Open Access
April 2011 Affine processes on positive semidefinite matrices
Christa Cuchiero, Damir Filipović, Eberhard Mayerhofer, Josef Teichmann
Ann. Appl. Probab. 21(2): 397-463 (April 2011). DOI: 10.1214/10-AAP710

Abstract

This article provides the mathematical foundation for stochastically continuous affine processes on the cone of positive semidefinite symmetric matrices. This analysis has been motivated by a large and growing use of matrix-valued affine processes in finance, including multi-asset option pricing with stochastic volatility and correlation structures, and fixed-income models with stochastically correlated risk factors and default intensities.

Citation

Download Citation

Christa Cuchiero. Damir Filipović. Eberhard Mayerhofer. Josef Teichmann. "Affine processes on positive semidefinite matrices." Ann. Appl. Probab. 21 (2) 397 - 463, April 2011. https://doi.org/10.1214/10-AAP710

Information

Published: April 2011
First available in Project Euclid: 22 March 2011

zbMATH: 1219.60068
MathSciNet: MR2807963
Digital Object Identifier: 10.1214/10-AAP710

Subjects:
Primary: 60J25
Secondary: 91B70

Keywords: Affine processes , stochastic invariance , stochastic volatility , Wishart processes

Rights: Copyright © 2011 Institute of Mathematical Statistics

Vol.21 • No. 2 • April 2011
Back to Top