Y k−1−m

〉
(Yk) − lnπχ ′

〈
Y k−1−m

〉
(Yk)

∣∣≤ Cχ,χ ′βk+m.(30)

Using this, it is shown in [15], Proposition 1, that:

(i) There exists a function π : YZ
− × Y → R such that for all probability mea-

sures χ ∈M(D, r),

lim
m→∞πχ

〈
Y−1−m

〉
(Y0) = π

〈
Y−1−∞

〉
(Y0), P-a.s.

Moreover,

E
(∣∣lnπ

〈
Y−1−∞

〉
(Y0)

∣∣)< ∞.(31)

(ii) For all probability measures χ ∈ M(D, r), the normalized log-likelihood
function converges according to

lim
n→∞n−1 lnχL

〈
Yn−1

0

〉
1X = 
∞, P-a.s.,(32)
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where 
∞ is the negated relative entropy, that is, the expectation of lnπ〈Y−1−∞〉(Y0)

under the stationary distribution, that is,


∞ � E
(
lnπ

〈
Y−1−∞

〉
(Y0)

)
.(33)

As a first step, we bound the asymptotic variance σ 2
χ 〈h〉(Y n−1

0 ) [defined in (15)]

by the product of two quantities, namely σ 2
χ 〈Yn−1

0 〉(h) ≤ A × Bn, where

A �
(

sup
(k,m)∈N2 : k≤m

m−1∏

=k

π〈Y 
−1−∞〉(Y
)

πχ 〈Y 
−1
0 〉(Y
)

)4

,(34)

Bn �
n∑

m=0

(supx∈X |�
δx,φχ

〈
Ym−1

0
〉〈Yn−1

m 〉(h,1X)|
[∏n−1


=m π〈Y 
−1−∞〉(Y
)]2

)2

.(35)

Quantity (34) can be bounded using the exponential forgetting (30) of the one-step
predictor log-density. More precisely, note that

πχ

〈
Y 
−1−m

〉
(Y
) = χL〈Y 
−m〉1X

χL〈Y 
−1−m 〉1X

;
thus, by applying Proposition 16(ii), we conclude that there exist β ∈]0,1[ and a
P-a.s. finite random variable Cχ such that for all n ∈ N,

n∏

=k

π〈Y 
−1−∞ 〉(Y
)

πχ 〈Y 
−1
0 〉(Y
)

=
n∏


=k

∞∏
m=0

πχ 〈Y 
−1
−m−1〉(Y
)

πχ 〈Y 
−1−m 〉(Y
)
≤

n∏

=k

∞∏
m=0

exp
(
Cχβ
+m)(36)

≤ exp
(
Cχ/(1 − β)2)< ∞, P-a.s.,

implying that A is indeed P-a.s. finite.
Consider now the second quantity (35). Since the process (Yn)n∈Z is strictly

stationary, Yn−1
0 has the same distribution as Y−1−n for all n ∈N

∗. Therefore, for all
n ∈ N

∗, the random variable Bn has the same distribution as

B̃n �
n∑

m=0

(supx∈X |�
δx,φχ

〈
Y−m−1−n

〉〈Y−1−m〉(h,1X)|
[∏m


=1 π〈Y−
−1−∞ 〉(Y−
)]2

)2

.(37)

We will show that supn∈N∗ B̃n is P-a.s. finite, which implies that the sequence
(Bn)n∈N∗ is tight. We split each term of B̃n into two factors according to

supx∈X |�
δx,φχ 〈Y−m−1−n 〉〈Y−1−m〉(h,1X)|

[∏m

=1 π〈Y−
−1−∞ 〉(Y−
)]2

(38)

=
( ‖L〈Y−1−m〉1X‖∞∏m


=1 π〈Y−
−1−∞ 〉(Y−
)

)2 supx∈X |�
δx,φχ 〈Y−m−1−n 〉〈Y−1−m〉(h,1X)|
‖L〈Y−1−m〉1X‖2∞
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and consider each factor separately.
We will show that the first factor in (38) grows at most subgeometrically fast.

Indeed, note that ( ‖L〈Y−1−m〉1X‖∞∏m

=1 π〈Y−
−1−∞ 〉(Y−
)

)2

= exp(mεm),

where

εm � 2

m

(
ln
∥∥L
〈
Y−1−m

〉
1X
∥∥∞ −

m∑

=1

lnπ
〈
Y−
−1−∞

〉
(Y−
)

)
.

According to Lemma 17, εm → 2(
∞ − 
∞) = 0, P-a.s., as m → ∞.
The second factor in (38) is handled using Proposition 16(iii), which guarantees

the existence of a constant β ∈]0,1[ and a P-a.s. random variable C such that for
all (m,n) ∈ (N∗)2,

supx∈X |�
δx,φχ 〈Y−m−1−n 〉〈Y−1−m〉(h,1X)|
‖L〈Y−1−m〉1X‖2∞

≤ Cβm‖h‖∞.(39)

This concludes the proof. �

THEOREM 11. Assume (A1)–(A2). Then for all χ ∈ M(D, r) and all h ∈
F(X ), the sequence (σ̄ 2

χ 〈Yn
0 〉(h))n∈N∗ [defined in (17)] is tight.

PROOF. Using the expression (27) of the asymptotic variance of the predictor
approximation yields for all yn

0 ∈ Yn+1, as

φχ

〈
yn−1

0

〉
g〈yn〉 = πχ

〈
yn−1

0

〉
(yn)

and

πχ

〈
yn−1

0

〉
(yn) × φχ

〈
yk−1

0

〉
L
〈
yn−1
k

〉
1X = φχ

〈
yk−1

0

〉
L
〈
yn
k

〉
1X,

the identity

σ̄ 2
χ

〈
yn

0
〉
(h)

=
n∑

k=0

∫
φχ

〈
yk−1

0

〉
(dx)

[�
δx,φχ 〈yk−1

0 〉〈yn−1
k 〉(g〈yn〉{h − φ̄χ 〈yn

0 〉h},1X)

φχ 〈yk−1
0 〉L〈yn−1

k 〉1X × φχ 〈yk−1
0 〉L〈yn

k 〉1X

]2

,

where

�
δx,φχ 〈yk−1

0 〉
〈
yn−1
k

〉(
g〈yn〉{h − φ̄χ

〈
yn

0
〉
h
}
,1X

)
= δxL

〈
yn−1
k

〉(
g〈yn〉{h − φ̄χ

〈
yn

0
〉
h
})× φχ

〈
yk−1

0

〉
L
〈
yn−1
k

〉
1X(40)

− δxL
〈
yn−1
k

〉
1X × φχ

〈
yk−1

0

〉
L
〈
yn−1
k

〉(
g〈yn〉{h − φ̄χ

〈
yn

0
〉
h
})

.
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Here the equation

φ̄χ

〈
yn

0
〉
h = φχ 〈yk−1

0 〉L〈yn−1
k 〉(g〈yn〉h)

φχ 〈yk−1
0 〉L〈yn−1

k 〉g〈yn〉
(41)

implies that

φχ

〈
yk−1

0

〉
L
〈
yn−1
k

〉(
g〈yn〉{h − φ̄χ

〈
yn

0
〉
h
})

= φχ

〈
yk−1

0

〉
L
〈
yn−1
k

〉(
g〈yn〉h)− φ̄χ

〈
yn

0
〉
h × φχ

〈
yk−1

0

〉
L
〈
yn−1
k

〉
g〈yn〉

= 0,

which implies in turn that the second term on the right-hand side of (40) vanishes.
Thus, developing also the first term and reusing the identity (41) yields

�
δx,φχ 〈yk−1

0 〉〈yn−1
k 〉(g〈yn〉{h − φ̄χ 〈yn

0 〉h},1X)

φχ 〈yk−1
0 〉L〈yn−1

k 〉1X × φχ 〈yk−1
0 〉L〈yn

k 〉1X

= δxL〈yn−1
k 〉(g〈yn〉h) − φ̄χ 〈yn

0 〉h × δxL〈yn−1
k 〉g〈yn〉

φχ 〈yk−1
0 〉L〈yn

k 〉1X

=
�

δx,φχ 〈yk−1
0 〉〈yn−1

k 〉(g〈yn〉h,g〈yn〉)
φχ 〈yk−1

0 〉L〈yn−1
k 〉g〈yn〉 × φχ 〈yk−1

0 〉L〈yn
k 〉1X

=
�

δx,φχ 〈yk−1
0 〉〈yn−1

k 〉(g〈yn〉h,g〈yn〉)
(φχ 〈yk−1

0 〉L〈yn
k 〉1X)2

.

Thus, to sum up,

σ̄ 2
χ

〈
yn

0
〉
(h) =

n∑
k=0

∫
φχ

〈
yk−1

0

〉
(dx)

[�
δx,φχ 〈yk−1

0 〉〈yn−1
k 〉(g〈yn〉h,g〈yn〉)

(φχ 〈yk−1
0 〉L〈yn

k 〉1X)2

]2

,

providing an expression of the asymptotic variance of the particle filter that re-
sembles closely the corresponding expression (27) for the particle predictor. Using
this, the tightness can be established along the very same lines as Theorem 10, and
we leave the details to the interested reader. �

3.2. Tightness of the asymptotic Lp error. In the following we show that tight-
ness of the asymptotic variance implies tightness of the asymptotic Lp error (when
scaled with

√
N ). The asymptotic Lp error given in Theorem 12 below is obtained

by establishing, for fixed time indices n, using a standard exponential deviation
inequality, uniform integrability (with respect to the particle sample size N ) of the
sequence of scaled Lp errors. After this, weak convergence implies convergence of
moments, implying in turn convergence of the Lp error.



LONG-TERM STABILITY OF SEQUENTIAL MONTE CARLO METHODS 1785

THEOREM 12. Assume (A2). Then, for all functions h ∈ F(X ), constants
p ∈R

∗+ and all initial distributions χ ∈ P(X ), P-a.s.,

lim
N→∞

√
NE

1/p(∣∣φN
χ

〈
Yn−1

0

〉
h − φχ

〈
Yn−1

0

〉
h
∣∣p|Yn−1

0

)
= √

2σχ

〈
Yn−1

0

〉
(h)

(
�((p + 1)/2)√

2π

)1/p

,

where � is the gamma function.

PROOF. Recall that if (AN)N∈N∗ is a sequence of random variables such that

AN
D−→ A as N → ∞ and (A

p
N)N∈N∗ is uniformly integrable for some p > 0, then

E(|A|p) < ∞, limN→∞E(A
p
N) = E(Ap) and limN→∞E(|AN |p) = E(|A|p); see,

for example, [31], Theorem A, page 14. Now set, for n ∈ N
∗,

AN,χ

〈
Yn−1

0

〉
(h) �

√
N
(
φN

χ

〈
Yn−1

0

〉
h − φχ

〈
Yn−1

0

〉
h
)
.

Let q > p and write

sup
N∈N∗

E
(∣∣AN,χ

〈
Yn−1

0

〉
(h)
∣∣q |Yn−1

0

)
= sup

N∈N∗

∫ ∞
0

P
(∣∣AN,χ

〈
Yn−1

0

〉
(h)
∣∣≥ ε1/q |Yn−1

0

)
dε

= q sup
N∈N∗

∫ ∞
0

εq−1
P
(∣∣AN,χ

〈
Yn−1

0

〉
(h)
∣∣≥ ε|Yn−1

0

)
dε.

Now, note that (A2)(ii) implies that ‖g〈Yn〉‖∞ is P-a.s. finite for all n ∈ N. Thus,
Assumptions 1 and 2 of [12] are fulfilled, which implies, via Remark 1 in the same
work (see also [13], Lemma 2.1, [8], Theorem 3.1, [10], Theorem 3.39, and [9],
Lemma 4, for similar results), that there exist, for all n ∈ N and h ∈ F(X ), positive
constants Bn and Cn (where only the latter depends on h) such that for all N ∈ N

∗
and all ε > 0,

P
(∣∣AN,χ

〈
Yn−1

0

〉
(h)
∣∣≥ ε|Yn−1

0

)≤ Bn exp
(−Cnε

2).(42)

This implies that for all n ∈N, P-a.s.,

sup
N∈N∗

E
(∣∣AN,χ

〈
Yn−1

0

〉
(h)
∣∣q |Yn−1

0

)≤ qBn

∫ ∞
0

εq−1 exp
(−Cnε

2)dε < ∞,

which establishes, via [32], Lemma II.6.3, page 190, as q > p, that the sequence
(|AN,χ 〈Yn−1

0 〉(h)|p)N∈N is uniformly integrable conditionally on Yn−1
0 , that is,

lim
M→∞ sup

N∈N∗
E
(∣∣AN,χ

〈
Yn−1

0

〉
(h)
∣∣p1{|AN,χ 〈Yn−1

0 〉(h)|≥M}|Yn−1
0

)= 0, P-a.s.
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We may now complete the proof by applying Theorem 2, which states that condi-
tionally on Yn−1

0 , as N → ∞,

AN,χ

〈
Yn−1

0

〉
(h)

D−→ σχ

〈
Yn−1

0

〉
(h)Z,

where Z is a standard normally distributed random variable. �

We next state the corresponding result for the particle filter approximation,
which is obtained along the very same lines as Theorem 12.

THEOREM 13. Assume (A2). Then, for all functions h ∈ F(X ), constants
p ∈ R

∗+ and all initial distributions χ ∈ P(X ), P-a.s.,

lim
N→∞

√
NE

1/p(∣∣φ̄N
χ

〈
Yn

0
〉
h − φ̄χ

〈
Yn

0
〉
h
∣∣p|Yn−1

0

)
= √

2σ̄χ

〈
Yn−1

0

〉
(h)

(
�((p + 1)/2)√

2π

)1/p

,

where � is the gamma function.

4. Examples. In this section, we develop two classes of examples. In Sec-
tion 4.1 we consider the linear Gaussian state–space models, an important model
class that is used routinely in time-series analysis. Recall that in the linear Gaus-
sian case, closed-form solutions to the optimal filtering problem can be obtained
using the Kalman recursions. However, as an illustration, we analyze this model
class under assumptions that are very general. In Section 4.2, we consider a signif-
icantly more general class of nonlinear state–space models. In both these examples
we will find that assumptions (A1)–(A2) are satisfied and straightforwardly veri-
fied.

4.1. Linear Gaussian state–space models. The linear Gaussian state–space
models form an important class of HMMs. Let X = R

dx and Y = R
dy and define

state and observation sequences through the linear dynamic system

Xk+1 = AXk + RUk,

Yk = BXk + SVk,

where (Uk,Vk)k≥0 is a sequence of i.i.d. Gaussian vectors with zero mean and
identity covariance matrix. The noise vectors are assumed to be independent of X0.
Here Uk is du-dimensional, Vk is dy -dimensional and the matrices A, R, B and
S have the appropriate dimensions. Note that we cover also the case du < dx ,
for which the prior kernel Q does not admit a transition density with respect to
Lebesgue measure.
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For any n ∈ N, define the observability and controllability matrices On and Cn

by

On �

⎡⎢⎢⎢⎢⎢⎣
B

BA

BA2

...

BAn−1

⎤⎥⎥⎥⎥⎥⎦ and Cn �
[
An−1R An−2R · · · R

]
,(43)

respectively. We assume the following.

(LGSS1) The pair (A,B) is observable, and the pair (A,R) is controllable, that
is, there exists r ∈ N such that the observability matrix Or and the controllability
matrix Cr have full rank.

(LGSS2) The measurement noise covariance matrix S has full rank.
(LGSS3) E(‖Y0‖2) < ∞.

We now check assumptions (A1)–(A2). The dimension du of the state noise
vector Uk is in many situations smaller than the dimension dx of the state vector
Xk and hence RtR may be rank deficient (here t denotes the transpose). Some ad-
ditional notation is required: for any positive matrix A and vector z of appropriate
dimension, denote ‖z‖2

A � t zA−1z. In addition, define for any n ∈ N,

Fn � Dn
tDn + Sn

tSn,(44)

where

Dn �

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

BR
.. . 0

BAR BR
.. .

...
...

. . . 0
BAn−2R BAn−3R · · · BR

⎤⎥⎥⎥⎥⎥⎥⎦ , Sn �

⎡⎢⎢⎢⎣
S 0 · · · 0

0 S
. . .

...
...

. . .
. . . 0

0 · · · 0 S

⎤⎥⎥⎥⎦ .

Under (LGSS2), the matrix Fn is positive definite for any n ≥ r . When the state
process is initialized at x0 ∈ X, the likelihood of the observations yn−1

0 ∈ Yn is
given by

δx0L
〈
yn−1

0

〉
1X = (2π)−ndy det−1/2(Fn) exp

(−1
2‖yn−1 −Onx0‖2

Fn

)
,

where yn−1 � t [t y0,
ty1, . . . ,

tyn−1] and On is defined in (43).
We first consider (A1). Under (LGSS1), the observability matrix Or is full rank,

and we have for any compact subset K ⊂ Yr ,

lim‖x0‖→∞ inf
yr−1

0 ∈K
‖yr−1 −Orx0‖Fr = ∞,

showing that for all η > 0, we may choose a compact set C ⊂ R
dx such that (20)

is satisfied. It remains to prove that any compact set C is an r-local Doeblin set
satisfying condition (21). For any yr−1

0 ∈ Yr and x0 ∈ X, the measure δx0L〈yr−1
0 〉
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is absolutely continuous with respect to the Lebesgue measure on (X,X ) with
Radon–Nikodym derivative �〈yr−1

0 〉(x0, xr) given (up to an irrelevant multiplica-
tive factor) by

�
〈
yr−1

0

〉
(x0, xr) ∝ det−1/2(Gr ) exp

(
−1

2

∥∥∥∥[yr−1
xr

]
−
[Or

Ar

]
x0

∥∥∥∥2

Gr

)
,(45)

where the covariance matrix Gr is

Gr �
[Dr

Cr

] [
tDr

tCr

]+ [Sr

0

] [
tSr

t0
]
.

The proof of (45) relies on the positivity of Gr , which requires further discussion.
By construction, the matrix Gr is nonnegative. For all yr−1 ∈ Yr and x ∈ X, the
equation[

tyr−1
t x
]
Gr

[
yr−1
x

]
= ∥∥tDryr−1 + tCrx

∥∥2 + ∥∥tSryr−1
∥∥2 = 0

implies that ‖tDryr−1 + tCrx‖2 = 0 and ‖tSryr−1‖2 = 0. Since the matrix Sr has
full rank, this implies that yr−1 = 0. Since also Cr has full rank [the pair (A,R) is
controllable], this implies in turn that x = 0. Therefore, the matrix Gr is positive
definite and the function

(x0, xr) �→
∥∥∥∥[yr−1

xr

]
−
[Or

Ar

]
x0

∥∥∥∥2

Gr

is continuous for all yr−1. It is therefore bounded on any compact subset of X2.
This implies that every nonempty compact set C ⊂ R

dx is an r-local Doeblin set,
with λC(·) = λLeb(·)/λLeb(C) and

ε−
C

(
yr−1

0

)= (
λLeb(C)

)−1 inf
(x0,xr )∈C2

�
〈
yr−1

0

〉
(x0, xr),

ε+
C

(
yr−1

0

)= (
λLeb(C)

)−1 sup
(x0,xr )∈C2

�
〈
yr−1

0

〉
(x0, xr).

Consequently, condition (21) is satisfied for any compact set K ⊆ Yr−1. It remains
to verify (A1)(iii). Under (LGSS1), the measure δx0L〈yr−1

0 〉 is absolutely continu-
ous with respect to the Lebesgue measure λLeb; therefore, for any set D ⊂ R

dx ,

inf
x0∈D

δx0L
〈
yr−1

0

〉
(D) ≥ inf

(x0,xr )∈D2
�
〈
yr−1

0

〉
(x0, xr)λ

Leb(D).

Take D to be any compact set with positive Lebesgue measure. Now,

sup
(x0,xr )∈D2

∥∥∥∥[yr−1
xr

]
−
[Or

Ar

]
x0

∥∥∥∥2

Gr

≤ 2λmax(Gr )
{
‖yr−1‖2 + max

x∈D
‖x‖2[1 + λmax

(tOrOr + tArAr)]},
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where λmax(A) is the largest eigenvalue of A. Under (LGSS3), E(‖Y0‖2) < ∞,
implying that (A1)(iii) is satisfied for any compact set.

We now consider (A2). Under (LGSS2), S has full rank, and taking the reference
measure λLeb as the Lebesgue measure on Y, g(x, y) is, for each x ∈ X, a Gaussian
density with covariance matrix StS. We therefore have∥∥g〈y〉∥∥∞ = (2π)−dy/2 det−1/2(StS

)
< ∞

for all y ∈ Y, which verifies (A2)(i)–(ii).
To conclude this discussion, we need to specify more explicitly the set M(D, r)

[see (24)] of possible initial distributions. Using Proposition 7, we verify sufficient
conditions (25) and (26). To check (25), we use Remark 9: for any open subset
O ⊂ R

dx and x ∈ X, Q(x,O) = E(1O(Ax + RU)), where the expectation is taken
with respect to the du-dimensional standard normal distribution. Let (xn)n∈N∗ be
a sequence in X converging to x. By using that the function 1O is lower semi-
continuous we obtain, via Fatou’s lemma,

lim inf
n→∞ Q(xn,O) ≥ E

(
lim inf
n→∞ 1O(Axn + RU)

)
≥ Q(x,O),

showing that the function x �→ Q(x,O) is lower semi-continuous for any open
subset O.

Assumption (LGSS2) implies that for all (x, y) ∈ X × Y,

lng(x, y) ≥ −dy

2
ln(2π) − 1

2
ln det−1/2(StS)

− [
λmin

(
StS

)]−1(‖y‖2 + ‖Bx‖2),
where λmin(S

tS) is the minimal eigenvalue of StS. Therefore (26) is satisfied under
(LGSS3). Consequently, we may apply Theorems 10 and 11 to establish tightness
of the asymptotic variances of the particle predictor and filter approximations for
any initial distribution χ ∈ P(X ) as soon as the process (Yk)k∈Z is strictly station-
ary ergodic and E(‖Y0‖2) < ∞.

4.2. Nonlinear state–space models. We now turn to a very general class of
nonlinear state–space models. Let X =R

d , Y = R

 and X and Y be the associated

Borel σ -fields. In the following we assume that for each x ∈ X, the probability
measure Q(x, ·) has a density q(x, ·) with respect to the Lebesgue measure λLeb

on R
d . For instance, the state sequence (Xk)k∈N could be defined through some

nonlinear recursion

Xk = T (Xk−1) + �(Xk−1)ζk,(46)

where (ζk)k∈N∗ is an i.i.d. sequence of d-dimensional random vectors with den-
sity ρζ with respect to the Lebesgue measure λLeb on R

d . Here T :Rd → R
d and

� :Rd → R
d×d are given (measurable) matrix-valued functions such that �(x) is



1790 R. DOUC, E. MOULINES AND J. OLSSON

full rank for each x ∈ X. Models of form (46), typically referred to as vector au-
toregressive conditional heteroscedasticity (ARCH) models, are often of interest
in time series analysis and financial econometrics. In this context, we let the obser-
vations (Yk)k∈N be generated through a given measurement density g(x, y) (again
with respect to the Lebesgue measure).

We now introduce the basic assumptions of this section.

(NL1) The function (x, x′) �→ q(x, x′) on X2 is positive and continuous. In
addition, sup(x,x′)∈X2 q(x, x′) < ∞.

(NL2) For any compact subset K ⊂ Y,

lim‖x‖→∞ sup
y∈K

g(x, y)

‖g〈y〉‖∞
= 0.

(NL3) For all (x, y) ∈ X × Y, g(x, y) > 0 and

E
(
ln+∥∥g〈Y0〉

∥∥∞)< ∞.

(NL4) There exists a compact subset D ⊂ Y such that

E

(
ln− inf

x∈D
g(x,Y0)

)
< ∞.

Under (NL1), every compact set C ⊂ X = R
d with positive Lebesgue measure

is 1-small and therefore local Doeblin with λC(·) = λLeb(·∩C)/λLeb(C), ϕC〈y0〉 =
λLeb(C) and

ε−
C = inf

(x,x′)∈C2
q
(
x, x′),

ε+
C = sup

(x,x′)∈C2
q
(
x, x′).

Under (NL1) and (NL2), conditions (23) and (21) are satisfied with r = 1. In ad-
dition, (22) is implied by (NL1) and (NL4). Consequently, assumption (A1) holds.
Moreover, (A2) follows directly from (NL3). So, finally, under (NL1)–(NL4) we
conclude, using Proposition 7, Theorems 10 and 11, that the asymptotic variances
of the bootstrap particle predictor and filter approximations are tight for any initial
distribution χ such that χ(D) > 0.

5. Proofs.

5.1. Forgetting of the initial distribution.

LEMMA 14. Assume (A1)–(A2). Then for all γ > 2/3 there exist functions
ργ : ]0,1[ → ]0,1[ and Cγ : ]0,1[ →R+ such that for all n ∈ N and all zn−1

0 ∈ Ynr ,

where r ∈ N
∗ is as in (A1) and zi = y

(i+1)r−1
ir , satisfying

n−1
n−1∑
i=0

1K(zi) ≥ γ,
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all functions f and h in F+(X ), all finite measures χ and χ ′ in M(X ), and all
η ∈]0,1[,∣∣�χ,χ ′

〈
zn−1

0

〉(
f,h

)∣∣
≤ ρn

γ (η)
(
χL

〈
zn−1

0

〉
f × χ ′L

〈
zn−1

0

〉
h + χ ′L

〈
zn−1

0

〉
f × χL

〈
zn−1

0

〉
h
)

(47)

+ Cγ (η)ηn‖f ‖∞‖h‖∞
n−1∏
i=0

∥∥L〈zi〉1X
∥∥2
∞χ(X)χ ′(X),

∣∣∣∣ln( χL〈zn−1
0 〉h

χL〈zn−1
0 〉f

)
− ln

(
χ ′L〈zn−1

0 〉h
χ ′L〈zn−1

0 〉f
)∣∣∣∣

≤ (
1 − ργ (η)

)−1(48)

×
(

2ρn
γ (η) + Cγ (η)ηn‖f ‖∞‖h‖∞

∏n−1
i=0 ‖L〈zi〉1X‖∞χ(X)χ ′(X)

χL〈zn−1
0 〉f × χ ′L〈zn−1

0 〉h
)
,

∣∣∣∣ χL〈zn−1
0 〉h

χL〈zn−1
0 〉f − χ ′L〈zn−1

0 〉h
χ ′L〈zn−1

0 〉f
∣∣∣∣

≤ ρn
γ (η)

(
χL〈zn−1

0 〉h
χL〈zn−1

0 〉f + χ ′L〈zn−1
0 〉h

χ ′L〈zn−1
0 〉f

)
(49)

+ Cγ (η)ηn‖h‖∞‖f ‖∞
∏n−1

i=0 ‖L〈zi〉1X‖2∞χ(X)χ ′(X)

χL〈zn−1
0 〉f × χ ′L〈zn−1

0 〉f .

PROOF. The proof is adapted straightforwardly from [15], Proposition 5. �

LEMMA 15. Assume (A1). Then there exists a constant κ > 0 such that for all
χ ∈M(D, r) [where M(D, r) is defined in (24)],

inf
(k,m)∈N∗×N

κ(k+m)χL
〈
Y k−1−m

〉
1X > 0, P-a.s.,(50)

and

inf
(k,m)∈N∗×N

κ(k+m)
∥∥L
〈
Y k−1−m

〉
1X
∥∥∞ > 0, P-a.s.(51)

PROOF. To derive (50) we first establish that

lim inf
k+m→∞(k + m)−1 lnχL

〈
Y k−1−m

〉
1X

(52)
≥ −rE

(
ln− inf

x∈D
δxL

〈
Y r−1

0

〉
1D

)
> −∞, P-a.s.,
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where the last inequality follows from (A1)(iii). We now establish the first inequal-
ity in (52). Set ak,m � −k + �(k + m)/r�r and note that −ak,m ∈ {−m, . . . ,−m +
r − 1}. Then write

lnχL
〈
Y k−1−m

〉
1X

≥ lnχL
〈
Y

−ak,m−m

〉
1D +

�(k+m)/r�−1∑
i=0

ln inf
x∈D

δxL
〈
Y

−ak,m+(i+1)r−1
−ak,m+ir

〉
1D

(53)

≥ −
r−1∑
i=0

ln− χL
〈
Y−m+i−m

〉
1D

−
�(k+m)/r�−1∑

i=0

ln− inf
x∈D

δxL
〈
Y

−ak,m+(i+1)r−1
−ak,m+ir

〉
1D.

For i ∈ N, set [i]r � i − �i/r�r . With this notation, ak,m = [ak,m]r + �ak,m/r�r .
Then, since [i]r ∈ {0, . . . , r − 1},

−
�(k+m)/r�−1∑

i=0

ln− inf
x∈D

δxL
〈
Y

−ak,m+(i+1)r−1
−ak,m+ir

〉
1D

= −
�(k+m)/r�−1∑

i=0

ln− inf
x∈D

δxL
〈
Y

−[ak,m]r+(i−�ak,m/r�+1
)
r−1

−[ak,m]r+(i−�ak,m/r�)r 〉
1D

(54)

≥ −
r−1∑
j=0

�(k+m)/r�−1∑
i=0

ln− inf
x∈D

δxL
〈
Y

−j+(i−�ak,m/r�+1
)
r−1

−j+(i−�ak,m/r�)r 〉
1D

= −
r−1∑
j=0

�(k+m)/r�−�ak,m/r�−1∑

=−�ak,m/r�

ln− inf
x∈D

δxL
〈
Y

−j+(
+1)r−1
−j+
r

〉
1D,

where the last identity follows by reindexing the summation. We now plug (54)
into (53); the ergodicity of the process (Zn)n∈Z [assumption (A1)(i)] then implies,
via Lemma 18, P-a.s.,

lim inf
k+m→∞(k + m)−1 lnχL

〈
Y k−1−m

〉
1X

≥
r−1∑
j=0

E

(
ln− inf

x∈D
δxL

〈
Y

−j+r−1
−j

〉
1D

)
= −rE

(
ln− inf

x∈D
δxL

〈
Y r−1

0

〉
1D

)
,

which shows (52). Now, choose a constant κ such that

−rE
(
ln− inf

x∈D
δxL

〈
Y r−1

0

〉
1D

)
> − lnκ > −∞.
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According to (52), there exists a P-a.s. finite N
∗-valued random variable N such

that if k + m ≥ N ,

lnχL
〈
Y r−1

0

〉
1X ≥ (− lnκ)(k + m),

which implies that

inf
k+m≥N

κk+mχL
〈
Y r−1

0

〉
1X ≥ 1.

On the other hand, assumption (A2) implies that for all (k,m) ∈ N
∗ × N,

χL〈Y r−1
0 〉1X > 0, P-a.s. This completes the proof of (50). Finally, the proof of (51)

follows by combining ∥∥L
〈
Y k−1−m

〉
1X
∥∥∞ ≥ χL

〈
Y k−1−m

〉
1X

and (50). �

For all probability measures χ ∈ P(X ), all (k,m) ∈ N
∗ ×N, and all sequences

yk−m ∈ Ym+k+1, define the set

M
〈
yk−m

〉
(χ)

(55)
�
{
χ̃ ∈ P(X ) :

∥∥g〈yk〉
∥∥∞ × χ̃L

〈
yk−1−m

〉
1X ≥ (1/2)χL

〈
yk−m

〉
1X
}

of probability measures on (X,X ) and note that this set is nonempty since χ ∈
M〈yk−m〉(χ). The choice of 1/2 in the definition of M〈yk−m〉(χ) is irrelevant, and
this factor can be replaced by any constant strictly less than 1.

PROPOSITION 16. Assume (A1)–(A2). Then there exists a constant β ∈]0,1[
such that the following hold:

(i) For all probability measures χ and χ ′ in M(D, r) there exists a P-a.s. finite
random variable Cχ,χ ′ such that for all (k,m) ∈ N

∗ ×N and all χ̃ ∈ M〈Y k−m〉(χ),

ln
(

χ̃L〈Y k−m〉1X

χ̃L〈Y k−1−m 〉1X

)
− ln

(
χ ′L〈Y k−m〉1X

χ ′L〈Y k−1−m 〉1X

)
≤ Cχ,χ ′βk+m, P-a.s.

(ii) For all probability measures χ in M(D, r) there exists a P-a.s. finite ran-
dom variable Cχ such that for all (k,m) ∈N

∗ ×N,∣∣∣∣ln( χL〈Y k−m〉1X

χL〈Y k−1−m 〉1X

)
− ln

(
χL〈Y k−m−1〉1X

χL〈Y k−1
−m−1〉1X

)∣∣∣∣≤ Cχβk+m, P-a.s.

(iii) There exists a P-a.s. finite random variable C such that for m ∈ N
∗, all

probability measures χ and χ ′ in P(X ) and all h ∈ F(X ),

|�χ,χ ′ 〈Y−1−m〉(h,1X)|
‖L〈Y−1−m〉1X‖2∞

≤ Cβm‖h‖∞, P-a.s.
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PROOF OF PROPOSITION 16(i) AND (ii). Let χ̃ ∈ M〈Y k−m〉(χ). Recall the

notation Zi = Y
(i+1)r−1
ir and consider the decompositions

χL
〈
Y k−m

〉
1X = χL

〈
Y

−�m/r�r−1
−m

〉
L
〈
Z

�k/r�−1
−�m/r�

〉
L
〈
Y k�k/r�r

〉
1X,

χL
〈
Y k−1−m

〉
1X = χL

〈
Y

−�m/r�r−1
−m

〉
L
〈
Z

�k/r�−1
−�m/r�

〉
L
〈
Y k−1

�k/r�r
〉
1X,

where we make use of convention (9) if necessary.
Choose γ such that 2/3 < γ < P(Z0 ∈ K), where K is defined in (A1)(i).

Assume that (k,m) ∈ N
∗ × N are both larger than r and denote by bk,m �

�k/r� + �m/r�. In addition, define the event

�k,m �
{(⌊

k

r

⌋
+
⌊
m

r

⌋)−1 �k/r�−1∑

=−�m/r�

1K(Z
) ≥ γ

}
.

By Lemma 14 [equation (48)] it holds for all η ∈]0,1[, on the event �k,m,

(
1 − ργ (η)

)(
ln
(

χ̃L〈Y k−m〉1X

χ̃L〈Y k−1−m 〉1X

)
− ln

(
χ ′L〈Y k−m〉1X

χ ′L〈Y k−1−m 〉1X

))
(a)≤ 2ρ

bk,m
γ (η) + Cγ (η)ηbk,m‖g〈Yk〉‖∞

∏k−1
i=−m ‖g〈Yi〉‖2∞

χ̃L〈Y k−1−m 〉1X × χ ′L〈Y k−m〉1X

(56)

(b)≤ 2ρ
bk,m
γ (η) + 2Cγ (η)ηbk,m

∏k
i=−m ‖g〈Yi〉‖2∞

χL〈Y k−m〉1X × χ ′L〈Y k−m〉1X
,

where:

(a) follows from (48) and the bound δxL〈Y v
u 〉1X ≤ ∏v


=u ‖g〈Y
〉‖∞, valid for
u ≤ v, and

(b) follows from the fact that χ̃ ∈ M〈Y k−m〉(χ).

Since, under (A1)(i), the sequence (Zn)n∈Z is ergodic and P(Z0 ∈ K) > γ ,
Lemma 18 implies that

P

(⋃
j≥0

⋂
(k,m)∈N∗×N

k+m≥j

�k,m

)
= 1.

Hence, there exists a P-a.s. finite integer-valued random variable U such that (56)
is satisfied for all (k,m) ∈ N

∗ ×N such that k + m ≥ U .
The lower bound obtained in Lemma 15 implies that there exists a constant

κ > 0 such that for all probability measures χ and χ ′ in M(D, r) and all (k,m) ∈
N

∗ ×N, P-a.s.,

χL
〈
Y k−m

〉
1X ≥ �Cχ,χ ′κ−(k+m+1),

χ ′L
〈
Y k−m

〉
1X ≥ �Cχ,χ ′κ−(k+m+1),
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where �Cχ,χ ′ is a P-a.s. finite constant.
By plugging these bounds into (56) and using Lemma 19 with η sufficiently

small (note that (56) is satisfied for all η ∈]0,1[), we conclude that there exist a
P-a.s. finite random variable Cχ,χ ′ and a constant β < 1 such that for all (k,m) ∈
N

∗ ×N, P-a.s.,

ln
(

χ̃L〈Y k−m〉1X

χ̃L〈Y k−1−m 〉1X

)
− ln

(
χ ′L〈Y k−m〉1X

χ ′L〈Y k−1−m 〉1X

)
≤ Cχ,χ ′βk+m,

which completes the proof of Proposition 16(i). Note that χ ∈ M〈Y k−m〉(χ) implies
that the previous relation is satisfied with χ̃ = χ .

The proof of Proposition 16(ii) follows the same lines as the proof of Proposi-
tion 16(i) and is omitted for brevity. �

PROOF OF PROPOSITION 16(iii). We may assume that the function h is non-
negative (otherwise the positive and negative parts of h can be treated separately).
As in the proof of Proposition 16(i), write

χL
〈
Y−1−m

〉
h = χL

〈
Y

−�m/r�r−1
−m

〉
L
〈
Z−1

−�m/r�
〉
h

and define the event

�m �
{⌊

m

r

⌋−1 −1∑

=−�m/r�

1K(Z
) ≥ γ

}
.

By Lemma 14 [equation (49)] it holds, on the event �m,∣∣∣∣ χL〈Y−1−m〉h
χL〈Y−1−m〉1X

− χ ′L〈Y−1−m〉h
χ ′L〈Y−1−m〉1X

∣∣∣∣
(57)

≤ 2‖h‖∞ρ�m/r�
γ (η) + Cγ (η)η�m/r�‖h‖∞

∏−1
i=−m ‖g〈Yi〉‖2∞

χL〈Y−1−m〉1X × χ ′L〈Y−1−m〉1X

,

where we used that for u ≤ v, δxL〈Y v
u 〉1X ≤ ∏v


=u ‖g〈Y
〉‖∞. Under (A1)(i),
Birkhoff’s ergodic theorem (see, e.g., [32]) ensures that P(lim infm→∞ �m) = 1;
therefore, there exists a P-a.s. finite random variable U such that (57) is satisfied
for m ≥ U . Then, for m ≥ U ,

|�χ,χ ′ 〈Y−1−m〉(h,1X)|
‖L〈Y−1−m〉1X‖2

= χL〈Y−1−m〉1X × χ ′L〈Y−1−m〉1X

‖L〈Y−1−m〉1X‖2

∣∣∣∣ χL〈Y−1−m〉h
χL〈Y−1−m〉1X

− χ ′L〈Y−1−m〉h
χ ′L〈Y−1−m〉1X

∣∣∣∣(58)

≤ 2‖h‖∞ρ�m/r�
γ (η) + Cγ (η)η�m/r�‖h‖∞

∏−1
i=−m ‖g〈Yi〉‖2∞

‖L〈Y−1−m〉1X‖2
,
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we have used that χL〈Y−1−m〉1X ≤ ‖L〈Y−1−m〉1X‖∞. By Lemma 15, equation (51),
there exist a constant κ > 0 and a P-a.s. finite random variable �C such that∥∥L

〈
Y−1−m

〉
1X
∥∥∞ ≥ �Cκ−m, P-a.s.

Finally, we complete the proof by inserting this bound into (58) and applying
Lemma 19 to the right-hand side of the resulting inequality. �

5.2. Convergence of the log-likelihood.

LEMMA 17. Assume (A1)–(A2). Then, P-a.s.,

lim
n→∞n−1 ln

∥∥L
〈
Yn

0
〉
1X
∥∥∞ = 
∞,(59)

lim
n→∞n−1 ln

∥∥L
〈
Y 0−n

〉
1X
∥∥∞ = 
∞,(60)

lim
n→∞n−1

n∑
k=1

lnπ
〈
Y−k−1−∞

〉
(Y−k) = 
∞,(61)

where 
∞ is defined in (33).

PROOF OF (59). Let (αn)n∈N∗ be a nondecreasing sequence such that
limn→∞ αn = 1 and for any n ∈ N

∗, αn ≥ 1/2. For all n ∈ N, choose x̃n ∈ X such
that

αn

∥∥L
〈
Yn

0
〉
1X
∥∥∞ ≤ δx̃n

L
〈
Yn

0
〉
1X ≤ ∥∥L

〈
Yn

0
〉
1X
∥∥∞.(62)

Note that for all k ∈ N
∗,

δx̃k−1L
〈
Y k−1

0

〉
1X ≥ αk−1

∥∥L
〈
Y k−1

0

〉
1X
∥∥∞ ≥ αk−1δx̃k

L
〈
Y k−1

0

〉
1X.(63)

On the other hand, for all probability measures χ ∈P(X ) it holds that

δx̃k
L
〈
Y k−1

0

〉
1X

(a)≥ δx̃k
L〈Y k

0 〉1X

‖g〈Yk〉‖∞
(b)≥ αk

‖L〈Y k
0 〉1X‖∞

‖g〈Yk〉‖∞
≥ αk

χL〈Y k
0 〉1X

‖g〈Yk〉‖∞
,(64)

where (a) follows from the bound δx̃k
L〈Y k

0 〉1X ≤ ‖g〈Yk〉‖∞δx̃k
L〈Y k−1

0 〉1X and (b)
stems from the definition (62) of αn. Then

0 ≤ n−1(ln∥∥L
〈
Yn

0
〉
1X
∥∥∞ − lnχL

〈
Yn

0
〉
1X
)

≤ −n−1 lnαn + n−1(ln(αn

∥∥L
〈
Yn

0
〉
1X
∥∥∞)− lnχL

〈
Yn

0
〉
1X
)

≤ −n−1 lnαn + n−1(ln δx̃n
L
〈
Yn

0
〉
1X − lnχL

〈
Yn

0
〉
1X
)

(65)

= −n−1 lnαn + n−1(ln δx̃0L〈Y0〉1X − lnχL〈Y0〉1X
)

+ n−1
n∑

k=1

[
ln
(

δx̃k
L〈Y k

0 〉1X

δx̃k−1L〈Y k−1
0 〉1X

)
− ln

(
χL〈Y k

0 〉1X

χL〈Y k−1
0 〉1X

)]
.
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For each term in the sum it holds, by (63),

ln
(

δx̃k
L〈Y k

0 〉1X

δx̃k−1L〈Y k−1
0 〉1X

)
− ln

(
χL〈Y k

0 〉1X

χL〈Y k−1
0 〉1X

)

≤ − lnαk−1 + ln
(

δx̃k
L〈Y k

0 〉1X

δx̃k
L〈Y k−1

0 〉1X

)
− ln

(
χL〈Y k

0 〉1X

χL〈Y k−1
0 〉1X

)
.

For all k ∈ N
∗, (64) implies that

δx̃k
L
〈
Y k−1

0

〉
1X ≥ 1

2

χL〈Y k
0 〉1X

‖g〈Yk〉‖∞
,

so that δx̃k
belongs to the set M〈Y k−1

0 〉(χ) [defined in (55)]. Proposition 16(i) then
provides a constant β ∈]0,1[ and a P-a.s. finite random variable Cχ such that

ln
(

δx̃k
L〈Y k

0 〉1X

δx̃k
L〈Y k−1

0 〉1X

)
− ln

(
χL〈Y k

0 〉1X

χL〈Y k−1
0 〉1X

)
≤ Cχβk.(66)

Finally, statement (59) follows by plugging the bound (66) into (65), letting n tend
to infinity and using (32). �

PROOF OF (60). For all (p,n) ∈ N
2 such that p ≤ n, define Wp,n �

ln‖L〈Yn−1
p 〉1X‖∞ and W̃p,n � ln‖L〈Y−p

−n+1〉1X‖∞. Note that these two sequences
are subadditive in the sense that for all (p,n) ∈ N

2 such that p ≤ n,

W0,n ≤ W0,p + Wp,n,

W̃0,n ≤ W̃0,p + W̃p,n.

Finally, for all x ∈ D, m ∈ N and ymr−1
0 ∈ Ymr , it holds that

∥∥L
〈
ymr−1

0

〉
1X
∥∥∞ ≥ δxL

〈
ymr−1

0

〉
1X ≥

m−1∏

=0

inf
x∈D

δxL
〈
y

(k+1)r−1
kr

〉
1D.(67)

Using the stationarity of the observation process (Yk)k∈Z, we get, via assump-
tion (A1)(iii), for all m ∈N

∗,

(mr)−1
E(W0,mr)

= (mr)−1
E(W̃0,mr) ≥ (mr)−1

E
(
ln
∥∥L
〈
ymr−1

0

〉
1X
∥∥∞)(68)

≥ r−1
E
(
ln inf

x∈D
δxL

〈
y

(k+1)r−1
kr

〉
1D
)
> −∞.

The sequences (E(W0,n))n∈N∗ and (E(W̃0,n))n∈N∗ are subadditive; Fekete’s
lemma (see [30]) thus implies that the sequences (n−1

E(W0,n))n∈N∗ and
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(n−1
E(W̃0,n))n∈N∗ have limits in [−∞,∞[ and that

lim
n→∞n−1

E(W0,n) = lim
n→∞n−1

E(W̃0,n)

= inf
n∈N∗ n−1

E(W0,n)

= inf
n∈N∗ n−1

E(W̃0,n).

However, by (68) there exists a subsequence that is bounded away from −∞,
showing that

inf
n∈N∗ n−1

E(W0,n) = lim
n→∞n−1

E(W0,n) > −∞,

inf
n∈N∗ n−1

E(W̃0,n) = lim
n→∞n−1

E(W̃0,n) > −∞.

Now, by applying Kingman’s subadditive ergodic theorem (see [22]) and using
again that E(W̃0,k) = E(W0,k) under stationarity, we obtain

lim
n→∞n−1W̃0,n = inf

n∈N∗ n−1
E(W̃0,n) = inf

n∈N∗ n−1
E(W0,n)

= lim
n→∞n−1W0,n = 
∞, P-a.s.,

where the last limit follows from (59). This completes the proof of statement (60).
�

PROOF OF (61). Since E(| lnπ〈Y−1−∞〉(Y0)|) < ∞ and the process (Yk)k∈Z is
stationary and ergodic, (61) follows from Birkhoff’s ergodic theorem. �

APPENDIX: TECHNICAL LEMMAS

LEMMA 18. If (Un)n∈Z is a stationary and ergodic sequence of random vari-
ables such that E(|U0|) < ∞, then

lim
k+m→∞(k + m)−1

(
k−1∑


=−m

U


)
= E(U0), P-a.s.(69)

PROOF. Denote

�1 �
{
ω ∈ �; lim

k+m→∞(k + m)−1

(
k−1∑


=−m

U
(ω)

)
= E(U0)

}
,

�2 �
{
ω ∈ �; lim

m→∞

∑−1

=−m U
(ω)

m
= lim

k→∞

∑k−1

=0 U
(ω)

k
= E(U0)

}
.

By Birkhoff’s ergodic theorem, P(�2) = 1. To obtain (69), it is thus sufficient to
show that �c

1 ∩ �2 = ∅. The proof is by contradiction. Assume �c
1 ∩ �2 �= ∅, so
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that there exists ω ∈ �c
1 ∩ �2. For such ω, the fact that ω /∈ �1 implies that there

exist a positive number ε(ω) > 0 and integer-valued sequences (kn(ω))n∈N and
(mn(ω))n∈N such that kn(ω) + mn(ω) ≥ n and for all n ≥ 0,∣∣∣∣

∑kn(ω)−1

=−mn(ω) U
(ω)

kn(ω) + mn(ω)
−E(U0)

∣∣∣∣≥ ε(ω).(70)

Consider the following decomposition:∑kn(ω)−1

=−mn(ω) U
(ω)

kn(ω) + mn(ω)
= mn(ω)

kn(ω) + mn(ω)

∑−1

=−mn(ω) U
(ω)

mn(ω)
(71)

+ kn(ω)

kn(ω) + mn(ω)

∑kn(ω)−1

=0 U
(ω)

kn(ω)
.

First, assume that (kn(ω))n∈N is bounded. Since kn(ω) + mn(ω) ≥ n, it follows
that mn(ω) tends to infinity, implying that

lim
n→∞

mn(ω)

kn(ω) + mn(ω)
= 1,

(72)

lim
n→∞

kn(ω)

kn(ω) + mn(ω)
= 0,

whereas
∑kn(ω)−1


=0 U
(ω)/kn(ω) remains bounded. However, since ω ∈ �2 and
limn→∞ mn(ω) = ∞,

lim
n→∞

∑−1

=−mn(ω) U
(ω)

mn(ω)
= E(U0),

which implies, together with (72), that

lim
n→∞

∑kn(ω)−1

=−mn(ω) U
(ω)

kn(ω) + mn(ω)
= E(U0).

This contradicts (70). Using similar arguments one proves that (mn(ω))n∈N is un-
bounded as well. Hence, we have proved that neither (kn(ω))n∈N nor (mn(ω))n∈N
are bounded.

Then, by extracting a subsequence if necessary, one may assume that
limn→∞ kn(ω) = limn→∞ mn(ω) = ∞. Since ω ∈ �2, this implies that

lim
n→∞

∑−1

=−mn(ω) U
(ω)

mn(ω)
= lim

n→∞

∑kn(ω)−1

=0 U
(ω)

kn(ω)
= E(U0).

Combining this with (71), we obtain that

lim
n→∞

∑kn(ω)−1

=−mn(ω) U
(ω)

kn(ω) + mn(ω)
= E(U0),
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which again contradicts (70). Finally, �c
1 ∩ �2 = ∅, and since P(�2) = 1, we

finally obtain that P(�1) = 1. The proof is complete. �

LEMMA 19. Let (Uk)k∈Z, (Vk)k∈Z and (Wk)k∈Z be stationary sequences such
that

E
(
ln+ U0

)
< ∞, E

(
ln+ V0

)
< ∞, E

(
ln+ W0

)
< ∞.

Then for all η and ρ in ]0,1[ such that − lnη > E(ln+ V0) there exist a P-a.s. finite
random variable C and a constant β ∈]0,1[ such that for all k ∈ N

∗ and m ∈ N,
P-a.s.,

ρk+m + ηk+mW−m

(
k−1∏


=−m

V


)
Uk ≤ Cβk+m.

PROOF. See [15], Lemma 6. �
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