Abstract
Let $Y_{i}$, $i\geq1$, be i.i.d. random variables having values in an $m$-dimensional manifold $\mathcal{M}\subset\mathbb{R}^{d}$ and consider sums $\sum_{i=1}^{n}\xi(n^{1/m}Y_{i},\{n^{1/m}Y_{j}\}_{j=1}^{n})$, where $\xi$ is a real valued function defined on pairs $(y,\mathcal{Y} )$, with $y\in\mathbb{R}^{d}$ and $\mathcal{Y}\subset\mathbb{R}^{d}$ locally finite. Subject to $\xi$ satisfying a weak spatial dependence and continuity condition, we show that such sums satisfy weak laws of large numbers, variance asymptotics and central limit theorems. We show that the limit behavior is controlled by the value of $\xi$ on homogeneous Poisson point processes on $m$-dimensional hyperplanes tangent to $\mathcal{M} $. We apply the general results to establish the limit theory of dimension and volume content estimators, Rényi and Shannon entropy estimators and clique counts in the Vietoris–Rips complex on $\{Y_{i}\}_{i=1}^{n}$.
Citation
Mathew D. Penrose. J. E. Yukich. "Limit theory for point processes in manifolds." Ann. Appl. Probab. 23 (6) 2161 - 2211, December 2013. https://doi.org/10.1214/12-AAP897
Information