Open Access
December 2013 Limit theory for point processes in manifolds
Mathew D. Penrose, J. E. Yukich
Ann. Appl. Probab. 23(6): 2161-2211 (December 2013). DOI: 10.1214/12-AAP897

Abstract

Let $Y_{i}$, $i\geq1$, be i.i.d. random variables having values in an $m$-dimensional manifold $\mathcal{M}\subset\mathbb{R}^{d}$ and consider sums $\sum_{i=1}^{n}\xi(n^{1/m}Y_{i},\{n^{1/m}Y_{j}\}_{j=1}^{n})$, where $\xi$ is a real valued function defined on pairs $(y,\mathcal{Y} )$, with $y\in\mathbb{R}^{d}$ and $\mathcal{Y}\subset\mathbb{R}^{d}$ locally finite. Subject to $\xi$ satisfying a weak spatial dependence and continuity condition, we show that such sums satisfy weak laws of large numbers, variance asymptotics and central limit theorems. We show that the limit behavior is controlled by the value of $\xi$ on homogeneous Poisson point processes on $m$-dimensional hyperplanes tangent to $\mathcal{M} $. We apply the general results to establish the limit theory of dimension and volume content estimators, Rényi and Shannon entropy estimators and clique counts in the Vietoris–Rips complex on $\{Y_{i}\}_{i=1}^{n}$.

Citation

Download Citation

Mathew D. Penrose. J. E. Yukich. "Limit theory for point processes in manifolds." Ann. Appl. Probab. 23 (6) 2161 - 2211, December 2013. https://doi.org/10.1214/12-AAP897

Information

Published: December 2013
First available in Project Euclid: 22 October 2013

zbMATH: 1285.60021
MathSciNet: MR3127932
Digital Object Identifier: 10.1214/12-AAP897

Subjects:
Primary: 60F05
Secondary: 60D05

Keywords: clique counts , dimension estimators , entropy estimators , Manifolds , Vietoris–Rips complex

Rights: Copyright © 2013 Institute of Mathematical Statistics

Vol.23 • No. 6 • December 2013
Back to Top