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AFFINE PROCESSES ON POSITIVE SEMIDEFINITE MATRICES
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This article provides the mathematical foundation for stochastically con-
tinuous affine processes on the cone of positive semidefinite symmetric ma-
trices. This analysis has been motivated by a large and growing use of matrix-
valued affine processes in finance, including multi-asset option pricing with
stochastic volatility and correlation structures, and fixed-income models with
stochastically correlated risk factors and default intensities.
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1. Introduction. This paper provides the mathematical foundation for sto-
chastically continuous affine processes on the cone of positive semidefinite sym-
metric d×d-matrices S+d . These matrix-valued affine processes have arisen from a
large and growing range of useful applications in finance, including multi-asset op-
tion pricing with stochastic volatility and correlation structures, and fixed-income
models with stochastically correlated risk factors and default intensities.

For illustration, let us consider a multi-variate stochastic volatility model con-
sisting of a d-dimensional logarithmic price process with risk-neutral dynamics

dYt = (
r1− 1

2X
diag
t

)
dt +√

Xt dBt , Y0 = y,(1.1)
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and stochastic covariation process X = 〈Y,Y 〉, which is a proxy for the instanta-
neous covariance of the price returns. Here B denotes a standard d-dimensional
Brownian motion, r the constant interest rate, 1 the vector whose entries are all
equal to one and Xdiag the vector containing the diagonal entries of X.

The necessity to specify X as a process in S+d such that it qualifies as covari-
ation process is one of the mathematically interesting and demanding aspects of
such models. Beyond that, the modeling of X must allow for enough flexibility
in order to reflect the stylized facts of financial data and to adequately capture
the dependence structure of the different assets. If these requirements are met, the
model can be used as a basis for financial decision-making in the area of portfolio
optimization, pricing of multi-asset options and hedging of correlation risk.

The tractability of such a model crucially depends on the dynamics of X. A large
part of the literature in the area of multivariate stochastic volatility modeling has
proposed the following affine dynamics for X:

dXt = (b+HXt +XtH
�) dt +√

Xt dWt � +�� dW�
t

√
Xt + dJt ,

(1.2)
X0 = x ∈ S+d ,

where b is some suitably chosen matrix in S+d , H,� some invertible matrices, W

a standard d × d-matrix of Brownian motions possibly correlated with B , and J a
pure jump process whose compensator is an affine function of X.3

The main reason for the analytic tractability of this model is that, under some
technical conditions, the following affine transform formula holds:

Ex,y

[
e−Tr(zXt )+v�Yt

]= e�(t,z,v)+Tr(�(t,z,v)x)+v�y

for appropriate arguments z ∈ Sd × iSd and v ∈ Cd . The functions � and �

solve a system of nonlinear ordinary differential equations (ODEs), which are
determined by the model parameters. Setting v = 0, φ(t, z) = −�(t, z,0) and
ψ(t, z)=−�(t, z,0) and taking z= u ∈ S+d , we arrive at

Ex

[
e−Tr(uXt )

]= e−φ(t,u)−Tr(ψ(t,u)x), u ∈ S+d .(1.3)

In this paper, we characterize the class of all stochastically continuous time-
homogeneous Markov processes with the key property (1.3)—henceforth called
affine processes—on S+d . Our main result shows that an affine process is necessar-
ily a Feller process whose generator has affine coefficients in the state variables.
The parameters of the generator satisfy some well-determined admissibility con-
ditions, and are in a one-to-one relation with those of the corresponding ODEs for
φ and ψ . Conversely, and more importantly for applications, we show that for any

3This affine multi-variate stochastic volatility model generalizes the well-known one-dimensional
models of Heston [27], for the diffusion case, or the Barndorff-Nielsen Shepard model [2], for the
pure jump case.



AFFINE PROCESSES ON POSITIVE SEMIDEFINITE MATRICES 399

admissible parameter set there exists a unique well-behaved affine process on S+d .
Furthermore, we prove that any stochastically continuous infinitely decomposable
Markov process on S+d is affine with zero diffusion, and vice versa.

On the one hand, our findings extend the model class (1.2), since a more general
drift and jumps are possible. Indeed, we allow for full generality in b, as long as
b − (d − 1)�T � ∈ S+d , for a general linear drift part B(x) =∑

ij xijβ
ij and for

an inclusion of (infinite activity) jumps. This of course enables more flexibility in
financial modeling. For example, due to the general linear drift part, the volatil-
ity of one asset can generally depend on the other ones, which is not possible
for B(x)=Hx + xH�. On the other hand, we now know the exact assumptions
under which affine processes on S+d actually exist. Our characterization of affine
processes on S+d is thus exhaustive. Beyond that, the equivalence of infinitely de-
composable Markov processes with state space S+d and affine processes without
diffusion is interesting in its own right.

This paper complements Duffie, Filipović and Schachermayer [16], who ana-
lyzed time-homogeneous affine processes on the state space Rm+ × Rn.4 Matrix-
valued affine processes seem to have been studied systematically for the first time
in the literature by Bru [5, 6], who introduced the so called Wishart processes.
These are generalizations of squares of matrix Ornstein–Uhlenbeck processes, that
is, of the form (1.2) for J = 0 and b= k���, for some real parameter k > d − 1.
Note that k > d − 1 is a stronger assumption than what we require on b and ���.
Bru [6] then establishes existence and uniqueness of a local5 S+d -valued solution to
(1.2) under the additional assumptions that X0 has distinct eigenvalues, −H ∈ S+d ,
and that H and � commute (see [6], Theorem 2′′). In the more special case where
H = 0 and k > d − 1, Bru [6] shows global existence and uniqueness for (1.2) for
any X0 with distinct eigenvalues (see [6], Theorem 2 and last part of Section 3).6

Bru’s results concerning strong solutions have recently been extended to the case
of matrix valued jump-diffusions; see [40].

Wishart processes have subsequently been introduced in the financial literature
by Gourieroux and Sufana [24, 25] and Gourieroux et al. [23]. Financial applica-
tions thereof have then been taken up and carried further by various authors, in-
cluding Da Fonseca et al. [9–12] and Buraschi, Cieslak and Trojani [7, 8]. Grasselli
and Tebaldi [26] give some general results on the solvability of the corresponding
Riccati ODEs. Barndorff-Nielsen and Stelzer [3] provide a theory for a certain
class of matrix-valued Lévy driven Ornstein–Uhlenbeck processes of finite vari-
ation. Leippold and Trojani [38] introduce S+d -valued affine jump diffusions and

4For the diffusion case see also [20] or [19], Chapter 10. Time-inhomogeneous affine processes on
Rm+ ×Rn have been explored in [18].

5Up to the first collision time of the eigenvalues.
6Actually, Bru [6] establishes existence and uniqueness of solutions also for k = 1, . . . , d − 1. But

these are degenerate solutions, as they are only defined on lower-dimensional subsets of the boundary
of S+d (see [6], Corollary 1).
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provide financial examples, including multi-variate option pricing, fixed-income
models and dynamic portfolio choice. All of these models are contained in our
framework.

We want to point out that the full characterization of positive semidefinite
matrix-valued affine processes needs a multitude of methods. In order to prove the
fundamental property of regularity of affine processes another adaption of the fa-
mous analysis of Montgommery and Zippin is necessary, which has been worked
out in [34] and [35] for the state space Rm+ × Rn. For the necessary conditions
on drift, diffusion and jump parameters we need the theory of infinitely divisi-
ble distributions on S+d . Most interestingly, the constant drift part b must satisfy
a condition depending on the magnitude of the diffusion component (see Proposi-
tion 4.18), which is in accordance with the choice of the drift in Bru’s work [6] on
Wishart processes, as explained above. This enigmatic additional condition on the
drift b is derived by studying the process with respect to well chosen test functions,
including in our case the determinant of the process. It is worth noting, as already
visible in dimension one, that a naive application of classical geometric invariance
conditions does not bring the correct necessary result on the drift but a stronger
one. Indeed, take a one-dimensional affine diffusion process X solving

dXt = b dt +√
Xt dWt .

Then a back-of-the-envelope calculation would yield the Stratonovich drift at the
boundary point x = 0 of value b− 1

4 , leading to the necessary parameter restriction
b ≥ 1

4 , which is indeed too strong. It is well known that the correct parameter
restriction is b ≥ 0. We see two reasons why geometric conditions on the drift
cannot be applied: first, precisely at the boundary of our state spaces the diffusion
coefficients are not Lipschitz continuous anymore, and, second, the boundary of
the cone of positive semi-definite matrices is not a smooth submanifold but a more
complicated object.

For the sufficient direction refined methods from stochastic invariance theory
are applied. Having established viability of a particular class of jump-diffusions
on S+d , existence of affine processes on S+d —under the necessary parameter
conditions—is shown through the solution of a martingale problem. Uniqueness
follows by semigroup methods which need the theory of multi-dimensional Ric-
cati equations.

Summing up, we face two major problems in the analysis of positive matrix
valued affine processes. First, the candidate stochastic differential equations nec-
essarily lead to volatility terms which are not Lipschitz continuous at the boundary
of the state space. This makes every existence, uniqueness and invariance question
delicate. Second, the jump behavior transversal to the boundary is of finite total
variation.
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1.1. Program of the article. For affine processes on S+d , results and proofs
deviate in essential points from the theory on state spaces of the form Rm+ × Rn

given in [16, 34], which is a consequence of the more involved geometry of this
nonpolyhedral cone. The program of the paper as outlined below therefore includes
a comparison with the approach in [16].

Section 2 contains the main definition and a summary of the results of this arti-
cle. In Section 3, we then derive two main properties, namely the regularity of the
process and the Feller property of the associated semigroup. The Feller property, in
turn, is a simple consequence of an important positivity result of the characteristic
exponents φ,ψ , which is proved in Lemma 3.3. This lemma is further employed
as a tool for the treatment of the generalized Riccati differential equations in Sec-
tion 5.1 (see proof of Proposition 5.3). The global existence and uniqueness of
these equations is then used to show uniqueness of the martingale problem for
affine processes (see proof of Proposition 5.9).

In Section 4, we define a set of admissible parameters specifying the infini-
tesimal generator of affine semigroups and prove the necessity of the parameter
restrictions (see Proposition 4.9).

The sufficient direction is then treated in Section 5. It is known that, for d ≥ 2,
there exist continuous affine processes on S+d which are—in contrast to those on
the state space Rm+ ×Rn—not infinitely divisible (see Example 2.8). The analysis
of this paper reveals the failure of infinite divisibility as a consequence of the drift
condition (see proof of Theorem 2.9). This has substantial influence on the ap-
proach chosen here to prove existence of affine processes associated with a given
parameter set: Being in general hindered to recognize the solutions of the gen-
eralized Riccati differential equations as cumulant generating functions of sub-
stochastic measures, as done in [16], Section 7, we solve the martingale problem
for the associated Lévy type generator on S+d , as exposed in Section 5 and Ap-
pendix A. In Section 5.3, however, we deliver a variant of the existence proof of
[16] for pure jump processes, which is possible in this case due to the absence of a
diffusion component.

Finally, Section 6 contains the proofs of the main results which build on the
propositions of the previous sections.

1.2. Notation. For the stochastic background and notation, we refer to stan-
dard text books such as [31] and [43]. We write R+ = [0,∞) and R++ = (0,∞).
Moreover:

• Sd denotes the space of symmetric d×d-matrices equipped with the scalar prod-
uct 〈x, y〉 = Tr(xy). Note that Sd is isomorphic, but not isometric, to the stan-
dard Euclidean space Rd(d+1)/2. We denote by {cij , i ≤ j} the standard basis of
Sd , that is, the (kl)th component of cij is given by c

ij
kl = δikδjl + δjkδil(1− δij ),

where δij denotes the Kronecker delta. Additionally, we sometimes consider the
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following basis elements {eij , i ≤ j} which are positive semidefinite and form a
basis of Sd :

eij =
{

cii, if i = j ,
cii + cij + cjj , if i 
= j .

• S+d stands for the cone of symmetric d × d-positive semidefinite matrices,
S++d for its interior in Sd , the cone of strictly positive definite matrices. The
boundary is denoted by ∂S+d = S+d \ S++d , the complement is denoted by (S+d )c,
and S+d ∪{
} denotes the one-point compactification. Recall that S+d is self-dual
[w.r.t. the scalar product 〈x, y〉 = Tr(xy)], that is,

S+d = {x ∈ Sd | 〈x, y〉 ≥ 0,∀y ∈ S+d }.
Both cones, S+d and S++d , induce a partial and strict order relation on Sd , respec-
tively: we write x 
 y if y − x ∈ S+d , and x ≺ y if y − x ∈ S++d .

• Md is the space of d × d-matrices and O(d) the orthogonal group of dimension
d over R.

• Id denotes the d × d-identity matrix.

Throughout this paper, a function f :Sd → R is understood as the restriction
f = g|Sd

of a function g :Md → R which satisfies g(x)= g(x�) for all x ∈Md .
Without loss of generality g(x)= f ((x + x�)/2). We avoid using the vech oper-
ator, that is, to identify x ∈ Sd with a vector in Rd(d+1)/2 by stringing the columns
of x together, while only taking the entries xij with i ≤ j .

Throughout this article, we shall consider the following function spaces for
measurable U ⊆ Sd . We write B(U) for the Borel σ -algebra on U . bU corre-
sponds to the Banach space of bounded real-valued Borel measurable functions
f on U with norm ‖f ‖∞ = supx∈U |f (x)|. We write C(U) for the space of real-
valued continuous functions f on U , Cb(U) for C(U)∩ bU , Cc(U) for the space
of functions f ∈ C(U) with compact support and C0(U) for the Banach space
of functions f ∈ C(U) with limx→
 f (x)= 0 and norm ‖f ‖∞ = supx∈U |f (x)|.
Furthermore, Ck(U) is the space of k times differentiable functions f on U◦, the
interior of U , such that all partial derivatives of f up to order k belong to C(U).
As usual, we set C∞(U)=⋂

k≥1 Ck(U), and we write Ck
c (U)= Cc(U) ∩Ck(U)

and Ck
b(U)= Cb(U)∩Ck(U), for k ≤∞.

2. Definition and characterization of affine processes. We consider a time-
homogeneous Markov process X with state space S+d and semigroup (Pt )t≥0 act-
ing on functions f ∈ bS+d ,

Ptf (x)=
∫
S+d

f (ξ)pt (x, dξ), x ∈ S+d .

We note that X may not be conservative. Then there is a standard extension of
the transition probabilities to the one-point compactification S+d ∪ {
} of S+d by
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defining

pt(x, {
})= 1− pt(x, S+d ), pt (
, {
})= 1

for all t and x ∈ S+d , with the convention that f (
)= 0 for any function f on S+d .
Thus X becomes conservative on S+d ∪ {
}.

DEFINITION 2.1. The Markov process X is called affine if:

(i) it is stochastically continuous, that is, lims→t ps(x, ·)= pt(x, ·) weakly on
S+d for every t and x ∈ S+d , and

(ii) its Laplace transform has exponential-affine dependence on the initial state

Pte
−〈u,x〉 =

∫
S+d

e−〈u,ξ〉pt(x, dξ)= e−φ(t,u)−〈ψ(t,u),x〉,(2.1)

for all t and u,x ∈ S+d , for some functions φ : R+×S+d →R+ and ψ : R+×S+d →
S+d .

Note that stochastic continuity of X implies that φ(t, u) and ψ(t, u) are jointly
continuous in (t, u); see Lemma 3.2(iii) below. Moreover, due to the Markov prop-
erty, this also means that pt(x, {
}) < 1 for all x ∈ S+d and t ≥ 0. In contrast
to [16], we take stochastic continuity as part of the definition of affine processes,
and consider the Laplace transform instead of the characteristic function. The lat-
ter is justified by the nonnegativity of X, the former is by convenience since, as we
will see in Proposition 3.4 below, it automatically implies regularity in the follow-
ing sense.

DEFINITION 2.2. The affine process X is called regular if the derivatives

F(u)= ∂φ(t, u)

∂t

∣∣∣∣
t=0+

, R(u)= ∂ψ(t, u)

∂t

∣∣∣∣
t=0+

(2.2)

exist and are continuous at u= 0.

We remark that there are simple examples of Markov processes which satisfy
Definition 2.1(ii) but are not stochastically continuous; see [16], Remark 2.11.
However, such processes are of limited interest for applications and will not be
considered.

In the following, we shall provide an equivalent characterization of the affine
property in terms of the generator of X. As we shall see in (2.12), the diffusion,
drift, jump and killing characteristics of X depend in an affine way on the underly-
ing state. We denote by χ :Sd → Sd some bounded continuous truncation function
with χ(ξ)= ξ in a neighborhood of 0. Then the involved parameters are admissi-
ble in the following sense.

DEFINITION 2.3. An admissible parameter set (α, b,βij , c, γ,m,μ) associ-
ated with χ consists of:
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• a linear diffusion coefficient

α ∈ S+d ,(2.3)

• a constant drift term

b � (d − 1)α,(2.4)

• a constant killing rate term

c ∈R+,(2.5)

• a linear killing rate coefficient

γ ∈ S+d ,(2.6)

• a constant jump term: a Borel measure m on S+d \ {0} satisfying∫
S+d \{0}

(‖ξ‖ ∧ 1)m(dξ) <∞,(2.7)

• a linear jump coefficient: a d × d-matrix μ= (μij ) of finite signed measures on
S+d \ {0} such that μ(E) ∈ S+d for all E ∈ B(S+d \ {0}) and the kernel

M(x,dξ) := 〈x,μ(dξ)〉
‖ξ‖2 ∧ 1

(2.8)

satisfies∫
S+d \{0}

〈χ(ξ), u〉M(x,dξ) <∞ for all x,u ∈ S+d with 〈x,u〉 = 0,(2.9)

• a linear drift coefficient: a family βij = βji ∈ Sd such that the linear map
B :Sd → Sd of the form

B(x)=∑
i,j

βij xij(2.10)

satisfies

〈B(x),u〉 −
∫
S+d \{0}

〈χ(ξ), u〉M(x,dξ)≥ 0

(2.11)
for all x,u ∈ S+d with 〈x,u〉 = 0.

We shall comment more on the admissibility conditions in Section 2.1 below.
The following three theorems contain the main results of this article. Their proofs
are given in Section 6. First, we provide a characterization of affine processes on
S+d in terms of the admissible parameter set introduced in Definition 2.3. As for
the domain of the generator, we consider the space S+ of rapidly decreasing C∞-
functions on S+d , defined in (B.1) below. It is shown in Appendix B that e−〈u,·〉 ∈
S+, for u ∈ S++d , as well as C∞

c (S+d )⊂ S+.

THEOREM 2.4. Suppose X is an affine process on S+d . Then X is regular
and has the Feller property. Let A be its infinitesimal generator on C0(S

+
d ). Then

S+ ⊂ D(A) and there exists an admissible parameter set (α, b,βij , c, γ,m,μ)
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such that, for f ∈ S+,

Af (x)= 1

2

∑
i,j,k,l

Aijkl(x)
∂2f (x)

∂xij ∂xkl

+∑
i,j

(
bij +Bij (x)

) ∂f (x)

∂xij

− (c+ 〈γ, x〉)f (x)

(2.12)
+

∫
S+d \{0}

(
f (x + ξ)− f (x)

)
m(dξ)

+
∫
S+d \{0}

(
f (x + ξ)− f (x)− 〈χ(ξ),∇f (x)〉)M(x,dξ),

where B(x) is defined by (2.10), M(x,dξ) by (2.8) and

Aijkl(x)= xikαjl + xilαjk + xjkαil + xjlαik.(2.13)

Moreover, φ(t, u) and ψ(t, u) in (2.1) solve the generalized Riccati differential
equations, for u ∈ S+d ,

∂φ(t, u)

∂t
= F(ψ(t, u)), φ(0, u)= 0,(2.14)

∂ψ(t, u)

∂t
= R(ψ(t, u)), ψ(0, u)= u,(2.15)

with

F(u)= 〈b,u〉 + c−
∫
S+d \{0}

(
e−〈u,ξ〉 − 1

)
m(dξ),(2.16)

R(u)=−2uαu+B�(u)+ γ
(2.17)

−
∫
S+d \{0}

(
e−〈u,ξ〉 − 1+ 〈χ(ξ), u〉

‖ξ‖2 ∧ 1

)
μ(dξ),

where B�
ij (u)= 〈βij , u〉.

Conversely, let (α, b,βij , c, γ,m,μ) be an admissible parameter set. Then there
exists a unique affine process on S+d with infinitesimal generator (2.12) and (2.1)
holds for all (t, u) ∈ R+ × S+d , where φ(t, u) and ψ(t, u) are given by (2.14) and
(2.15).

REMARK 2.5. It can be proved as in [39] that X is conservative if and only if
c= 0 and ψ(t,0)≡ 0 is the only S+d -valued local solution of (2.15) for u= 0. The
latter condition clearly requires that γ = 0.

Hence, a sufficient condition for X to be conservative is c= 0 and γ = 0 and∫
S+d ∩{‖ξ‖≥1}

‖ξ‖(μ+ij (dξ)+μ−ij (dξ)
)
<∞ for all 1≤ i ≤ j ≤ d,
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where μij = μ+ij − μ−ij denotes the Jordan decomposition of μij . Indeed, it can
be shown similarly as in [16], Section 9, that the latter property implies Lipschitz
continuity of R(u) on Sd .

Due to the Feller property, as established in Theorem 2.4, any affine process
X on S+d admits a càdlàg modification, still denoted by X (see, e.g., [43], Chap-
ter III.2). It can and will thus be realized on the space �=D(S+d ∪ {
}) of càdlàg
paths ω : R+ → S+d ∪ {
} with ω(s) = 
 for s > t whenever ω(t−) = 
 or
ω(t) = 
. For every x ∈ S+d , we denote by Px the law of X given X0 = x and
by (F X

t ) the natural filtration generated by Xt . We also consider the usual aug-
mentation

F̃t :=
⋂

x∈S+d

F (x)
t(2.18)

of (F X
t ), where (F (x)

t ) is the augmentation of (F X
t ) with respect to Px . Then

(F̃t ) is right continuous and X is still a Markov process under (F̃t ). We shall now
relate conservative affine processes to semimartingales, where semimartingales are
understood with respect to the stochastic basis (�, F̃ , (F̃ )t ,Px) for every x.

THEOREM 2.6. Let X be a conservative affine process on S+d and let
(α, b,βij , c = 0, γ = 0,m,μ) be the related admissible parameter set associated
with the truncation function χ . Then X is a semimartingale whose characteristics
(B,A, ν) with respect to χ are given by

At,ijkl =
∫ t

0
Aijkl(Xs) ds,(2.19)

Bt =
∫ t

0

(
b+

∫
S+d \{0}

χ(ξ)m(dξ)+B(Xs)

)
ds,(2.20)

ν(dt, dξ)= (
m(dξ)+M(Xt, dξ)

)
dt,(2.21)

where B(x) is given by (2.10), Aijkl(x) by (2.13) and M(x,dξ) by (2.8). Further-
more, there exists, possibly on an enlargement of the probability space, a d × d-
matrix of standard Brownian motions W such that X admits the following repre-
sentation:

Xt = x +Bt +
∫ t

0

(√
Xs dWs � +�� dWs

√
Xs

)
+

∫ t

0

∫
S+d \{0}

χ(ξ)
(
μX(ds, dξ)− ν(ds, dξ)

)
(2.22)

+
∫ t

0

∫
S+d \{0}

(
ξ − χ(ξ)

)
μX(ds, dξ),
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where � ∈Md satisfies ��� = α and μX denotes the random measure associated
with the jumps of X.

Hence, X is continuous if and only if m and μ vanish.

Let P be the set of all families of probability measures (Px)x∈S+d
on the canon-

ical probability space (�, F X) such that (X, (Px)x∈S+d
) is a stochastically contin-

uous Markov processes on S+d with Px[X0 = x] = 1, for all x ∈ S+d . Note that in
contrast to [16], there is no need to impose regularity of X. For two probability
measures P,Q on (�, F X), the convolution P ∗Q is defined as the push-forward
of P×Q under the map (ω,ω′) �→ ω+ω′ : (�×�, F X ⊗ F X)→ (�, F X).

DEFINITION 2.7. An element (Px)x∈S+d
∈ P is called:

(i) infinitely decomposable, if for each k ≥ 1, there exists (P
(k)
x )x∈S+d

∈ P such
that

Px(1)+···+x(k) = P
(k)

x(1) ∗ · · · ∗ P
(k)

x(k);
(ii) infinitely divisible, if the one-dimensional marginal distributions Px ◦X−1

t

are infinitely divisible, for all (t, x) ∈R+ × S+d .

In [16] it was shown that regular affine processes on Rm+ × Rn are infinitely
decomposable Markov processes, and vice versa. In fact, this property was the
core for the existence proof of affine processes in [16]. On S+d the situation is
different. The following counterexample reveals that not all affine processes on
S+d are infinitely divisible.

EXAMPLE 2.8. The affine process X on S+d corresponding to the parameter
set (α = Id, b = δId,0,0,0,0,0), where δ ∈ [d − 1,∞), is the diffusion process
initially studied by Bru [6]. By [6], Theorem 3, the Laplace-transforms

Ex

[
e−〈Xt ,u〉]= (

det(I + 2tu)
)−δ/2

e−〈(I+2tu)−1u,x〉

are those of noncentral Wishart distributions WIS(δ, d, x). By a well-known result
due to Paul Lévy, these Wishart distributions are not infinitely divisible if d ≥ 2
(see [15], Section 2.C).

Here, is our main result on infinite divisibility of affine processes on S+d .

THEOREM 2.9. Let d ≥ 2 and (Px)x∈S+d
∈ P . The following assertions are

equivalent:

(i) (Px)x∈S+d
is infinitely decomposable.

(ii) (X, (Px)x∈S+d
) is affine with vanishing diffusion parameter α = 0.

(iii) (X, (Px)x∈S+d
) is affine and infinitely divisible.
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2.1. Discussion of the parameters. We discuss and highlight some properties
of the admissible parameter set (α, b,βij , c, γ,m,μ) of an affine process.

Let us therefore define the normal cone

NS+d
(x)= {u ∈ S+d |〈u,x〉 = 0},(2.23)

containing the inward pointing normal vectors, to S+d at x ∈ S+d .7 It will be shown
in Lemma 4.1 below that NS+d

(x) 
= {0} only for boundary elements x ∈ ∂S+d .

2.1.1. Diffusion. The diffusion term does not admit a constant part, and its
linear part is of the very specific form

〈u,A(x)u〉 = 4〈x,uαu〉.
This property of A(x) has also been stated in the setting of symmetric cones
in [26]. We could thus write the second order differential operator in (2.12) as

1

2

∑
i,j,k,l

Aijkl(x)
∂2f (x)

∂xij ∂xkl

= 2〈x,∇α∇f (x)〉.

The reason why we introduce and use the symmetrization (2.13) of A(x) is that it
corresponds to the quadratic characteristic (2.19) of the semimartingale X.

2.1.2. Drift. The remarkable drift condition (2.4) has been assumed in many
previous papers. Here is the first time where necessity and sufficiency of (2.4)
are proved in the full generality in the presence of jumps. Note that in dimension
d = 1, the drift condition simply reduces to nonnegativity b ≥ 0. But for dimension
d ≥ 2, the boundary of the state space S+d becomes curved and kinked, implying a
nontrivial trade-off between diffusion α and b.

Concerning the form of B , let us note the following: condition (2.11) implies in
particular

βii\{i} −
∫
S+d \{0}

χ(ξ)\{i}
‖ξ‖2 ∧ 1

μii(dξ) ∈ S+d−1 for all 1≤ i ≤ d,(2.24)

where for any matrix u ∈ Sd , u\{i} denotes the matrix where the ith row and column
are deleted. Indeed, inserting x = cii in condition (2.11) yields

〈B(cii), u〉 −
∫
S+d \{0}

〈χ(ξ), u〉
‖ξ‖2 ∧ 1

μii(dξ)≥ 0

7Indeed, we obtain (2.23) from the general definition in (A.8) below by choosing y = 0 and y = 2x,

and using the self-duality of S+d : 〈u,y〉 ≥ 0 for all y,u ∈ S+d .
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for all u ∈ S+d with 〈cii, u〉 = 0. Since the ith column and row of such an element
u ∈ S+d is zero, it follows that

〈B(cii), u〉 −
∫
S+d \{0}

〈χ(ξ), u〉
‖ξ‖2 ∧ 1

μii(dξ)

(2.25)

= 〈
βii\{i}, u\{i}

〉− ∫
S+d \{0}

〈χ(ξ)\{i}, u\{i}〉
‖ξ‖2 ∧ 1

μii(dξ)≥ 0.

By choosing appropriate elements u\{i} ∈ S+d−1, we can further derive the integra-
bility of χ(ξ)kl for all k 
= i, l 
= i, which implies∫

S+d \{0}
〈χ(ξ)\{i}, u\{i}〉
‖ξ‖2 ∧ 1

μii(dξ)=
〈∫

S+d \{0}
χ(ξ)\{i}
‖ξ‖2 ∧ 1

μii(dξ), u\{i}
〉
.(2.26)

As (2.25) and (2.26) must hold true for all u\{i} ∈ S+d−1, assertion (2.24) is proved.
Note that the (ij)th component of the adjoint operator B� is given by

B�
ij (u)= 〈βij , u〉,(2.27)

since 〈B(x),u〉 = 〈∑i,j βij xij , u〉 =∑
i,j 〈βij , u〉xij = 〈B�(u), x〉.

In most previous papers, B(x) is of the form

B(x)=Hx + xH�.(2.28)

In this case,

〈B(x),u〉 = 〈Hx + xH�, u〉 = 0 for all x,u ∈ S+d with 〈x,u〉 = 0,(2.29)

and hence (2.11) is equivalent to∫
S+d \{0}

〈χ(ξ), u〉M(x,dξ)= 0,

for all x,u ∈ S+d with 〈x,u〉 = 0.
If B(x) is of the form

B(x)=Hx + xH� + �(x),(2.30)

where H ∈Md and � :Sd → Sd linear satisfying �(S+d ) ⊆ S+d , then, in view of
(2.29), condition (2.11) holds true as long as

〈�(x),u〉 −
∫
S+d \{0}

〈χ(ξ), u〉M(x,dξ)≥ 0

for all x,u ∈ S+d with 〈x,u〉 = 0. As a bold conjecture, we claim that any B(x)

satisfying (2.11) is of form (2.30).
Here is a simple example where B(x) is of the form (2.30) but not of the usual

form (2.28): let d = 2 and

B(x)=
(

x22 x12
x12 x11

)
.
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It can be easily checked that (2.11) is satisfied, while B(x) cannot be brought
into the form (2.28). If xii models the (squared) volatility of the ith stock price, as
in (1.1), then this drift specification admits level impacts of the volatility of stock 1
on the volatility of stock 2, and vice versa.

2.1.3. Killing. See Remark 2.5.

2.1.4. Jumps. Condition (2.7) means that jumps described by m, which can for
instance appear at x = 0, should be of finite variation entering the cone S+d , since
infinite variation transversal to the boundary would let the process leave the state
space. Similarly, condition (2.9) asserts finite variation for the inward pointing
directions, while we could a priori have a general jump behavior (supported by S+d
due to the affine structure) parallel to the boundary. Note that in the case d = 1,
which corresponds to R+, the linear jump part can have infinite total variation
(see [16], equation (2.11)). However, due to the geometry of the cone S+d , we
conjecture that in higher dimensions d ≥ 2 such a behavior is no longer possible
and that all jumps are in fact of finite total variation. In any case, for d ≥ 2, affine
positive matrix valued diffusion processes cannot be approximated (in law) by pure
jump processes, since this would yield a contradiction to condition (2.4). See also
Remark 5.12 below.

3. Affine processes are regular and Feller. Suppose X is an affine process
on S+d . The main result of this section is that X is regular in the sense of Defini-
tion 2.1. In addition, we shall prove that Pt is a Feller semigroup on C0(S

+
d ). In or-

der to show both properties, we shall mainly rely on Lemma 3.3 below. The Feller
property is then a simple consequence of this statement and regularity is obtained
by arguing as in Keller-Ressel, Schachermayer and Teichmann [35], who obtained
the corresponding statements for affine processes on the state space Rm+ × Rn;
see [35], Theorem 4.3, and also the Ph.D. thesis of Keller-Ressel [34]. We ob-
serve that most arguments of [35] translate to our setting without major changes.
It is only required to tailor some technicalities to the cone S+d . We start with the
following elementary observations.

LEMMA 3.1. If u ∈ ∂S+d and S+d � v 
 u, then v ∈ ∂S+d .

PROOF. Let x ∈ S+d \ {0} such that 〈x,u〉 = 0. Then, S+d � v 
 u implies 0≤
〈v, x〉 ≤ 〈u,x〉 = 0. Hence, v ∈ ∂S+d . �

We now derive some first properties of the functions φ and ψ in (2.1).

LEMMA 3.2. Let X be an affine process on S+d . Then, we have:
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(i) The functions φ and ψ satisfy

φ(t + s, u)= φ(t, u)+ φ(s,ψ(t, u)),(3.1)

ψ(t + s, u)= ψ(s,ψ(t, u))(3.2)

for all t, s ∈R+.
(ii) For all u, v ∈ S+d with v 
 u and for all t ≥ 0, the order relations

φ(t, v)≤ φ(t, u) and ψ(t, v)
ψ(t, u)(3.3)

hold true.
(iii) The functions φ and ψ are jointly continuous in R+ × S+d . Furthermore,

u �→ φ(t, u) and u �→ψ(t, u) are analytic on S++d .

PROOF. Assertion (i) follows directly from the Chapman–Kolmogorov equa-
tion,

e−φ(t+s,u)−〈ψ(t+s,u),x〉 =
∫
S+d

ps(x, dξ)

∫
S+d

e−〈u,̃ξ 〉pt(ξ, dξ̃ )

= e−φ(t,u)
∫
S+d

e−〈ψ(t,u),ξ 〉ps(x, dξ)

= e−φ(t,u)−φ(s,ψ(t,u))−〈ψ(s,ψ(t,u)),x〉.

For the proof of (ii), note that v 
 u is equivalent to 〈v, x〉 ≤ 〈u,x〉 for all x ∈ S+d .
By the monotonicity of the exponential function, we have for all x ∈ S+d and for
all t ≥ 0,

e−φ(t,v)−〈ψ(t,v),x〉 =
∫
S+d

e−〈v,ξ 〉pt(x, dξ)≥
∫
S+d

e−〈u,ξ〉pt(x, dξ)

= e−φ(t,u)−〈ψ(t,u),x〉,

and the assertion follows by taking logarithms.
Concerning statement (iii), note that stochastic continuity of X implies joint

continuity of Pte
−〈u,x〉 in (t, u) ∈ R+ × S+d (this follows, e.g., from [4], Lem-

ma 23.7), for all x ∈ S+d . This in turn yields continuity of the functions (t, u) �→
φ(t, u) and (t, u) �→ ψ(t, u). The second assertion follows from analyticity prop-
erties of the Laplace transform. �

The following property of ψ is crucial.

LEMMA 3.3. Let ψ : R+ × S+d → S+d be any map satisfying ψ(0, u)= u and
the properties (i)–(iii) of Lemma 3.2 (regarding the function ψ). Then ψ(t, u) ∈
S++d for all (t, u) ∈R+ × S++d .
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PROOF. We adapt the proof of [34], Proposition 1.10, to our setting. Assume
by contradiction that there exists some (t, u) ∈ R+ × S++d such that ψ(t, u) ∈
∂S+d . Let us consider the interval (0, λmin(u)] 
= ∅, where λmin(u) > 0 denotes
the smallest eigenvalue of u. Then for all v ∈ (0, λmin(u)] we have vId 
 u. Since
ψ(t, u) admits property (ii) of Lemma 3.2, we obtain

S+d �ψ(t, vId)
ψ(t, u) ∈ ∂S+d
for all v ∈ (0, λmin(u)]. Consequently, Lemma 3.1 yields that ψ(t, vId) ∈ ∂S+d .
Hence,

det(ψ(t, vId))= 0

for all v ∈ (0, λmin(u)]. The analyticity of u �→ ψ(t, u) on S++d carries over to
u �→ det(ψ(t, u)) and implies that det(ψ(t, vId))= 0 for all v ∈R++. Indeed, the
set of zeros of det(ψ(t, vId)) has an accumulation point in R++, which implies
that det(ψ(t, vId)) vanishes entirely on R++. The same statement holds true for t

replaced by t
2 . Indeed, if ψ( t

2 , u) ∈ ∂S+d , then the assertion is shown by the same
arguments as above. Otherwise, if ψ( t

2 , u) ∈ S++d , we have for all v ∈ R++ with
vId 
ψ( t

2 , u), that is, for all v ∈ (0, λmin(ψ( t
2 , u)]

S+d �ψ

(
t

2
, vId

)

ψ

(
t

2
,ψ

(
t

2
, u

))
=ψ(t, u) ∈ ∂S+d ,

which yields again ψ( t
2 , vId) ∈ ∂S+d and det(ψ( t

2 , vId)) = 0 for all v ∈ (0,
λmin(ψ( t

2 , u)]. The same reasoning as before then leads to det(ψ( t
2 , vId)) = 0

for all v ∈ R++. By reapplying this argument, we finally get for every n ∈ N and
for all v ∈R++

det
(
ψ

(
t

2n
, vId

))
= 0.

From the continuity of the function t �→ψ(t, u) and of the determinant, we deduce
that for any v ∈R++,

0= lim
n→∞det

(
ψ

(
t

2n
, vId

))
= det(ψ(0, vId))= det(vId)= vd > 0,

a contradiction, and the assertion is proved. �

We may now formulate the main result of this section.

PROPOSITION 3.4. Let X be an affine process with state space S+d . Then, we
have:

(i) X is a Feller process.
(ii) X is regular.
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PROOF. In order to prove (i), it suffices to show that for all f ∈ C0(S
+
d )

lim
t→0+Ptf (x)= f (x) for all x ∈ S+d ,(3.4)

Ptf ∈ C0(S
+
d ) for all t ∈R+,(3.5)

(see, e.g., [43], Propostion III.2.4). Property (3.4) is a consequence of stochastic
continuity, which implies for all f ∈ C0(S

+
d ) and x ∈ S+d

lim
t→0+

Ptf (x)= f (x).

Concerning (3.5), it suffices to verify this property for a dense subset of C0(S
+
d ).

By a locally compact version of Stone–Weierstrass’ theorem (see, e.g., [48]),
the linear span of the set {e−〈u,x〉 | u ∈ S++d } is dense in C0(S

+
d ). Indeed, it

is a subalgebra of C0(S
+
d ), separates points and vanishes nowhere, as all ele-

ments are strictly positive functions on S+d . From Lemma 3.3, we can deduce
that Pte

−〈u,x〉 ∈ C0(S
+
d ) if u ∈ S++d , since ψ(t, u) ∈ S++d and 〈ψ(t, u), x〉 > 0

for x 
= 0 implying that

Pte
−〈u,x〉 = e−φ(t,u)−〈ψ(t,u),x〉

goes to 0 as x →
. Hence, statement (i) is proved.
The proof of (ii) follows precisely the lines of [35], proof of Theorem 4.3. Using

Lemma 3.3, one may mimic the proof of [35], Theorem 4.3, to obtain that differ-
entiability of ψ(t, u) in u ∈ S++d , which follows from Lemma 3.2(iii), implies
differentiability of ψ(t, u) in t for t = 0 and for all u ∈ S+d . �

By the regularity of X, we are now allowed to differentiate the equations (3.1)
and (3.2) with respect to t and evaluate them at t = 0. As a consequence, φ and ψ

satisfy the system of differential equations

∂φ(t, u)

∂t
= F(ψ(t, u)), φ(0, u)= 0,

∂ψ(t, u)

∂t
= R(ψ(t, u)), ψ(0, u)= u ∈ S+d ,

where F and R are defined as in (2.2). The analysis of these (generalized Riccati)
differential equations is subject of Section 5.1, whereas the specific form of F and
R is elaborated in the following.

4. Necessary parameter restrictions. In this section, we derive necessary
parametric restrictions, that is, given an affine process on S+d , we determine nec-
essary implications on a set of parameters which only ensue from Definition 2.1.
These conditions are precisely the conditions on the admissible parameter set as
of Definition 2.3. The form of the functions F and R as defined by (2.2) is then
characterized by means of this parameter set, which is stated in Proposition 4.9
below. For its proof, we first provide a number of technical prerequisites.
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LEMMA 4.1. Let x,u ∈ S+d and

x =O�O� =O diag(λ1 > 0, . . . , λd−r > 0,0, . . . ,0)O�(4.1)

be the diagonalization of x with r ≥ 0 and O ∈ O(d). Then the following asser-
tions are equivalent:

(i) ux = xu= 0,
(ii) 〈x,u〉 = 0,

(iii) u is of form

u=O

(
0 0
0 w

)
O�(4.2)

with w ∈ S+r .

PROOF. The direction (i) ⇒ (ii) is obvious. In order to prove the implication
(ii)⇒ (iii), define v as v =O�uO . Then we have

0= 〈x,u〉 = 〈�,O�uO〉 = ∑
i≤d−r

λivii,

which implies vii = 0 for all i ≤ d − r and by the positive definiteness of v it must
then be of form

v =
(

0 0
0 w

)
with w ∈ S+r . Thus, u is given by (4.2). This then implies that ux = xu= 0, which
proves the direction (iii)⇒ (i). �

LEMMA 4.2. Let p be an orthogonal projector, that is, p ∈ S+d and p2 = p

(see, e.g., Kato [33], Section I.6.7), and define q = Id−p. Then q is an orthogonal
projector and the orthogonal complement of p in S+d equals

{v ∈ S+d | 〈p,v〉 = 0} = {quq | u ∈ S+d }.

PROOF. That q is an orthogonal projector follows by inspection. The diago-
nalization of p is of the form p =O�O� with �= diag(1, . . . ,1,0, . . . ,0), and
thus q = O(Id −�)O�. In view of Lemma 4.1, we conclude that v ∈ S+d is or-
thogonal to p if and only if v = qvq . This proves the assertion. �

LEMMA 4.3. Let u be in Sd and x ∈ ∂S+d such that ux = xu = 0. Then, the
linear map Tu defined by

Tu :Sd → Sd, v �→ Tuv := uvu

has the following properties:
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(i) Tu is self-adjoint and Tu(S
+
d −R+x)⊆ S+d .

(ii) There exists an element v ∈ Sd such that Tuv = u.

PROOF. The assertion (i) is obvious, since for every k ∈R+, Tukx = kuxu=
0 and Tuv = uvu ∈ S+d if v ∈ S+d . For proving part (ii), we use the fact that x is of
form (4.1) and that all zero divisors u in Sd of x can be represented by (4.2) with
w ∈ Sr . Thus, setting

v =O

(
0 0
0 w+

)
O�,

where w+ satisfies ww+w =w, yields Tuv = u. �

LEMMA 4.4. Let V denote a vector space8 over R. Let L :S+d → V be an
additive (resp., homogeneous additive) map, that is, for all x, y ∈ S+d and λ = 1
(resp., for all λ ∈R+) we have

L(x + λy)= L(x)+ λL(y).

Then L(x) is the restriction of an additive (resp., R-linear) map on Sd .

PROOF. We define the map L̃ :Sd → V as

L̃(x − y) := L(x)−L(y), x, y ∈ S+d .

L̃ is well defined, as for u, v, x, y ∈ S+d such that u− v = x − y we have

L(u)−L(v)= L̃(u− v)= L̃(x − y)= L(x)−L(y).

Since S+d −S+d = Sd , the domain of L̃ is all of Sd . Also, L(0)= 0 by the additivity
of L. Hence, L is the restriction of L̃ to S+d . Homogeneity of L̃ holds, as for
λ > 0, z= x − y ∈ Sd we have by definition

L̃(λz)= L(λx)−L(λy)= λL(x)− λL(y)= λL̃(z).

Finally, we show additivity of L̃. Choose w,z ∈ Sd such that z= x−y,w = u−v,
hence w+ z= (x + u)− (y + v). By the definition of L̃, we have

L̃(z)= L(x)−L(y), L̃(w)= L(u)−L(v),

and by the additivity of L we obtain

L̃(w+ z)= L(x + u)−L(y + v)=L(x)+L(u)−L(y)−L(v)

= L̃(z)+ L̃(w). �

We now provide a convergence result for Laplace transforms (in fact Laplace–
Fourier transforms), which is most relevant for the analysis of affine processes.

8In the proof of Proposition 4.9 below, V corresponds to Sd , the vector space of linear maps
Sd → Sd , or the vector space of finite signed measures on Sd .
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LEMMA 4.5. Let νn be a sequence of measures on Sd with

Ln(u)=
∫
Sd

e−〈u,ξ〉νn(dξ) <∞ and lim
n→∞Ln(u)=L(u), u ∈ S+d ,

pointwise, for some finite function L on S+d continuous at u = 0. Then νn con-
verges weakly to some finite measure ν on Sd and the Fourier–Laplace transforms
converge for u ∈ S++d ∪ {0} and v ∈ Sd to the Fourier–Laplace transforms of ν,
that is,

lim
n→∞

∫
Sd

e−〈u+iv,ξ 〉νn(dξ)=
∫
Sd

e−〈u+iv,ξ 〉ν(dξ).

In particular, ν(Sd)= limn→∞ νn(Sd) and

L(u)=
∫
Sd

e−〈u,ξ〉ν(dξ),

for all u ∈ S++d ∪ {0}.

REMARK 4.6. Instead of u = 0 we could take any set K of points at the
boundary K ⊂ ∂S+d : if we assume continuity of L at points in K , then we obtain
the equality of L with the Laplace transform of ν for all points in K . Addition-
ally, continuity is too strong an assumption, since we only need right continuity
of L along the segment u+ εId for ε = 0 at the points from the boundary under
consideration.

PROOF OF LEMMA 4.5. Since νn(Sd)= Ln(0) is bounded, we know by gen-
eral theory that νn has a vague accumulation point ν, which is a finite measure
on Sd .

Since Ln(u) < ∞ on S+d , it follows by well-known regularity properties of
Laplace transforms (see, e.g., [19], Lemma 10.8) that the functions Ln admit an
analytic extension on the strip S++d + iSd , still denoted by Ln:

(u+ iv) �→ Ln(u+ iv)=
∫
Sd

e−〈u+iv,ξ 〉νn(dξ).

Moreover, pointwise convergence of the finite convex functions Ln to L on S+d im-
plies that this convergence is in fact uniform on compact subsets of S++d (see, e.g.,
Rockafellar [44], Theorem 10.8). Hence, the functions Ln are uniformly bounded
on compact subsets of S++d and since |Ln(u+ iv)| ≤ Ln(u), also on compact sub-
sets of S++d + iSd . Therefore, and since S++d is a set of uniqueness in S++d + iSd ,
it follows by Vitali’s theorem ([41], Chapter 1, Proposition 7) that the analytic
functions Ln converge uniformly on compact subsets of S++d + iSd to an ana-
lytic limit thereon. By Lévy’s continuity theorem, we therefore know that for any
u ∈ S++d the finite measures exp(−〈u, ξ〉)νn(dξ) converge weakly to a limit, which
by uniqueness of the weak limit has to equal exp(−〈u, ξ〉)ν(dξ). Whence the only
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vague accumulation point of νn is ν. Vague convergence implies weak convergence
if mass is conserved. Continuity of L(u) at u= 0 implies this mass conservation:
indeed, by weak convergence of e−〈εId ,ξ 〉νn we arrive at

L(εId)= lim
n→∞

∫
Sd

e−〈εId ,ξ 〉νn(dξ)=
∫
Sd

e−〈εId ,ξ 〉ν(dξ)

=
∫
Sd

e−〈εId ,ξ 〉1{〈Id ,ξ 〉≤0}ν(dξ)+
∫
Sd

e−〈εId ,ξ 〉1{〈Id ,ξ 〉>0}ν(dξ)

and therefore—by dominated convergence—we obtain that the limit ε→ 0 yields

L(0)=
∫
Sd

ν(dξ),

which is the desired mass conservation, hence weak convergence, which means in
turn convergence of the Fourier–Laplace transform at u= 0. �

Finally, let us state a general comparison result for ODEs and hereto introduce
the notion of quasi-monotonicity, which we shall need several times throughout
this article, in particular in the proofs of Propositions 4.9 and 5.3 below.

DEFINITION 4.7. Let U ⊂ Sd be an open set. A function f :U → Sd is called
quasi-monotone increasing if for all elements x, y ∈U , u ∈ S+d which satisfy x 

y and 〈x,u〉 = 〈y,u〉,

〈f (x), u〉 ≤ 〈f (y), u〉
holds true. Accordingly, we call f quasi-constant if both f and −f are quasi-
monotone increasing.

The following comparison result can be deduced from a more general theorem
proved by Volkmann [52].

THEOREM 4.8. Let U ⊂ Sd be an open set. Let f : [0, T ) × U → Sd be a
continuous locally Lipschitz map such that f (t, ·) is quasi-monotone increasing
on U for all t ∈ [0, T ). Let 0 < t0 ≤ T and x, y : [0, t0) → U be differentiable
maps such that x(0)
 y(0) and

ẋ(t)− f (t, x(t))
 ẏ(t)− f (t, y(t)), 0≤ t < t0.

Then we have x(t)
 y(t) for all t ∈ [0, t0).

4.1. The functions F and R. The main result of this section characterizes the
form of the functions F and R as defined by (2.2).
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PROPOSITION 4.9. Let X be an affine process with state space S+d . Then there
exist parameters (α, b,βij , c, γ,m,μ), where α,βij , c, γ,m,μ satisfy the admis-
sibility conditions of Definition 2.3 and b ∈ S+d , such that the functions F and R

are of the form (2.16) and (2.17).

REMARK 4.10. Note that for the moment we only obtain b ∈ S+d , and not
(2.4).

PROOF OF PROPOSITION 4.9. As the proof of Proposition 4.9 is rather long,
we divide it into several steps:

Step 1. Necessary admissibility conditions for b, c, γ,m. In order to derive the
particular form of F and R with the above parameter restrictions, we follow the ap-
proach of Keller-Ressel [34], Theorem 2.6. Note that the t-derivative of Pte

−〈u,x〉
at t = 0 exists for all x,u ∈ S+d , since

lim
t→0+

Pte
−〈u,x〉 − e−〈u,x〉

t
= lim

t→0+
e−φ(t,u)−〈ψ(t,u),x〉 − e−〈u,x〉

t
(4.3)

= (−F(u)− 〈R(u), x〉)e−〈u,x〉

is well defined by Proposition 3.4. Moreover, we can also write

−F(u)− 〈R(u), x〉

= lim
t→0+

Pte
−〈u,x〉 − e−〈u,x〉

te−〈u,x〉

= lim
t→0+

1

t

(∫
S+d \{0}

e−〈u,ξ−x〉pt(x, dξ)− 1
)

= lim
t→0+

(
1

t

∫
S+d −x

(
e−〈u,ξ〉 − 1

)
pt(x, dξ + x)+ pt(x, S+d )− 1

t

)
.

By the above equalities and the fact that pt(x, S+d )≤ 1, we then obtain for u= 0

0≥ lim
t→0+

pt(x, S+d )− 1

t
=−F(0)− 〈R(0), x〉.

Setting F(0)= c and R(0)= γ yields c ∈ R+ as in (2.5) and γ ∈ S+d as in (2.6).
We thus obtain

−(
F(u)− c

)− 〈R(u)− γ, x〉
(4.4)

= lim
t→0+

1

t

∫
S+d −x

(
e−〈u,ξ〉 − 1

)
pt(x, dξ + x).

For every fixed t > 0, the right-hand side of (4.4) is the logarithm of the Laplace
transform of a compound Poisson distribution supported on S+d − R+x with
intensity pt(x, S+d )/t and compounding distribution pt(x, dξ + x)/pt (x, S+d ).
Concerning the support, note that the compounding distribution is concentrated
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on S+d − x, which implies that the compound Poisson distribution has support on
the convex cone S+d −R+x. By Lemma 4.5, the pointwise convergence of (4.4) for
t → 0 to some function being continuous at 0, implies weak convergence of the
compound Poisson distributions to some infinitely divisible probability distribu-
tion K(x, dy) supported on S+d −R+x. Indeed, this follows from the fact that any
compound Poisson distribution is infinitely divisible and the class of infinitely di-
visible distributions is closed under weak convergence ([47], Lemma 7.8). Again,
by Lemma 4.5 the Laplace transform of K(x, dy) is then given as exponential of
the left-hand side of (4.4).

In particular, for x = 0, K(0, dy) is an infinitely divisible distribution with sup-
port on the cone S+d . By the Lévy–Khintchine formula on proper cones (see [49],
Theorem 3.21), its Laplace transform is therefore of the form

exp
(
−〈b,u〉 +

∫
S+d \{0}

(
e−〈u,ξ〉 − 1

)
m(dξ)

)
,

where b ∈ S+d and m is a Borel measure supported on S+d such that∫
S+d \{0}

(‖ξ‖ ∧ 1)m(dξ) <∞,

yielding (2.7). Therefore,

F(u)= 〈b,u〉 + c−
∫
S+d \{0}

(
e−〈u,ξ〉 − 1

)
m(dξ).

Step 2. Necessary admissibility conditions for βij ,μ. We next obtain the partic-
ular form of R. Observe that for each x ∈ S+d and k ∈N,

exp
(−(

F(u)− c
)
/k− 〈R(u)− γ, x〉)

is the Laplace transform of the infinitely divisible distribution K(kx, dy)∗1/k ,
where ∗1

k
denotes the 1

k
convolution power. For k→∞, these Laplace transforms

obviously converge to exp(−〈R(u)− γ, x〉) pointwise in u. Using again the same
arguments as before [an application of Lemma 4.5 as below (4.4)], we can de-
duce that K(kx, dy)∗1/k converges weakly to some infinitely divisible distribution
L(x, dy) on S+d −R+x with Laplace transform exp(−〈R(u)− γ, x〉) for u ∈ S+d .

By the Lévy–Khintchine formula on Sd ([47], Theorem 8.1, indeed on
R(d(d+1)/2) by modifying the scalar product appropriately), the characteristic func-
tion of L(x, dy) has the form

L̂(x, u)= exp
(

1

2
〈u,A(x)u〉 + 〈B(x),u〉

+
∫
Sd\{0}

(
e−〈u,ξ〉 − 1− 〈χ(ξ), u〉)M(x,dξ)

)
,
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for u ∈ iSd , where A(x) is a symmetric positive semidefinite linear operator on Sd ,
B(x) ∈ Sd , M(x, ·) a measure on Sd \ {0} satisfying∫

Sd\{0}
(‖ξ‖2 ∧ 1)M(x, dξ) <∞,

and χ some appropriate truncation function. Furthermore, by [47], Theorem 8.7,∫
Sd\{0}

f (ξ)
1

t
pt (x, dξ + x)

(4.5)
t→0−→

∫
Sd\{0}

f (ξ)m(dξ)+
∫
Sd\{0}

f (ξ)M(x, dξ)

holds true for all f :Sd → R which are bounded, continuous and vanishing on a
neighborhood of 0. We conclude that M(x,dξ) has support in S+d − x. Therefore,
the characteristic function L̂(x, u) admits an analytic extension to S+d × iSd , which
then has to coincide with the Laplace transform for u ∈ S+d . We conclude that, for
all x ∈ S+d ,

−〈R(u)− γ, x〉
= 1

2
〈u,A(x)u〉 − 〈B(x),u〉(4.6)

+
∫
Sd\{0}

(
e−〈u,ξ〉 − 1+ 〈χ(ξ), u〉)M(x,dξ), u ∈ S+d .

As the left-hand side of (4.6) is linear in the components of x, it follows that
x �→A(x), x �→ B(x) as well as x �→ ∫

E(‖ξ‖2∧1)M(x, dξ) for every E ∈ B(Sd \
{0}) are homogeneous additive maps on S+d in the sense of Lemma 4.4. This then
implies that they are restrictions of linear maps on Sd , such that we can write

A(x)=∑
i,j

aij xij , B(x)=∑
i,j

βij xij ,

∫
E
(‖ξ‖2 ∧ 1)M(x, dξ)= 〈x,μ(E)〉 =∑

i,j

μij (E)xij ,

where (recall that cij denotes the standard basis of Sd defined in Section 1.2):

aij = aji = (1+ δij )
A(cij )

2
:Sd → Sd linear,

βij = βji = (1+ δij )
B(cij )

2
∈ Sd

and

E �→ μij (E)= μji(E)= (1+ δij )

∫
E(‖ξ‖2 ∧ 1)M(cij , dξ)

2
are finite signed measures on Sd \ {0}. The fact that M(x, ·) is a nonnegative mea-
sure for each x ∈ S+d implies immediately that μ(E) is a positive semidefinite
matrix.
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In (4.5), take now x = 1
n
eij and nonnegative functions f = fn ∈ Cb(Sd) with

fn = 0 on S+d − 1
n
eij . Then for each n the left-hand side of (4.5) is zero since

the pt(
1
n
eij , dξ + 1

n
eij ) is concentrated on S+d − 1

n
eij . As supp(m)⊆ S+d , the first

integral on the right vanishes as well. Hence,

0=
∫
Sd\{0}

fn(ξ)M

(
1

n
eij , dξ

)
=

∫
Sd\{0}

fn(ξ)

‖ξ‖2 ∧ 1

〈
1

n
eij ,μ(dξ)

〉

= 1

n

∫
Sd\{0}

fn(ξ)

‖ξ‖2 ∧ 1

(
μii(dξ)+ (1− δij )

(
μjj (dξ)+ 2μij (dξ)

))
for any nonnegative function fn ∈ Cb(Sd) with fn = 0 on S+d − 1

n
eij implies that

supp(μij )⊆ S+d − 1
n
eij for each n. Thus, we can conclude that suppμij ⊆ S+d for

all 1≤ i, j ≤ d .
Now let T :Sd → Sd be any linear map with the property T (S+d −R+x)⊆ S+d .

Then T (supp(L(x, dy))) ⊆ S+d . This implies that the pushforward T∗L(x, ·) of
L(x, dy) under T is an infinitely divisible distribution supported on S+d . By the
Lévy–Khintchine formula on proper cones (see [49], Theorem 3.21, and by [47],
Proposition 11.10) this implies that for all x ∈ S+d

T A(x)T � = 0,(4.7)

T B(x)+
∫
S+d \{0}

(
χ̃ (T ξ)− T (χ(ξ))

)
M(x,dξ) ∈ S+d ,(4.8)

∫
S+d \{0}

(‖ξ‖ ∧ 1)T∗M(x,dξ) <∞,(4.9)

where χ̃ denotes some truncation function associated with T∗L(x, ·) and T∗M the
pushforward of M under T . Due to (4.9), we can set χ̃ = 0. Thus, (4.8) becomes

T B(x)−
∫

T (χ(ξ))M(x, dξ) ∈ S+d .(4.10)

Moreover, equations (4.7), (4.10) and (4.9) are equivalent to

〈T �v,A(x)T �v〉 = 0 for all v ∈ Sd,

〈B(x), T �v〉 −
∫
S+d \{0}

〈(χ(ξ)), T �v〉M(x,dξ) ≥ 0 for all v ∈ S+d ,

∫
S+d \{0}

(‖T ξ‖ ∧ 1)M(x, dξ) <∞.(4.11)

In particular, we claim that

〈u,A(x)u〉 = 0
(4.12)

for all u ∈ Sd s.t. ux = xu= 0,
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〈B(x),u〉 −
∫
S+d \{0}

〈χ(ξ), u〉M(x,dξ) ≥ 0

(4.13)
for all u ∈ S+d s.t. ux = xu= 0,∫

S+d \{0}
〈χ(ξ), u〉M(x,dξ) <∞

(4.14)
for all u ∈ S+d s.t. ux = xu= 0.

Indeed, if x is invertible then ux = 0 is equivalent to u= 0 and the assertions are
obvious. Otherwise, if x is in ∂S+d , the linear map Tu defined in Lemma 4.3 is self-
adjoint and satisfies Tu(S

+
d − R+x) ⊆ S+d . Furthermore, by Lemma 4.3(ii), there

exists an element v ∈ Sd such that Tuv = u. Hence,

〈u,A(x)u〉 = 〈T �u v,A(x)T �u v〉 = 0.

It follows from the proof of Lemma 4.3 that for u ∈ S+d , v is an element of S+d
as well and we have 〈B(x),u〉 = 〈B(x), T �u v〉 and 〈χ(ξ), u〉 = 〈(χ(ξ)), T �v〉.
Equation (4.14) is obtained by choosing T = T√u in (4.11). Indeed,∫

S+d ∩{‖ξ‖≤1}
〈ξ, u〉M(x,dξ)=

∫
S+d ∩{‖ξ‖≤1}

〈Id, ξu〉M(x,dξ)

≤ ‖Id‖
∫
S+d ∩{‖ξ‖≤1}

‖ξu‖M(x,dξ)

= ‖Id‖
∫
S+d ∩{‖ξ‖≤1}

∥∥T√uξ
∥∥M(x,dξ) <∞.

From these arguments and Lemma 4.1, properties (2.11) and (2.9) can be derived
so far. Thus, only (2.3) remains to be shown.

Step 3. Necessary admissibility condition for α. Due to the linearity of A(x),
〈u,A(x)u〉 can be written as 4〈x,ϑ(u)〉, where the (ij)th component of ϑ(u) ∈ Sd

is defined by ϑij (u)= 1/4〈u,aiju〉. Note that ϑ is defined on all of Sd . Given that
for all x ∈ S+d , A(x) is a positive semidefinite operator on Sd , 〈u,A(x)u〉 ≥ 0 for
all u ∈ Sd and therefore, by the self duality of S+d , ϑ(u) ∈ S+d . By (4.12), we have
for all u such that ux = xu= 0

0= 〈u,A(x)u〉 = 4〈x,ϑ(u)〉.(4.15)

Next, we show that ϑ is quasi-constant, that is, 〈x,ϑ(u+ w)− ϑ(u)〉 = 0 for
all x,u,w ∈ S+d with 〈x,w〉 = 0 (see Definition 4.7). Indeed, pick x,u,w ∈ S+d
with 〈x,w〉 = 0. According to our assumptions, A(x)w = 0, due to (4.15) and the
positivity of A. Hence,

4〈x,ϑ(u+w)− ϑ(u)〉 = 〈u+w,A(x)(u+w)〉 − 〈u,A(x)u〉
= 〈u,A(x)w〉 + 〈A(x)w,u〉 = 0,
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where the second last equality holds in view of the symmetry of A(x).
We now claim that there exists some α ∈ S+d such that ϑ(u) = uαu, for each

u ∈ Sd . It is sufficient to show that this statements holds for all orthogonal pro-
jectors p ∈ S+d , that is, there exists some α ∈ S+d such that ϑ(p) = pαp for all
orthogonal projectors p. Indeed, if this is the case, we can derive the general state-
ment in the following way: take u ∈ S+d , then—by spectral decomposition—there
are numbers λi ≥ 0 and orthogonal projectors pi , which are mutually orthogonal,
such that u =∑d

i=1 λipi (see, e.g., Kato [33], Section I.6.9). Since the assertion
holds for all orthogonal projectors, we have that

2ϑ(u)=
d∑

i,j=1

λiλj

(
ϑ(pi + pj )− ϑ(pi)− ϑ(pj )

)
by the property that ϑ is quadratic. Since pi +pj is again an orthogonal projector,
we obtain the result.

We prove the assertion on orthogonal projectors by quasi-constancy. Take an
arbitrary orthogonal projector p and define q = Id − p. Additionally, we define
α = ϑ(Id). By quasi-constancy, we obtain

〈x,ϑ(p+ q)− ϑ(q)〉 = 〈y,ϑ(p+ q)− ϑ(p)〉 = 0

and

〈x,ϑ(p)〉 = 〈y,ϑ(q)〉 = 0,

for all x, y ∈ S+d with 〈x,p〉 = 0 and 〈y, q〉 = 0. Therefore, α−ϑ(q) and ϑ(p) are
orthogonal to the orthogonal complement of p in S+d (i.e., the positive symmetric
matrices of the form quq by Lemma 4.2), and α − ϑ(p) and ϑ(q) are orthogonal
to the orthogonal complement of q in S+d (the positive symmetric matrices of the
form pup by Lemma 4.2). This means that we can write

α = ϑ(p)+ ϑ(q)+ β,

where the symmetric matrix β is orthogonal to all elements which are orthogonal
to p and q (in S+d ), that is, β is orthogonal to the linear span of matrices of the
form pup and quq . However, such a decomposition is unique, since all vectors in
the sum are mutually orthogonal, and the decomposition is given by

α = (p+ q)α(p+ q)= pαp+ qαq + (pαq + qαp).

Therefore, we can conclude the assertion ϑ(p)= pαp. Since p was arbitrary the
assertion is proved.

Finally, all the derived restrictions on the parameters together with (4.6) then
yield (2.17). �

REMARK 4.11. An alternative proof for the special form of the diffusion ma-
trix A(x) can also be established by Stokes’ theorem [50] on Riccati ODEs.
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4.2. Infinitesimal generator. The aim of this section is to prove the form of the
infinitesimal generator as stated in (2.12).

PROPOSITION 4.12. The infinitesimal generator A of an affine process on S+d
satisfies S+ ⊂ D(A) and is of the form (2.12) for all f ∈ S+ and x ∈ S+d .

PROOF. As already mentioned in the proof of Proposition 4.9, the t-derivative
of Pte

−〈u,x〉 at t = 0 exists pointwise for all x,u ∈ S+d and is given by (4.3). Fur-
thermore, x �→ (−F(u)− 〈R(u), x〉)e−〈u,x〉 ∈ C0(S

+
d ), for u ∈ S++d . As (Pt ) is a

Feller semigroup on C0(S
+
d ), it follows from [47], Lemma 31.7, that {e−〈u,x〉 | u ∈

S++d } ∈D(A) and

Ae−〈u,x〉 = (−F(u)− 〈R(u), x〉)e−〈u,x〉.
Combined with Proposition 4.9, we thus obtain

Ae−〈u,x〉 =
(
−〈b,u〉 − c+

∫
S+d \{0}

(
e−〈u,ξ〉 − 1

)
m(dξ)

+
〈
2uαu−B�(u)− γ

+
∫
S+d \{0}

(
e−〈u,ξ〉 − 1+ 〈χ(ξ), u〉

‖ξ‖2 ∧ 1

)
μ(dξ), x

〉)
e−〈u,x〉

= 1

2

∑
i,j,k,l

Aijkl(x)uijukle
−〈u,x〉 + 〈

b+B(x),∇e−〈u,x〉〉(4.16)

− (c+ 〈γ, x〉)e−〈u,x〉

+
∫
S+d \{0}

(
e−〈u,x+ξ〉 − e−〈u,x〉)m(dξ)

+
∫
S+d \{0}

(
e−〈u,x+ξ〉 − e−〈u,x〉 + 〈

χ(ξ),∇e−〈u,x〉〉)M(x,dξ).

Indeed, in order to obtain the form of the diffusion part, observe that we have by
symmetrization

2〈uαu,x〉 = 2
∑

i,j,k,l

αjkxiluijukl

= 1

2

∑
i,j,k,l

(xikαjl + xilαjk + xjkαil + xjlαik)uijukl

= 1

2

∑
i,j,k,l

Aijkl(x)uijukl;

see (2.13).
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According to Theorem B.3, the linear hull M of {e−〈u,·〉 | u ∈ S++d } is dense in
S+ with respect to the family of seminorms pk,+ defined in (B.2). Denoting the
right-hand side of (2.12) by A�, we now claim that for every f ∈ S+

lim
n→∞‖A�fn − A�f ‖∞ = 0,(4.17)

where fn ∈ M such that limn→∞pk,+(f − fn) = 0 for every k. Indeed, this is
obvious for the differential operator part of A�. By choosing χ(ξ) = 1{‖ξ‖≤1}ξ
and by denoting g(x) := fn(x)− f (x), we obtain the following estimate for the
integral part:∥∥∥∥∫

S+d \{0}

(
g(x + ξ)− g(x)− 〈1{‖ξ‖≤1}ξ,∇g(x)〉

‖ξ‖2 ∧ 1

)
xijμij (dξ)

∥∥∥∥∞
≤

∫
S+d \{0}∩{‖ξ‖≤1}

∥∥∥∥( ∑
k,l,m,n

(∫ 1

0

∂2g(x + sξ)

∂xkl ∂xmn

(1− s) ds

)
ξklξmn

‖ξ‖2

)
xij

∥∥∥∥∞
× (

μ+ij (dξ)+μ−ij (dξ)
)

+
∫
S+d \{0}∩{‖ξ‖>1}

∥∥(g(x + ξ)− g(x)
)
xij

∥∥∞(
μ+ij (dξ)+μ−ij (dξ)

)
≤ C1p3,+(g)

∫
S+d \{0}∩{‖ξ‖≤1}

‖ξ‖2

‖ξ‖2

(
μ+ij (dξ)+μ−ij (dξ)

)
+

∫
S+d \{0}∩{‖ξ‖>1}

(∥∥g(x + ξ)(‖x + ξ‖)∥∥∞ + ‖g(x)xij‖∞)
× (

μ+ij (dξ)+μ−ij (dξ)
)

≤ C2p3,+(g)
(
μ+ij (S

+
d )+μ−ij (S

+
d )

)≤ C3,p3,+(g),

where C1,C2 and C3 denote some constants and μ+ij ,μ
−
ij correspond to the Jordan

decomposition μij = μ+ij −μ−ij . In the second last inequality, we use the estimate
xij ≤ ‖x + ξ‖. The same as above can be shown for the measure m(dξ), whence
(4.17) holds true. As by the first part of the proof, we have A� = A for all elements
of M, (4.17) implies

lim
n→∞‖Afn − A�f ‖∞ = 0.

Since the infinitesimal generator of every Feller process is a closed operator, it
follows that S+ ⊂ D(A) and A = A� on S+. �

4.3. Linear transformations and canonical representation. In this subsection,
we shall deal with linear transformations of affine processes. The proposition be-
low states how the parameters of an affine process on S+d change under such linear
maps, which allows us to establish a canonical representation of an affine process.
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PROPOSITION 4.13. Suppose X is an affine process on S+d with parame-
ters α,βij , c, γ,m,μ as specified in Definition 2.3 and b ∈ S+d . Furthermore, let
G :S+d → S+d , x �→ gxg� be an automorphism, where g ∈Md is invertible. Then,
Y := gXg� is an affine process on S+d , whose parameters, denoted by ·̃, are given
as follows with respect to the truncation function χ̃ = gχ(g−1ξ(g�)−1)g�:

b̃ = gbg�,

c̃ = c,

m̃(dξ)=G∗m(dξ),

α̃ = gαg�,

γ̃ = (g�)−1γg−1,

μ̃(dξ)=
( ‖ξ‖2 ∧ 1

‖g−1ξ(g�)−1‖2 ∧ 1

)
(g�)−1G∗μ(dξ)g−1,

B̃�(u)= (g�)−1B�(g�ug)g−1,

where G∗m (G∗μ) is the pushforward of the measure m (μ, resp.).

PROOF. Let us consider the process

Y
y
t = gX

g−1y(g�)−1

t g�,

for which we have

E[exp(−〈u,Y
y
t 〉)]

= E
[
exp

(−〈
u,gX

g−1y(g�)−1

t g�
〉)]

= E
[
exp

(−〈
g�ug,X

g−1y(g�)−1

t

〉)]
= exp

(−φ(t, g�ug)− 〈ψ(t, g�ug), g−1y(g�)−1〉)
= exp

(−φ(t, g�ug)− 〈(g�)−1ψ(t, g�ug)g−1, y〉).
Define now φ̃ and ψ̃ by

φ̃(t, u)= φ(t, g�ug) and ψ̃(t, u)= (g�)−1ψ(t, g�ug)g−1,

to see that Y is an affine process on S+d . Using (2.14) and (2.16), we consequently
obtain

∂φ̃(t, u)

∂t
= ∂φ(t, g�ug)

∂t

= F(ψ(t, g�ug))
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= 〈b,ψ(t, g�ug)〉 + c−
∫
S+d \{0}

(
e−〈ψ(t,g�ug),ξ〉 − 1

)
m(dξ)

= 〈gbg�, ψ̃(t, u)〉 + c−
∫
S+d \{0}

(
e−〈ψ̃(t,u),gξg�〉 − 1

)
m(dξ)

= 〈b̃, ψ̃(t, u)〉 + c−
∫
S+d \{0}

(
e−〈ψ̃(t,u),ξ 〉 − 1

)
G∗m(dξ).

Due to the uniqueness of the Lévy–Khintchine decomposition, this implies that b

transforms to b̃ = gbg�, c remains constant and m becomes m̃(dξ)=G∗m(dξ).
For ψ̃ we proceed similarly, that is, we have

∂ψ̃(t, u)

∂t
= (g�)−1 ∂ψ(t, g�ug)

∂t
g−1 = (g�)−1R(ψ(t, g�ug))g−1

= (g�)−1
(
−2ψ(t, g�ug)αψ(t, g�ug)+B�(ψ(t, g�ug))+ γ

−
∫
S+d \{0}

(
e−〈ψ(t,g�ug),ξ〉 − 1+ 〈χ(ξ),ψ(t, g�ug)〉

‖ξ‖2 ∧ 1

)
μ(dξ)

)
g−1,

from which it can be seen that α transforms to α̃ = gαg�, γ becomes γ̃ =
(g�)−1γg−1, and μ changes to

μ̃(E)= (g�)−1
(∫

E

( ‖ξ‖2 ∧ 1

‖g−1ξ(g�)−1‖2 ∧ 1

)
G∗μ(dξ)

)
g−1

for every E ∈ B(S+d \ {0}). Moreover, since χ̃ = gχ(g−1ξ(g�)−1)g�

B̃�(u)= (g�)−1B�(g�ug)g−1.(4.18) �

By means of Proposition 4.13, we can derive a canonical representation for
affine processes.

PROPOSITION 4.14. Let X be an affine process on S+d with parameters
α,βij , c, γ , m,μ as specified in Definition 2.3 and b ∈ S+d . Then there exists an
automorphism G :S+d → S+d , x �→ gxg� such that the parameters of the affine
process Y = gXg�, denoted by ·̃, are as in Proposition 4.13 with

b̃= θ = diag(θ11, . . . , θdd), α̃ = I d
r ,

where we define

I d
r =

(
Ir 0
0 0

)
.
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PROOF. By Proposition 4.13, the parameters of Y = gXg� transform as

α̃ = gαg�, b̃= gbg�.

Since α and b ∈ S+d , they are jointly diagonalizable through an automorphism
on S+d . More precisely, there exists an invertible matrix g ∈Md such that

gαg� = I d
r with r = rk(α)

and

gbg� = diag(θ11, . . . , θdd)=: θ,

where rk denotes the rank of a matrix. For the proof of this fact, we refer to [22],
Theorem 8.7.1. �

4.4. Condition on the constant drift. This subsection is devoted to show that
condition (2.4) holds true for any affine process X on S+d . Since the automorphism
G :S+d → S+d in Proposition 4.14 is order preserving, it suffices to consider affine
processes of the canonical form as specified in Proposition 4.14. The following
result is a consequence of the Lévy–Khintchine formula on R+.

LEMMA 4.15. Let Y be an affine process of canonical form as specified in
Proposition 4.14 with parameters denoted by ·̃. Then, for any y ∈ ∂S+d , we have

∇ det(y) ∈NS+d
(y),

∫
S+d \{0}

〈χ̃ (ξ),∇ det(y)〉M̃(y, dξ) <∞(4.19)

and

〈θ,∇ det(y)〉 + 〈B̃(y),∇ det(y)〉 −
∫
S+d \{0}

〈χ̃ (ξ),∇ det(y)〉M̃(y, dξ)

(4.20)

+ 1

2

∑
i,j,k,l

Ãijkl(y) ∂ij ∂kl det(y)≥ 0.

PROOF. Let y ∈ ∂S+d and let f ∈ C∞
c (S+d ) be a function with f ≥ 0 and

f (x) = det(x) for all x in a neighborhood of y. Then, for any v ∈ R+, the func-
tion x �→ e−vf (x) − 1 lies in C∞

c (S+d ) and thus in D(Ã), where Ã denotes the
infinitesimal generator of Y . Note that f (y)= 0. Hence, the limit

Ã
(
e−vf (y) − 1

)= lim
t→0+

1

t

∫
S+d

(
e−vf (ξ) − 1

)
p̃t (y, dξ)

= lim
t→0+

1

t

∫
R+

(e−vz − 1)p
f
t (y, dz),
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exists for any v ∈ R+, where p̃t (y, dξ) denotes the transition function of Y , and
p

f
t (y, dz)= f∗p̃t (y, dz) is the pushforward of p̃t (y, ·) under f , which is a prob-

ability measure supported on R+.
Using the same arguments as in Proposition 4.9 [i.e., applying Lemma 4.5 as

done below (4.4)], and noting that f (y)= 0, we conclude that

v �→ Ã
(
e−vf (y) − 1

)
= 1

2

∑
i,j,k,l

Ãijkl(y)
(
v2 ∂ijf (y) ∂klf (y)− v ∂ij ∂klf (y)

)
(4.21)

− v〈θ + B̃(y),∇f (y)〉
+

∫
S+d \{0}

(
e−vf (y+ξ) − 1

)
m̃(dξ)

+
∫
S+d \{0}

(
e−vf (y+ξ) − 1+ v〈χ̃ (ξ),∇f (y)〉)M̃(y, dξ)

is the logarithm of the Laplace transform of an infinitely divisible distribution on
R+. Note that

〈∇ det(y), x〉 = d

dt
det(y + tx)

∣∣∣∣
t=0

{≥ 0, x ∈ S+d ,
= 0, x = y.

Hence, ∇ det(y) ∈NS+d
(y) and the admissibility condition (2.9) implies (4.19). By

the Lévy–Khintchine formula on R+ (see [49], Theorem 3.21), the linear coeffi-
cient in v in (4.21) has to be nonpositive. But this is now just (4.20), whence the
lemma is proved. �

It now remains to show that (2.4) follows from (4.20). For this purpose, it suf-
fices to evaluate (4.20) at diagonal elements y ∈ ∂S+d . Thus, we state the following
lemma.

LEMMA 4.16. Let y ∈ S+d be diagonal, and let f ∈ C∞
c (S+d ). Then we have

1

2

d∑
i,j,k,l=1

(
yik(I

d
r )j l + yil(I

d
r )jk + yjk(I

d
r )il + yjl(I

d
r )ik

) ∂2f (x)

∂xij ∂xkl

∣∣∣∣
x=y

= 1

2

d∑
i,j=1

(
yii1{j≤r} + yjj 1{i≤r}

)(∂2f (x)

∂x2
ij

∣∣∣∣
x=y

+ ∂2f (x)

∂xij xji

∣∣∣∣
x=y

)
.

PROOF. Obvious. �

Next, we calculate the partial derivatives of the determinant.
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LEMMA 4.17. Let y ∈ S+d be diagonal, y = diag(y11, y22, . . . , ydd). Then we
have

∂ det(x)

∂xij

∣∣∣∣
x=y

=
⎧⎨⎩

∏
k 
=i

ykk, if i = j ,

0, else,

and

∂2 det(x)

∂xij xji

∣∣∣∣
x=y

=−
d∏

k=1,k 
=i,k 
=j

ykk for 1≤ i < j ≤ d,

∂2 det(x)

∂x2
ij

∣∣∣∣
x=y

= 0 for 1≤ i ≤ j ≤ d,

where the empty product is defined to be 1.

PROOF. In dimension d = 2, the assertion is easily checked, as det(y) =
y11y22 − y12y21. Therefore, we have

∂11 det(y)= y22, ∂22 det(y)= y11, ∂12 det(y)= ∂21 det(y)= 0

as well as

∂2
11 det(y)= ∂2

22 det(y)= ∂2
12 det(y)= ∂2

21 det(y)= 0,

∂12 ∂21 det(y)= ∂21 ∂12 det(y)=−1.

For dimension strictly larger than 2, we employ a combinatorial argument. Recall
Leibniz’s definition of the determinant,

det(x)= ∑
σ∈�

sgn(σ )

d∏
k=1

xkσ(k),(4.22)

where σ is an element of the permutation group � on the set {1,2, . . . , d} and sgn
denotes the signum function on �, that is, sgn= 1 if σ is an even permutation and
sgn=−1 if it is odd. Differentiation of (4.22) with respect to xij yields

∂ det(x)

∂xij

∣∣∣∣
x=y

=
(∑

σ∈�

sgn(σ )1{σ(i)=j}
∏
k 
=i

xkσ(k)

)∣∣∣∣
x=y

=
⎧⎨⎩

∏
k 
=i

ykk, if i = j ,

0, else.

Thus, for the second derivative we have

∂2 det(x)

∂xij ∂xji

∣∣∣∣
x=y

=
(∑

σ∈�

sgn(σ )1{σ(i)=j}1{σ(j)=i}
∏

k 
=i 
=j

xkσ(k)

)∣∣∣∣
x=y

=− ∏
k 
=i 
=j

ykk,

where the last equality holds since y is diagonal. For ∂2
ij det(x), the statement is

obvious. �

We are prepared to prove the admissibility condition on the constant drift.
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PROPOSITION 4.18. Let X be an affine process on S+d , then (2.4) holds, that
is,

b � (d − 1)α.

PROOF. Since the automorphism G :S+d → S+d in Proposition 4.14 is order
preserving, it suffices to show that (4.20) in Lemma 4.15 implies

θ � (d − 1)I d
r .(4.23)

We show that θmm ≥ d−1, if r ≥m. To this end, take again some diagonal y ∈ ∂S+d
of form y = diag(y11 > 0, . . . , ymm = 0, . . . , ydd > 0). By Lemmas 4.16 and 4.17,
we obtain

d∑
i=1

θii ∂ii det(y)+∑
i,j

(B̃(y))ij ∂ij det(y)

−
∫
S+d \{0}

(∑
i,j

(χ̃(ξ))ij ∂ij det(y)

)
M̃(y, dξ)

+ 1

2

d∑
i,j=1

((
yii1{j≤r} + yjj 1{i≤r}

)(
∂2
ij det(y)+ ∂ij ∂ji det(y)

))

=
d∑

i=1

(
θii

∏
k 
=i

ykk

)
+∑

l 
=m

(
β̃ll

mmyll

∏
k 
=m

ykk

)

−∑
l 
=m

∫
S+d \{0}

(χ̃(ξ))mmyll

∏
k 
=m ykk

‖ξ‖2 ∧ 1
μ̃ll(dξ)

− 1

2

∑
i 
=j

(∏
k 
=j

ykk1{j≤r} +
∏
k 
=i

ykk1{i≤r}
)

= θmm

∏
k 
=m

ykk +
∏
k 
=m

ykk

(∑
l 
=m

(
β̃ll

mmyll − yll

∫
S+d \{0}

(χ̃(ξ))mm

‖ξ‖2 ∧ 1
μ̃ll(dξ)

))

− (d − 1)
∏
k 
=m

ykk1{m≤r} ≥ 0.

As
∏

k 
=m ykk > 0 and by (2.11) also(
β̃ll

mmyll − yll

∫
S+d \{0}

(χ̃(ξ))mm

‖ξ‖2 ∧ 1
μ̃ll(dξ)

)
≥ 0

for l 
= m, letting yll → 0, l 
= m yields θmm ≥ d − 1 for r ≥ m. Relabeling of
indices then proves (4.23). �
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5. Sufficient conditions for the existence and uniqueness of affine processes.
In this section, we prove that for a given admissible parameter set α, b, βij , c,
γ , m, μ satisfying the conditions of Definition 2.3, there exists a unique affine
process on S+d , whose infinitesimal generator A is of form (2.12). Our approach
to derive this result is to consider the martingale problem for the operator A. In
order to prove uniqueness for this martingale problem, we shall need the following
existence and uniqueness result for the generalized Riccati differential equations
(2.14) and (2.15).

5.1. Generalized Riccati differential equations. We first derive some proper-
ties of the function R given in (2.17).

LEMMA 5.1. R is analytic on S++d and quasi-monotone increasing on S+d .

PROOF. That R is analytic on S++d follows by dominated convergence (see,
e.g., [16], Lemma A.2).

Now let δ > 0, and define

Rδ(u)=−2uαu+B�(u)+ γ −
∫
{‖ξ‖≥δ}

(
e−〈u,ξ〉 − 1+ 〈χ(ξ), u〉

‖ξ‖2 ∧ 1

)
μ(dξ)

=−2uαu+ γ +
(
B�(u)−

∫
{‖ξ‖≥δ}

〈χ(ξ), u〉
‖ξ‖2 ∧ 1

μ(dξ)

)

+
∫
{‖ξ‖≥δ}

(
1− e−〈u,ξ〉

‖ξ‖2 ∧ 1

)
μ(dξ).

Now, the map u �→ −2uαu + γ is quasi-monotone increasing, as it is shown in
Step 3 of the proof of Proposition 4.9. Furthermore, it follows from the admissi-
bility condition (2.11) that

u �→ B�(u)−
∫
{‖ξ‖≥δ}

〈χ(ξ), u〉
‖ξ‖2 ∧ 1

μ(dξ)

is a quasi-monotone increasing linear map on S+d . Finally, the quasi-monotonicity
of

u �→
∫
{‖ξ‖≥δ}

(
1− e−〈u,ξ〉

‖ξ‖2 ∧ 1

)
μ(dξ)

is a consequence of the monotonicity of the exponential and that supp(μ)⊆ S+d .
By dominated convergence, we have limδ→0 Rδ(u)= R(u) pointwise for each

u ∈ S+d . Hence, the quasi-monotonicity carries over to R. Indeed, choose x,u, v ∈
S+d such that u 
 v and 〈v − u,x〉 = 0. Then we have for all δ, 〈Rδ(v)− Rδ(u),
x〉 ≥ 0. Thus,

〈Rδ(v)−Rδ(u), x〉→ 〈R(v)−R(u), x〉 ≥ 0,

as δ→ 0, which proves that R is quasi-monotone increasing. �
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LEMMA 5.2. There exists a constant K such that

〈u,R(u)〉 ≤ K

2
(‖u‖2 + 1), u ∈ S+d .(5.1)

PROOF. We may assume, without loss of generality, that the truncation func-
tion in Definition 2.3 takes the form χ(ξ)= 1{‖ξ‖≤1}ξ [otherwise adjust B(u) ac-
cordingly]. Then, for all u ∈ S+d we have

R(u)=−2uαu+B�(u)+ γ −
∫
S+d \{0}∩{‖ξ‖≤1}

(
e−〈u,ξ〉 − 1+ 〈ξ, u〉

‖ξ‖2

)
︸ ︷︷ ︸

≥0

μ(dξ)

−
∫
S+d \{0}∩{‖ξ‖>1}

(
e−〈u,ξ〉 − 1

)
μ(dξ)

(5.2)

 −2uαu+B�(u)+ γ +μ(S+d ∩ {‖ξ‖> 1})

 B�(u)+ γ +μ(S+d ∩ {‖ξ‖> 1}),

where we use that

−
∫
S+d \{0}∩{‖ξ‖>1}

(
e−〈u,ξ〉 − 1

)
μ(dξ)


∫
S+d \{0}∩{‖ξ‖>1}

μ(dξ).

Set now

γ := γ +μ(S+d ∩ {‖ξ‖> 1}) ∈ S+d .

By (5.2), we obtain, for u ∈ S+d , that

〈u,R(u)〉 ≤ 〈u,B�(u)〉 + 〈u,γ 〉,
from which we derive the existence of a positive constant K such equation (5.1)
holds. �

Here is our main existence and uniqueness result for the generalized Riccati
differential equations (2.14) and (2.15).

PROPOSITION 5.3. For every u ∈ S++d , there exists a unique global R+ ×
S++d -valued solution (φ,ψ) of (2.14) and (2.15). Moreover, φ(t, u) and ψ(t, u)

are analytic in (t, u) ∈R+ × S++d .

PROOF. We only have to show that, for every u ∈ S++d , there exists a unique
global S++d -valued solution ψ of (2.15), as then φ is uniquely determined by in-
tegrating (2.14) and has the desired properties by admissibility of the parameter
set.
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Let u ∈ S++d . Since R is analytic on S++d , standard ODE results (e.g., [14],
Theorem 10.4.5) yield there exists a unique local S++d -valued solution ψ(t, u) of
(2.15) for t ∈ [0, t+(u)), where

t+(u)= lim inf
n→∞{t ≥ 0 | ‖ψ(t, u)‖ ≥ n or ψ(t, u) ∈ ∂S+d } ≤∞.

It thus remains to show that t+(u)=∞. That ψ(t, u), and hence φ(t, u), is analytic
in (t, u) ∈R+ × S++d then follows from [14], Theorem 10.8.2.

Since R may not be Lipschitz continuous at ∂S+d (see Remark 5.4 below), we
first have to regularize it. We thus define

R̃(u)=−2uαu+B�(u)+ γ −
∫
S+d \{0}∩{‖ξ‖≤1}

(
e−〈u,ξ〉 − 1+ 〈ξ, u〉

‖ξ‖2

)
μ(dξ).

It then follows as in Lemmas 5.1 and 5.2 that R̃ is quasi-monotone increasing
on S+d and that (5.1) holds for some constant K̃ . Moreover, R̃ is analytic on Sd .
Hence, for all u ∈ Sd , there exists a unique local Sd -valued solution ψ̃ of

∂ψ̃(t, u)

∂t
= R̃(ψ̃(t, u)), ψ̃(0, u)= u,

for all t ∈ [0, t̃+(u)) with maximal lifetime

t̃+(u)= lim inf
n→∞{t ≥ 0 | ‖ψ̃(t, u)‖ ≥ n} ≤∞.

From (5.1), we infer that for all u ∈ S+d and t < t̃+(u),

∂t‖ψ̃(t, u)‖2 = 2〈ψ̃(t, u), ∂t ψ̃(t, u)〉 ≤ K̃
(‖ψ̃(t, u)‖2 + 1

)
.

Gronwall’s inequality (e.g., [14], (10.5.1.3)) implies

‖ψ̃(t, u)‖2 ≤ eK̃t (‖u‖2 + 1), t < t̃+(u).(5.3)

Hence, t̃+(u) =∞ for u ∈ S+d . As R̃ is quasi-monotone increasing on S+d , Volk-
mann’s comparison Theorem 4.8 now yields

0
 ψ̃(t, u)
 ψ̃(t, v), t ≥ 0, for all 0
 u
 v.

Therefore and since ψ̃(t, u) is also analytic in u, Lemma 3.3 implies that ψ̃(t, u) ∈
S++d for all (t, u) ∈R+ × S++d .

We now carry this over to ψ(t, u) and assume without loss of generality, as in
the proof of Lemma 5.2, that the truncation function in Definition 2.3 takes the
form χ(ξ)= 1{‖ξ‖≤1}ξ . Then

R(u)− R̃(u)=−
∫
S+d \{0}∩{‖ξ‖>1}

(
e−〈u,ξ〉 − 1

)
μ(dξ)� 0, u ∈ S+d .

Hence, for u ∈ S++d and t < t+(u), we have

∂ψ̃(t, u)

∂t
− R̃(ψ̃(t, u))= ∂ψ(t, u)

∂t
−R(ψ(t, u))
 ∂ψ(t, u)

∂t
− R̃(ψ(t, u)).
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Theorem 4.8 thus implies

ψ(t, u)� ψ̃(t, u) ∈ S++d , t ∈ [0, t+(u)).

Hence, t+(u)= lim infn→∞{t ≥ 0 | ‖ψ(t, u)‖ ≥ n}. Using (5.1) again, we now can
show as for ψ̃ that

‖ψ(t, u)‖2 ≤ eKt (‖u‖2 + 1), t < t+(u).

Hence t+(u)=∞, as desired. �

REMARK 5.4. Lemma 5.1 states that the admissibility of the parame-
ters α,βij , γ,μ implies quasi-monotonicity of R on S+d .9 Moreover, quasi-
monotonicity just means that R is “inward pointing” close to the boundary S+d . In-
deed, let u,x ∈ S+d with 〈u,x〉 = 0. Then 〈R(u), x〉 ≥ 〈γ, x〉 ≥ 0. Hence, if R were
Lipschitz continuous on S+d , a deterministic variant of Theorem A.5 would imply
the invariance of S+d with respect to (2.15) right away. However, the map R might
fail to be Lipschitz at ∂S+d (see the one-dimensional counterexample [16], Exam-
ple 9.3), even though it is analytic on the interior S++d . Here, quasi-monotonicity
plays the decisive role. It leads to the phenomenon that ψ(t, u) stays away from
the boundary ∂S+d for u ∈ S++d , which is of crucial importance in our analysis.

5.2. The martingale problem for A. We are now prepared to study the mar-
tingale problem for the operator A given by (2.12). For the notion of martingale
problems, we refer to [17], Chapter 4. We shall proceed in four steps. First, we
approximate A by regular operators Aε,δ,n on the space S+ of rapidly decreas-
ing C∞-functions on S+d , defined in (B.1). Second, using Theorem A.5 below,
we show that there exists an S+d -valued càdlàg solution of the martingale prob-
lem for Aε,δ,n. Third, a subsequence of these solutions is shown to converge to
an S+d ∪ {
}-valued càdlàg solution of the martingale problem for A. Finally, we
show that this solution is unique, Markov and affine, as desired.

Note that we cannot employ Stroock’s [51] seminal existence and uniqueness
results for martingale problems, since those are solved on Rn and require uniform
elliptic diffusion parts. Neither of these is satisfied in our case.

Now let (α, b,βij , c = 0, γ = 0,m,μ) be some admissible parameter set. Fix
some ε, δ > 0 and n ∈ N. In order to bound the coefficients and cut off the small
jumps, we let

ϕn ∈C∞
b (Sd), 0≤ ϕn ≤ 1, ϕn(x)=

⎧⎨⎩
1, ‖x‖ ≤ n,
n

‖x‖ , ‖x‖ ≥ n+ 1.(5.4)

9We conjecture that the converse also holds: R is quasi-monotone on S+d and supp(μ)⊆ S+d if and

only if the parameters α,βij , γ,μ are admissible.
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We then define the bounded and smooth parameters

Bn(x)= B(ϕn(x)x),

mδ(dξ)=m(dξ)1{‖ξ‖>δ},

Mδ,n(x, dξ)=
〈
ϕn(x)x,

μ(dξ)

‖ξ‖2 ∧ 1
1{‖ξ‖>δ}

〉
.

Concerning the diffusion function Aijkl(x) given by (2.13), we first find an ap-
propriate factorization which will allow us to write the continuous martingale part
of X as a stochastic integral. Thereto observe that any S+d -valued solution, pre-
sumed that it exists, of the following symmetric matrix-valued diffusion SDE:

dZt =
√

Zt dWt � +�� dW�
t

√
Zt,(5.5)

where W is a standard d×d-matrix Brownian motion and � ∈Md with ��� = α,
has quadratic variation d〈Zij ,Zkl〉t =Aijkl(Zt ). Define now σkl(x) ∈ Sd by

σkl(x)=√xMkl� +��Mlk
√

x,(5.6)

where Mkl
ij = δikδjl . Then (5.5) can be written as

dZt =
d∑

k,l=1

σkl(Zt ) dWt,kl

and Aijkl(x)=∑d
m,n=1 σmn

ij (x)σmn
kl (x).

Since σkl(x) involves the matrix square root, which is neither Lipschitz contin-
uous nor bounded nor globally defined, we need to introduce some approximating
regularization in order to meet the assumptions of Theorem A.5 below. Thereto fix
some truncation function

ηε ∈ C∞
b (Sd), ηε(x)=

{
1, x ∈ S+d ,
0, x /∈ S+d − εId ,

and define

sε,n(x)=
{

ηε(ϕn(x)x)
(√

ϕn(x)x + εId −√εId

)
, if x ∈ S+d − εId ,

0, otherwise.
(5.7)

Note that sε,n satisfies:

• sε,n ∈ C∞
b (Sd, Sd),

• sε,n(x)= (
√

ϕn(x)x + εId −√εId) on S+d ,
• limε→0+ sε,n(x)=√ϕn(x)x.

With this, we can now define the regularization of σkl by

σkl
ε,n(x)= sε,n(x)Mkl� +��Mlksε,n(x),(5.8)
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which then satisfies the smoothness condition of Theorem A.5. Finally, we set

A
ε,n
ijkl(x)=

d∑
m,n

(σmn
ε,n (x))ij (σ

mn
ε,n (x))kl

= (s2
ε,n(x))ikαjl + (s2

ε,n(x))ilαjk(5.9)

+ (s2
ε,n(x))jkαil + (s2

ε,n(x))jlαik,

and define the corresponding regularized operator on C0(Sd)

Aε,δ,nf (x)= 1

2

∑
i,j,k,l

A
ε,n
ijkl(x)

∂2f (x)

∂xij ∂xkl

+∑
i,j

(
bij +Bn

ij (x)
) ∂f (x)

∂xij

(5.10)
+

∫
S+d \{0}

(
f (x + ξ)− f (x)

)
mδ(dξ)

+
∫
S+d \{0}

(
f (x + ξ)− f (x)− 〈χ(ξ),∇f (x)〉)Mδ,n(x, dξ).

We now show that Aε,δ,n approximates A. We let S = S(Sd) and S+ denote the
locally convex spaces of rapidly decreasing C∞-functions on Sd and S+d defined
in (B.1) below, respectively.

LEMMA 5.5. S ⊂ D(Aε,δ,n) and, for every f ∈ S+,

lim
ε,δ,n

‖Aε,δ,nf − Af ‖∞ = 0.(5.11)

PROOF. Since ϕn as defined in (5.4) converges uniformly on compact sets to 1,
this is clear for the differential operator part. Concerning the integral part, we have∥∥∥∥∫

S+d \{0}
(
f (x + ξ)− f (x)− 〈

1{‖ξ‖≤1}ξ,∇f (x)
〉)(

Mδ,n(x, dξ)−M(x,dξ)
)∥∥∥∥

≤
∥∥∥∥∑

i,j

∫
S+d \{0}

(
f (x + ξ)− f (x)− 〈1{‖ξ‖≤1}ξ,∇f (x)〉

‖ξ‖2 ∧ 1

)

× xij

(
ϕn(x)− 1

)
μδ

ij (dξ)

∥∥∥∥
+

∥∥∥∥∑
i,j

∫
S+d \{0}

(
f (x + ξ)− f (x)− 〈

1{‖ξ‖≤1}ξ,∇f (x)〉
‖ξ‖2 ∧ 1

)

× xij

(
1{‖ξ‖>δ} − 1

)
μij (dξ)

∥∥∥∥.
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By dominated convergence the second term goes uniformly in x to 0, thus we only
have to consider the first one. By splitting the first integral into

∫
{‖ξ‖≤1} +

∫
{‖ξ‖>1},

we note that ‖ ∫{‖ξ‖≤1} ‖ converges uniformly in x to 0. Hence, it remains to analyze∥∥∥∥∑
i,j

∫
{‖ξ‖>1}

(
f (x + ξ)− f (x)

)
xij

(
ϕn(x)− 1

)
μij (dξ)

∥∥∥∥,
which can be estimated by∑

i,j

(∫
{‖ξ‖>1}

∥∥f (x + ξ)xij

(
ϕn(x)− 1

)∥∥(μ+ij (dξ)+μ−ij (dξ)
)

+
∫
{‖ξ‖>1}

∥∥f (x)xij

(
ϕn(x)− 1

)∥∥(μ+ij (dξ)+μ−ij (dξ)
))

,

where μ+ij ,μ
−
ij correspond to the Jordan decomposition of μij = μ+ij − μ−ij . As f

lies in S+, the second term converges uniformly to 0. For the first one, observe that
for every n∥∥f (x + ξ)xij

(
ϕn(x)− 1

)∥∥≤ ‖f (x + ξ)xij‖ ≤ ‖f (x + ξ)‖‖x + ξ‖,
such that we can apply dominated convergence. Again, since f lies in S+, the
first integral converges uniformly in x to 0 as well. Hence (5.11) holds true, and
S ⊂ D(Aε,δ,n) follows similarly. �

We now establish existence for the martingale problem for Aε,δ,n.

LEMMA 5.6. For every x ∈ S+d there exists an S+d -valued càdlàg solution X

to the martingale problem for Aε,δ,n with X0 = x. That is,

f (Xt)−
∫ t

0
Aε,δ,nf (Xs) ds

is a martingale, for all f ∈ S .

PROOF. Consider the following SDE of type (A.1):

X
ε,δ,n
t = x +

∫ t

0

(
b+Bn(Xε,δ,n

s )−
∫
S+d \{0}

χ(ξ)Mδ,n(Xε,δ,n
s , dξ)

)
ds

(5.12)

+
d∑
k,l

∫ t

0
σkl

ε,n(X
ε,δ,n
s ) dWs,kl + Jt ,

where W is a d × d-matrix of standard Brownian motions and J a finite ac-
tivity jump process with compensator mδ(dξ) +Mδ,n(X

ε,δ,n
t , dξ). Note that the

quadratic variation of the continuous martingale part of X
ε,δ,n
t is given by A

ε,n
ijkl(x)
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as defined in (5.9). It thus follows by inspection that any càdlàg solution Xε,δ,n of
(5.12) solves the martingale problem for Aε,δ,n.

Hence, it remains to show that there exists an S+d -valued càdlàg solution of
(5.12). Let us recall the normal cone (2.23) to S+d . As b+Bn(x)− ∫

S+d \{0} χ(ξ)×
Mδ,n(x, dξ), σkl

ε,n(x) and mδ(dξ) + Mδ,n(x, dξ) are designed to satisfy the as-
sumptions of Theorem A.5 and since x + supp(mδ(·)+Mδ,n(x, ·)) ⊆ S+d for all
x ∈ S+d , we only have to show that for all x ∈ ∂S+d and u ∈NS+d

(x)

〈σkl
ε,n(x), u〉 = 0,(5.13) 〈

b+Bn(x)−
∫
S+d \{0}

χ(ξ)Mδ,n(x, dξ)

(5.14)

− 1

2

d∑
k,l=1

Dσkl
ε,n(x)σ kl

ε,n(x), u

〉
≥ 0.

Due to the definition of σkl
ε,n(x), respectively, the definition of sε,n(x) given in

(5.7), condition (5.13) is satisfied. Concerning (5.14), we have by (2.11)〈
Bn(x)−

∫
S+d \{0}

χ(ξ)Mδ,n(x, dξ), u

〉
≥ 0.

Moreover, it is shown in Lemma 5.7 below that〈
b− 1

2

d∑
k,l=1

Dσkl
ε,n(x)σ kl

ε,n(x), u

〉
≥ 0.

The lemma now follows from Theorem A.5. �

LEMMA 5.7. Let x =O�O� ∈ S+d where �= diag(λ1, . . . , λd) contains the
eigenvalues in decreasing order and let σkl

ε,n be defined by (5.8). Then, for all
x ∈ S+d ,

1

2

d∑
k,l=1

Dσkl
ε,n(x)σ kl

ε,n(x)= 1

2

d∑
i=1

ϕn(x)(
√

λiϕn(x)+ ε−√ε)√
λiϕn(x)+ ε

Ui

+ 1

2

∑
i 
=j

ϕn(x)(
√

λjϕn(x)+ ε−√ε)

√
λiϕn(x)+ ε+

√
λjϕn(x)+ ε

Ui(5.15)

+ 1

2

∑
i,k,l

λi

2
√

λiϕn(x)+ ε
〈∇ϕn(x), σ kl

ε,n〉Zikl,

where Ui
mn = ((���)O)miOni + ((���)O)niOmi and Zikl

mn = OmiOki�ln +
OniOki�lm.
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Furthermore, if

b � (d − 1)���,(5.16)

then 〈
b− 1

2

d∑
k,l=1

Dσkl
ε,n(x)σ kl

ε,n(x), u

〉
≥ 0(5.17)

for all x ∈ ∂S+d and for all u ∈NS+d
(x).

PROOF. Let us denote

Cε,n(x)= 1

2

d∑
k,l=1

Dσkl
ε,n(x)σ kl

ε,n(x),

and notice that

Cε,n(x)= 1

2

∑
k,l

(
d

dt
sε,n

(
x + tσ kl

ε,n(x)
)∣∣

t=0M
kl�

+��(Mkl)� d

dt
sε,n

(
x + tσ kl

ε,n(x)
)∣∣

t=0

)
.

We now use the following formula from [29], Theorem 6.6.30:

d

dt
f (V (t))=O(t)

(∑
i,j


f (λi(t), λj (t))M
ii[O(t)�V ′(t)O(t)]Mjj

)
O(t)�,

where V (t) = O(t)diag(λ1(t), . . . , λd(t))O(t)� is a family of symmetric matri-
ces and 
f (u, v) = (f (u)−f (v))

(u−v)
for u 
= v and 
f (u,u) = f ′(u). This holds true

if V (·) is continuously differentiable for t ∈ (a, b) and f (·) is continuously dif-
ferentiable on an open real interval which contains all eigenvalues of V (t) for all
t ∈ (a, b).

We now apply this formula to our case, where f (t)=√t and

V (t)= ϕn

(
x + tσ kl

ε,n(x)
)(

x + tσ kl
ε,n(x)

)+ εId .

Since we take the derivative at t = 0, we only have to consider

V (0)=O
(
ϕn(x)�+ εId

)
O�,

where O is the orthogonal matrix diagonalizing x and

V ′(0)= 〈∇ϕn(x), σ kl
ε,n(x)〉x + ϕn(x)σ kl

ε,n(x).

Note that we do not have an explicit contribution of ηε which is part of the defin-
ition of sε,n, since ηε(S

+
d )= 1 and ∇ηε(S

+
d )= 0. Some lines of calculations then

yield (5.15).
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Let us now verify (5.17). Take an arbitrary x = O�O� ∈ ∂S+d and assume
first that it has rank d − 1, that is, λd = 0 and all other eigenvalues are strictly
positive. By Lemma 4.1 and (2.23), the elements of NS+d

(x) can then be written as

u=OKO�, where K = diag(0, . . . ,0, k) with k ≥ 0. Thus, (5.17) now reads

〈b−Cε,n(x),OKO�〉 = k[O�bO −O�Cε,n(x)O]dd .

As [O�UiO]dd = 2δid(O����O)id and O�ZiklO = 2δidOki(�O)ld , we have

[O�Cε,n(x)O]dd =
∑
j 
=d

ϕn(x)(
√

λjϕn(x)+ ε−√ε)√
λjϕn(x)+ ε+√ε

[O����O]dd .

Since
∑

j 
=d

ϕn(x)(
√

λjϕn(x)+ε−√ε)√
λjϕn(x)+ε+√ε

≤ d − 1, we obtain by condition (5.16)

[O�bO −O�Cε,n(x)O]dd ≥ [
O�(b− (d − 1)���

)
O

]
dd ≥ 0,

which proves (5.17) for x ∈ ∂S+d with rk = d − 1. In the general case, we can
proceed similarly. For x ∈ ∂S+d with rk= r ≤ d − 1, the elements of NS+d

(x) are

given by u=OKO�, where

K =
(

0 0
0 k

)
with k ∈ S+d−r . This follows again from Lemma 4.1 and (2.23). Now, (5.17) can be
written as

〈b−Cε,n(x),OKO�〉

=
〈
O�

(
b−∑

j≤r

ϕn(x)(
√

λjϕn(x)+ ε−√ε)√
λjϕn(x)+ ε+√ε

���

)
O,K

〉

≥ 〈O�(b− r���)O,K〉 ≥ 0,

which proves the assertion. �

Combining Lemmas 5.5 and 5.6, we obtain the announced existence result for
the martingale problem for A.

LEMMA 5.8. For every x ∈ S+d , there exists an S+d ∪ {
}-valued càdlàg solu-
tion X to the martingale problem for A with X0 = x. That is,

f (Xt)−
∫ t

0
Af (Xs) ds

is a martingale, for all f ∈ S+.
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PROOF. By Lemma 5.6, there exists a solution Xε,δ,n to the martingale prob-
lem for Aε,δ,n with sample paths in D(S+d ) (the space of S+d -valued càdlàg paths),
and hence also in D(S+d ∪ {
}). We now claim that (Xε,δ,n) is relatively compact
considered as a sequence of processes with sample paths in D(S+d ∪ {
}).10 For
the proof of this assertion, we shall make use of Theorems 9.1 and 9.4 in Chapter 3
of [17]. In order to meet the assumption of [17], Chapter 3, Theorem 9.4, we take
C∞

c (S+d ) as subalgebra of Cb(S
+
d ). Then, for every T > 0 and f ∈ C∞

c (S+d ), we
have

sup
ε,δ,n

Ex

[
essup
t∈[0,T ]

|Aε,δ,nf (X
ε,δ,n
t )|

]
<∞,

since there exists a constant C such that ‖Aε,δ,nf ‖∞ ≤ Cp3,+(f ) < ∞ for all
n, ε, δ, where pk,+ are the semi-norms as defined in (B.2) (see also the proof of
Proposition 4.12). Thus, the requirements of [17], Chapter 3, Theorem 9.4, are sat-
isfied. Note that Y in the notation of [17], Chapter 3, Theorem 9.4, corresponds
in our case to f (X) such that [17], Chapter 3, Condition (9.17), is automatically
fulfilled. It then follows by the conclusion of [17], Chapter 3, Theorem 9.4, that
(f (X

ε,δ,n
t )) is relatively compact [as family of processes with sample paths in

D(R)] for each f ∈C∞
c (S+d ). Furthermore, since we consider S+d ∪ {
}, the com-

pact containment condition is always satisfied, that is, for every η > 0 and T > 0,
there exists a compact set �η,T ⊂ (S+d ∪ {
}) for which

inf
ε,δ,n

Px

[
X

ε,δ,n
t ∈ �ε,T for t ∈ [0, T ]]≥ 1− η

holds true. By [17], Chapter 3, Theorem 9.1, and the fact that {1,C∞
c (S+d )} is

dense in C(S+d ∪ {
}), we therefore obtain that (Xε,δ,n) is relatively compact in
D(S+d ∪ {
}). Thus, there exists a subsequence (Pεk,δk,nk ) of the probability dis-
tributions associated to (Xε,δ,n) which converges in the Prohorov metric to some
limit probability distribution. By [17], Chapter 3, Theorem 3.1, this implies weak
convergence of (Pεk,δk,nk ) and hence the subsequence (Xεk,δk,nk ) converges in dis-
tribution to some limit process X in D(S+d ∪ {
}).

Combining this with Lemma 5.5 and [17], Chapter 4, Lemma 5.1, we conclude
that X is a solution to the martingale problem for A. Hence, the lemma is proved.

�

We can now prove the existence and uniqueness of an affine process for any
admissible parameter set.

10This means that the family of probability distributions associated to (Xε,δ,n) is relatively com-

pact, that is, the closure of (Pε,δ,n) in P(D(S+d ∪ {
})) is compact. Here, P(D(S+d ∪ {
})) denotes

the family of probability distributions on D(S+d ∪ {
}) and Pε,δ,n the distribution of Xε,δ,n.
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PROPOSITION 5.9. Let (α, b,βij , c, γ,m,μ) be an admissible parameter set.
Then there exists a unique affine process on S+d with infinitesimal generator (2.12),
and (2.1) holds for all (t, u) ∈ R+ × S+d , where φ(t, u) and ψ(t, u) are given by
(2.14) and (2.15).

PROOF. Suppose first that c = 0 and γ = 0. Let x ∈ S+d . Then Lemma 5.8
implies the existence of an S+d ∪ {
}-valued càdlàg solution X of the martingale
problem for A with X0 = x. We now show that X is unique in distribution.

Thereto, note that by [17], Chapter 4, Theorem 7.1,

f (t,Xt)−
∫ t

0

(
Af (s,Xs)+ ∂sf (s,Xs)

)
ds(5.18)

is a martingale for all rapidly decreasing functions f ∈ S(R+ × S+d ), similarly
defined as S+ in (B.1). Now let φ and ψ be the unique solutions of the generalized
Riccati differential equations (2.14) and (2.15), given by Proposition 5.3. Fix t > 0,
u ∈ S++d , and some f ∈ S(R+ × S+d ) such that

f (s, x)= e−φ(t−s,u)−〈ψ(t−s,u),x〉, 0≤ s ≤ t, x ∈ S+d .

Then

Af (s, x)+ ∂sf (s, x)= 0, 0≤ s ≤ t, x ∈ S+d .

In view of (5.18), the Laplace transform of Xt at u is thus given by

Ex

[
e−〈u,Xt 〉]= Ex[f (t,Xt)] = f (0, x)− 0= e−φ(t,u)−〈ψ(t,u),x〉.(5.19)

Since u ∈ S++d was arbitrary, we conclude that the distribution of Xt is uniquely
determined for all t > 0. From [17], Chapter 4, Theorem 4.2, we infer that X is
a Markov process with generator A on S+ and thus unique in law as solution of
the martingale problem for A. Moreover, by (5.19), X is stochastically continuous
and affine. Thus, the proposition is proved under the premise that c= 0 and γ = 0.

For general parameters c and γ , we employ a Feynman–Kac argument. Denote
by B and (Qt) the affine generator and corresponding Feller semigroup associated
with (α, b,βij , c = 0, γ = 0,m,μ) from the first part of the proof, respectively.
Since x �→ c + 〈γ, x〉 is nonnegative on S+d , it follows along the lines of [16],
Proposition 11.1, that

Ptf (x)= Ex

[
e−

∫ t
0 c+〈γ,Xs〉dsf (Xt)

]
defines a Feller semigroup (Pt ) on C0(S

+
d ) with infinitesimal generator Af (x)=

Bf (x)− (c+ 〈γ, x〉)f (x) for f ∈ S+, which is the desired solution. �
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5.3. An alternative existence proof for jump processes. For affine processes
without diffusion component (i.e., the admissible parameter α vanishes), the ex-
istence question can be handled entirely as in the case of affine processes on
Rm+ × Rn [16], Section 7. In this section, we elaborate an alternative existence
proof in this specific case, by following the lines of [16]. Note that the OU-type
processes driven by matrix Lévy subordinators [3] are contained in the class of
pure jump processes of this section.

We call a function f :S+d →R of Lévy–Khintchine form on S+d , if

f (u)= 〈b0, u〉 −
∫
S+d \{0}

(
e−〈u,ξ〉 − 1

)
m0(dξ),

where b0 ∈ S+d and m0 is a Borel measure supported on S+d such that∫
S+d \{0}

(‖ξ‖ ∧ 1)m0(dξ) <∞.

Once again, we recall that a distribution on S+d is infinitely divisible if and only
if its Laplace transform takes the form e−f (u), where f is of the above form (see
also Step 1 in the proof of Proposition 4.9).

Similarly to [16], we introduce the sets

C := {f + c | f :S+d →R is of Lévy–Khintchine form on S+d , c ∈R+},
CS := {ψ | u �→ 〈ψ(u), x〉 ∈ C for all x ∈ S+d }.

The following technical statement can be obtained easily by mimicking the proofs
of the corresponding statements in [16], Proposition 7.2 and Lemma 7.5:

LEMMA 5.10. We have:

(i) C , CS are convex cones in C(S+d ).
(ii) φ ∈ C , ψ ∈ CS imply φ(ψ) ∈ C .

(iii) ψ,ψ1 ∈ CS imply ψ1(ψ) ∈ CS .
(iv) If φk ∈ C converges to a continuous function φ on S+d , then φ ∈ C . A similar

statement holds for sequences in CS .
(v) Let (α = 0, b,βij , c, γ,m,μ) be an admissible parameter set. Then Rδ →

R locally uniformly as δ → 0, where Rδ corresponds to the admissible parame-
ter set (α = 0, b,βij , c, γ,m,μ1{‖ξ‖≥δ}). (Note that there is one fixed truncation
function.)

PROPOSITION 5.11. Let (α = 0, b,βij , c, γ,m,μ) be an admissible parame-
ter set. Then for all t ≥ 0, the solutions (φ(t, ·),ψ(t, ·)) of (2.14) and (2.15) lie in
(C, CS).
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PROOF. Suppose first that11∫
S+d \{0}

μij (dξ)

‖ξ‖ ∧ 1
<∞(5.20)

for all i ≤ j . Then equation (2.15) is equivalent to the integral equation

ψ(t, u)= eB̃�t (u)+
∫ t

0
eB̃�(t−s)R̃(ψ(s, u)) ds,(5.21)

where R(u)= R̃(u)+ B̃�(u) and B̃� ∈ L(Sd) is given by

B̃�(u) := B�(u)−
∫
S+d \{0}

〈χ(ξ), u〉
‖ξ‖2 ∧ 1

μ(dξ).

Here, eB̃�t (u) is the notation for the semi-group induced by ∂tx(t, u) = B̃�(x(t ,
u)), x(0, u)= u. Hence, the variation of constants formula yields (5.21).

Due to admissibility condition (2.11), we have that B̃� is a linear drift which
is “inward pointing” at the boundary of S+d , which is equivalent to eB̃�t being a

positive semi-group, that is, eB̃�t maps S+d into S+d . Therefore, eB̃�t ∈ CS and since
R̃(u) is given by

R̃(u)= γ −
∫
S+d \{0}

(e−〈u,ξ〉 − 1)

‖ξ‖2 ∧ 1
μ(dξ)

with μ satisfying (5.20), we also have

R̃ ∈ CS.(5.22)

Using Picard’s iteration and Lemma 5.10, it follows that the sequence ψ(k) de-
fined as

ψ(0)(t, u) := u,

ψ(k+1)(t, u) := eB̃�t (u)+
∫ t

0
eB̃�(t−s)R̃

(
ψ(k)(s, u)

)
ds,

lies in CS , for each t ≥ 0, hence so does its limit ψ(t, ·). Since F ∈ C , we have
again by Lemma 5.10 φ(t, ·)= ∫ t

0 F(ψ(s, ·)) ds ∈ C .
By an application of Lemma 5.10(v), the general case is then reduced to the

former, since Rδ clearly satisfies (5.20). �

We are prepared to provide an alternative proof of Proposition 5.9 under the
additional assumption α = 0: by Proposition 5.11, (φ(t, ·),ψ(t, ·)) lie in (C, CS).
Hence for all t ≥ 0, x ∈ S+d , there exists an infinitely divisible sub-stochastic kernel

11According to our conjecture in Section 2.1.4, this would already cover all possible jump measures
if d ≥ 2.
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pt(x, dξ) with Laplace-transform e−φ(t,u)−〈ψ(t,u),x〉. The Chapman–Kolmogorov
equations hold in view of properties (3.1) and (3.2). Whence, Proposition 5.9 fol-
lows.

REMARK 5.12. We note that the proof of statement (v) in Lemma 5.10 is
much easier than the one of [16], Lemma 7.5, because α = 0. However, for α 
=
0 and d ≥ 2, R cannot be locally uniformly approximated by functions Rδ of
a pure jump type such as in Lemma 5.10. Indeed, otherwise one could infer as
above the existence of an affine process which is infinitely decomposable and has
nonvanishing diffusion component. This is in contradiction with Proposition 2.9
and in the case of pure diffusions it contradicts Example 2.8.

6. Proof of the main results.

6.1. Proof of Theorem 2.4. The first part is a summary of Propositions 3.4,
4.9, 4.12 and 4.18. The second part follows from Proposition 5.9.

6.2. Proof of Theorem 2.6. Let X be a conservative affine process. It is shown
in Proposition 4.12 that {e−〈u,·〉 | u ∈ S++d } ⊂D(A). Hence,

e−〈u,Xt 〉 − e−〈u,x〉 −
∫ t

0
Ae−〈u,Xs〉 ds

is a (F̃t ,Px)-martingale with F̃t defined in (2.18). From [31], Theorem II.2.42,
combined with (4.16) and Remark 2.5, it then follows that X is a semimartin-
gale with characteristics (2.19)–(2.21). The canonical semimartingale representa-
tion ([31], Theorem II.2.34) of X is thus given by

Xt = x +Bt +Xc
t +

∫ t

0

∫
S+d \{0}

χ(ξ)
(
μX(ds, dξ)− ν(ds, dξ)

)
+

∫ t

0

∫
S+d \{0}

(
ξ − χ(ξ)

)
μX(ds, dξ),

where Xc denotes the continuous martingale part, and μX the random measure
associated with the jumps of X. In order to establish representation (2.22), we find
it convenient to consider the vectorization, vec(Xc) ∈Rd2

, of Xc. The aim is now
to find a d2-dimensional Brownian motion W̃ on a possibly enlarged probability
space and a d2 × d2-matrix-valued function σ such that

vec(Xc
t )=

∫ t

0
σ(Xs) dW̃s.(6.1)

Thus, σ has to fulfill

d〈Xc
ij ,X

c
kl〉t =Xt,ikαjl +Xt,ilαjk +Xt,jkαil +Xt,jlαik

(6.2)
= (σ (Xt)σ

�(Xt))ijkl .
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As suggested by (5.6), we define the entries of the d2×d2-matrix σ(x) in terms
of σkl(x) given in (5.6) by

σijkl(x)= σkl
ij (x)=√xik�lj +��

il

√
xjk.(6.3)

Note that the (kl)th column of σ(x) is just the vectorization of the matrix σkl(x).
We thus obtain Aijkl(x) = (σ (x)σ�(x))ijkl . Hence, σ(x) satisfies (6.2). Analo-
gous to the proof of [45], Theorem 20.1, we can now build a d2-dimensional
Brownian motion W̃ on an enlargement of the probability space such that (6.1)
holds true. As the (ij)th entry of Xc is given by

Xc
t,ij = vec(Xc

t )ij =
∫ t

0

d∑
k,l=1

σijkl(Xs) dW̃s,kl

=
∫ t

0

(√
Xs dWs� +�� dW�

s

√
Xs

)
ij ,

where W is the d × d-matrix Brownian motion satisfying vec(W)= W̃ , we obtain
the desired representation.

6.3. Proof of Theorem 2.9. We first prove some technical lemmas.

LEMMA 6.1. Let g :S+d → R be an additive function, that is, g satisfies
Cauchy’s functional equation

g(x + y)= g(x)+ g(y), x, y ∈ S+d .(6.4)

Then g can be extended to an additive function f :Sd →R. Moreover, if g is mea-
surable on S+d then f is measurable on Sd . In that case, f is a continuous linear
functional, that is, f (x)= 〈c, x〉 for some c ∈ Sd .

PROOF. The first part follows from Lemma 4.4.
Concerning measurability, let E ∈ B(R), a Borel measurable set. Then we have

by the additivity of f ,

f−1(E)=
∞⋃

n=1

Bn =
∞⋃

n=1

{x + nId | x ∈ Sd, f (x) ∈E,‖x‖ ≤ n} − nId

=
∞⋃

n=1

{y ∈ Sd | f (y) ∈E + f (nId),‖y − nId‖ ≤ n} − nId

=
∞⋃

n=1

{y ∈ S+d | g(y) ∈E + g(nId),‖y − nId‖ ≤ n} − nId,

which is again a measurable set, in view of the measurability of g on S+d .
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For x ∈ Sd we write x = (xi)i , where 1 ≤ i ≤ d(d+1)
2 . We introduce the addi-

tive functions fi : R→R via fi(xi)= f (0, . . . ,0, xi,0, . . . ,0). By the just proved
measurability of f , we infer that all fi are measurable functions on R. By [1],
Chapter 2, Theorem 8, any additive measurable function on the real line is a con-
tinuous linear functional. Hence for each i, we infer the existence of ci ∈ R such
that fi(xi)= cixi holds. Since f (x)=∑

i fi(xi), it follows that f (x)= 〈c, x〉 for
some c ∈ Sd . �

Also, we consider Cauchy’s exponential equation for h :S+d →R+, that is,

h(x + y)= h(x)h(y), x, y ∈ S+d .(6.5)

LEMMA 6.2. Suppose h :S+d → R+ is measurable, strictly positive, and sat-
isfies (6.5). Then h(x)= e−〈c,x〉, for some c ∈ Sd . If h≤ 1, then c ∈ S+d .

PROOF. Since h is strictly positive, its logarithm yields the well defined
function g :S+d → R, g(x) := logh(x). Clearly g is additive, hence by the first
part of Lemma 6.1, there exists a unique additive extension f :Sd → R. Also,
f is measurable on S+d , hence by the second assertion of Lemma 6.1 we have
f (x)=−〈c, x〉, for some c ∈ Sd . The last statement follows from the monotonic-
ity of the exponential and the self duality of S+d . �

REMARK 6.3. The assumption of strict positivity of h in the preceding lemma
is essential. Otherwise, there exist solutions h which are not of the asserted
form.

Lemma 6.2 is the main ingredient of the proof of the following characterization
concerning k-fold convolutions of Markov processes.

LEMMA 6.4. Let (P
(i)
x )x∈S+d

∈ P (i = 0,1, . . . , k). Then

P
(1)

x(1) ∗ · · · ∗ P
(k)

x(k) = P(0)
x ∀x(i) ∈ S+d , x = x(1) + · · · + x(k),(6.6)

if and only if for all t = (t1, . . . , tN ) ∈ RN+ and u = (u(1), . . . , u(N)) ∈ (S+d )N ,
N ∈N0, there exists 0 < ρ(i)(t,u) ≤ 1 and ψ(t,u) ∈ S+d such that

∏k
i=1 ρ(i)(t,

u)= ρ(0)(t,u) and

E(j)
x

[
e−

∑N
i=1〈u(i),Xti

〉]= ρ(j)(t,u)e−〈ψ(t,u),x〉
(6.7)

∀x ∈ S+d , j = 0,1, . . . , k.
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PROOF. We proceed similarly as in the proof of [16], Lemma 10.3. Fix k > 1,
N > 1, t,u and set

g(j)(x) := E(j)
x

[
e−

∑N
i=1〈u(i),Xti

〉].
By the definition of the convolution, (6.6) is equivalent to the following:

g(1)(x(1)) · · · · · g(k)(x(k))= g(0)(x)
(6.8)

∀x(i) ∈ S+d , x = x(1) + · · · + x(k).

Hence, the implication (6.7) ⇒ (6.8) is obvious. For the converse direction, we
observe that g(i) are strictly positive on all of S+d . Thus, by (6.8) we have

g := g(1)/g(1)(0)= · · · = g(k)/g(k)(0)= g(0)/g(0)(0)

and g is a measurable, strictly positive function on S+d satisfying (6.5). Hence, an
application of Lemma 6.2 yields the validity of (6.7), where ρ(i)(t,u) = g(i)(0).
By the definition of g(i), it follows that 0 < ρ(i)(t,u) ≤ 1 and ψ(t,u) ∈ S+d .

�

We are prepared to prove Theorem 2.9:
(i)⇒ (ii): due to Lemma 6.4, infinite decomposability implies that X is affine.

Also, by the definition of infinite decomposability and by Lemma 6.4 we have that
the kth root (P

(k)
x ) for each k ≥ 1 is an affine process with state space S+d with

exponents ψ(t, u) and φ(t, u)/k. This implies that (P
(k)
x )x∈S+d

has admissible pa-

rameters (α, b/k,βij , c/k, γ,m/k,μ). Hence, the admissibility condition proved
in Proposition 4.18 implies b/k � (d − 1)α � 0, for each k, which is impossible,
unless α = 0 or d = 1.

(ii)⇒ (iii): follows from Proposition 5.11, in view of the Lévy–Khintchine form
of −φ(t, ·)− 〈ψ(t, ·), x〉, for each t > 0.

(iii) ⇒ (i): by definition, every transition kernel pt(x, dξ) of X is infinitely
divisible with Laplace transform Pte

−〈u,x〉 = e−φ(t,u)−〈x,ψ(t,u)〉. For each k ≥ 1,
the maps φ(k) := φ

k
, ψ(k) := ψ satisfy the properties (3.1) and (3.2). Also, infinite

divisibility implies that for each (t, x) ∈R+ × S+d ,

Q
(k)
t e−〈u,x〉 := e−φ(k)(t,u)−〈ψ(k)(t,u),x/k〉

is the Laplace transform of a sub-stochastic measure on S+d . In conjunction with

Properties (3.1) and (3.2) we may conclude that Q
(k)
t gives rise to a Feller semi-

group on C0(S
+
d ), which is affine in y = x/k. Hence, we have constructed for

each k ≥ 1 a kth root of X which is stochastic continuous by the definition of its
characteristic exponents φ(k),ψ(k). Thus Theorem 2.9 is proved.
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APPENDIX A: EXISTENCE AND VIABILITY OF A CLASS OF
JUMP-DIFFUSIONS

In this section, we study existence and viability in a nonempty closed convex
set D ⊂Rn of solutions to the equation

Xt = x +
∫ t

0
b(Xs)+

∫ t

0
σ(Xs) dWs + Jt ,(A.1)

where b(x) ∈ Cb(R
n,Rn), σ(x) ∈ Cb(R

n,Rn×m) are Lipschitz continuous maps,
W a standard m-dimensional Brownian motion and J a finite activity jump process
with state-dependent, absolutely continuous compensator K(Xt, dξ) dt . We fur-
ther assume that x �→K(x,Rn) is bounded.

We tackle this problem in three steps. First, we derive some regularity and ex-
istence results for diffusion SDEs. These results are not in the standard literature,
we thus provide full proofs. Second, we prove existence of a càdlàg solution X for
(A.1). Finally, we provide sufficient conditions for X to be D-valued.

A.1. Diffusion stochastic differential equations. Let (�, F , (Ft ),P) be a
filtered probability space satisfying the usual conditions and carrying an m-
dimensional standard Brownian motion W . We consider the following diffusion
SDE:

Xt = x +
∫ t

0
b(Xs)1{θ≤s} ds +

∫ t

0
σ(Xs)1{θ≤s} dWs,(A.2)

where (θ, x) ∈ [0,∞]×Rn and b and σ are as above. Recall that X is a solution
of (A.2) if X is continuous and (A.2) holds for all t ≥ 0 a.s. In particular, note that
this null set depends on (θ, x).

LEMMA A.1. Fix T > 0 and let p ≥ 2. Furthermore, let �1,�2 be stopping
times and for i = 1,2, Ui , F�i

-measurable random variables. Consider the fol-
lowing equations:

Xt = U1 +
∫ t

0
b(Xs)1{�1≤s} ds +

∫ t

0
σ(Xs)1{�1≤s} dWs,

Yt = U2 +
∫ t

0
b(Ys)1{�2≤s} ds +

∫ t

0
σ(Ys)1{�2≤s} dWs.

Then there exists a constant C depending only on p, T , n, the Lipschitz constants
of b and σ and ‖b‖∞,‖σ‖∞ such that for 0≤ t ≤ T ,

E
[
sup
s≤t

‖Xs − Ys‖p
]

≤ CE

[
‖U1 −U2‖p + |�1 ∧ t −�2 ∧ t |p/2(A.3)

+
∫ t

0
sup
u≤s
‖Xu − Yu‖p ds

]
.
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PROOF. By the same arguments as in the proof of [45], Lemma 11.5, we first
obtain the following estimate:

sup
s≤t

‖Xs − Ys‖p

≤ 3p−1
(
‖U1 −U2‖p +

(∫ t

0
‖b(Xs)1{�1≤s} − b(Ys)1{�2≤s}‖ds

)p

+ sup
s≤t

∥∥∥∥∫ s

0

(
σ(Xu)1{�1≤u} − σ(Yu)1{�2≤u}

)
dWu

∥∥∥∥p)
.

Moreover,(∫ t

0

∥∥b(Xs)1{�1≤s} − b(Ys)1{�2≤s}
∥∥ds

)p

≤ 2p−1
((∫ (�1∨�2)∧t

�1∧t
‖b(Xs)‖ds

)p

+
(∫ (�1∨�2)∧t

�2∧t
‖b(Ys)‖ds

)p

+
(∫ t

(�1∨�2)∧t
‖b(Xs)− b(Ys)‖ds

)p)

≤ 2p−1
(
K|�1 ∧ t −�2 ∧ t |p + tp−1

∫ t

0
‖b(Xs)− b(Ys)‖p ds

)
≤K

(
tp/2|�1 ∧ t −�2 ∧ t |p/2 +

∫ t

0
sup
u≤s

‖Xu − Yu‖p ds

)
.

For the stochastic integral part, we apply the Burkholder–Davis–Gundy inequality

E

[
sup
s≤t

∥∥∥∥∫ s

0

(
σ(Xu)1{�1≤u} − σ(Yu)1{�2≤u}

)
dWu

∥∥∥∥p]

≤KE

[(∫ t

0

∥∥σ(Xu)1{�1≤u} − σ(Yu)1{�2≤u}
∥∥2

du

)p/2]

≤KE

[(∫ (�1∨�2)∧t

�1∧t
‖σ(Xu)‖2 du

)p/2

+
(∫ (�1∨�2)∧t

�2∧t
‖σ(Yu)‖2 du

)p/2

+
(∫ t

(�1∨�2)∧t
‖σ(Xu)− σ(Yu)‖2 du

)p/2]

≤KE

[
|�1 ∧ t −�2 ∧ t |p/2 +

∫ t

0
‖σ(Xs)− σ(Ys)‖p ds

]
≤KE

[
|�1 ∧ t −�2 ∧ t |p/2 +

∫ t

0
sup
u≤s

‖Xu − Yu‖p ds

]
,

where K always denotes a constant which varies from line to line. The last esti-
mate in both inequalities follows from the the Lipschitz continuity of b and σ . By
assembling these pieces, the proof is complete. �
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Here is a fundamental existence result, which is not stated in this general form
in the standard literature. Therefore, we provide a full proof.

THEOREM A.2. There exists a function Z : [0,∞]×Rn×�×R+ →Rn with
the following properties:

(i) Z(θ, x,ω, t) is continuous in (θ, x, t) for all ω.
(ii) Z is B([0,∞]×Rn)⊗ P -measurable.12

(iii) Z(θ, x,ω, t) solves (A.2) for all (θ, x).
(iv) Let � be a stopping time and U an F� measurable random variable, then

Xt = Z(�,U, t) solves

Xt =U +
∫ t

0
b(Xs)1{�≤s} ds +

∫ t

0
σ(Xs)1{�≤s} dWs.(A.4)

PROOF. For every (θ, x) ∈ [0,∞] × Rn, there exists a unique solution
Xt(ω) = Z̃(θ, x,ω, t) of (A.2), which is continuous in t . This is a consequence
of the Lipschitz continuity of x �→ b(x)1{θ≤s} and x �→ σ(x)1{θ≤s}. Uniqueness is
meant modulo indistinguishability. From estimate (A.3), we can deduce for p ≥ 2,
x, y ∈ [−T ,T ]n, 0≤ θ1, θ2 ≤ T and 0≤ t ≤ T ,

E
[
sup
s≤t
‖Z̃(θ1, x, s)− Z̃(θ2, y, s)‖p

]
≤K

(
‖x − y‖p/2 + |θ1 − θ2|p/2

+
∫ t

0
E
[
sup
u≤s

‖Z̃(θ1, x, u)− Z̃(θ2, y, u)‖p
]
ds

)
for some constant K . Hence, by Gronwall’s lemma,

E
[
sup
s≤t
‖Z̃(θ1, x, s)− Z̃(θ2, y, s)‖p

]
≤KeKT (‖x − y‖p/2 + |θ1 − θ2|p/2)

≤ C‖(θ1, x)− (θ2, y)‖p/2.

Let now Dya= {j2−k, j ∈ Z, k ∈N} be the set of dyadic rational numbers in R and
Dyan = Dya×· · · × Dya the set of dyadic rational numbers in Rn. Furthermore,
we define M by M =Dyan+1∩([0, T ]×[−T ,T ]n). By setting p = 2n+4, we can
apply Kolmogorov’s lemma. Indeed, analogous to the proof of [32], Theorem 2.8,
we derive for all (θ1, x), (θ2, y) ∈M with 0 < ‖(θ1, x)− (θ2, y)‖ < h(ω), where
h is a positive valued random variable, and for all ω ∈�∗

T , where �∗
T ∈ F is some

set depending on T with P(�∗
T )= 1, the following estimate:

sup
s≤t
‖Z̃(θ1, x,ω, s)− Z̃(θ2, y,ω, s)‖ ≤ δ‖(θ1, x)− (θ2, y)‖γ .(A.5)

12Here, P denotes the predictable σ -field.
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Here, γ ∈ (0, 1
p
) and δ is some positive constant. Let us now define Z: if

ω /∈ �∗
T , then Z(θ, x,ω, t) = x for 0 ≤ t ≤ T . For ω ∈ �∗

T and (θ, x) ∈ M ,
Z(θ, x,ω, t)= Z̃(θ, x,ω, t) for 0≤ t ≤ T . If (θ, x) ∈Mc, we choose a sequence
(θn, xn)n∈N ⊆M such that (θn, xn)→ (θ, x). By estimate (A.5), Z̃(θn, xn,ω, t) is
a Cauchy sequence converging with respect to sups≤t‖ · ‖. We can therefore set
Z(θ, x,ω, t)= limn→∞ Z̃(θn, xn,ω, t). As we have uniform convergence in t and
as Z̃ is continuous in t , the resulting process Z is jointly continuous in (θ, x, t).
Furthermore, for every (θ, x), Z is indistinguishable from Z̃, that is,

P[Z(θ, x, t)= Z̃(θ, x, t) for all 0≤ t ≤ T ] = 1.(A.6)

Indeed, for (θ, x) ∈M , this is clear and for (θ, x) ∈Mc, we have for (θn, xn)n∈N ⊆
M with (θn, xn)→ (θ, x)

P
[
sup
s≤t
‖Z̃(θn, xn, s)− Z̃(θ, x, s)‖ ≥ ε

]
≤ Cε−p‖(θn, xn)− (θ, x)‖p/2,

which implies that Z̃(θn, xn, t) → Z̃(θ, x, t) in probability, uniformly in t . As
Z̃(θn, xn, t)→ Z(θ, x, t) a.s., and thus in particular in probability, it follows that
Z(θ, x, t)= Z̃(θ, x, t) a.s. for all 0≤ t ≤ T . Letting T →∞ proves assertion (i).

Statement (ii) is then a consequence of (i) and the Ft -measurability of ω �→
Z(θ, x, t,ω), which is satisfied since F0 contains all null sets of F .

Furthermore, property (A.6) implies that Z(θ, x, t) is a solution of (A.2) for all
(θ, x), which yields assertion (iii).

In order to prove (iv), we proceed in two steps:
Step 1. We first assume that � and U take finitely many values θ1, . . . , θk ∈

[0,∞] and x1, . . . , xl ∈Rn, respectively. Denote

Aj = {�= θj }, Bh = {U = xh}.
Then

Z(�,U, t)=∑
j,h

1Aj∩Bh
Z(θj , xh, t)

does the job. Indeed, as Aj ∩ Bh are disjoint and Aj ∩ Bh ∈ Fθj
for all j,h, we

have (see, e.g., [36], page 39)

U +
∫ t

0
b(Z(�,U, s))1{�≤s} ds +

∫ t

0
σ(Z(�,U, s))1{�≤s} dWs

=U +
∫ t

0

∑
j,h

1Aj∩Bh
b(Z(θj , xh, s))1{θj≤s} ds

+
∫ t

0

∑
j,h

1Aj∩Bh
σ (Z(θj , xh, s))1{θj≤s} dWs
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=∑
j,h

1Aj∩Bh

(
xh +

∫ t

0
b(Z(θj , xh, s))1{θj≤s} ds

+
∫ t

0
σ(Z(θj , xh, s))1{θj≤s} dWs

)
=∑

j,h

1Aj∩Bh
Z(θj , xh, t)= Z(�,U, t)

for all t ≥ 0 a.s.
Step 2. For general �, U , approximate �(k) ↓� by the simple stopping times

�(k) =
{

j2−k, (j − 1)2−k ≤� < j2−k, j = 1, . . . , k2k ,
∞, k ≤�.

Let U(l) be a sequence of F�-measurable random variables, each U(l) taking fi-
nitely many values, and U(l) → U in L2 (such U(l) obviously exists). Moreover,
{�(k) = θj } ∩ {U(l) = xh} ∈ Fθj

for all j,h (see [32], Chapter 1, Problem 2.24).
By Step 1, each Z(�(k),U(l)) satisfies the respective SDE. Moreover, from es-

timate (A.3) and Grownwall’s lemma we deduce that for any T > 0, there exists a
constant C such that

E
[
sup
t≤T

∥∥Z(
�(k),U(l), t

)−Z
(
�(k′),U(l′), t

)∥∥2
]

≤ CeCT E
[∥∥U(k) −U(k′)∥∥2 + ∣∣�(k) ∧ T −�(k′) ∧ T

∣∣].
Hence, Z(�(k),U(l)) is a Cauchy sequence and thus converging with respect to
E[supt≤T ‖ · ‖2], for all T > 0, to some continuous process X satisfying (A.4). On
the other hand, by the continuity of (θ, x) �→Z(θ, x, t), we know that

Z
(
�(k),U(l), t

)→Z(�,U, t)

for all ω and t ≥ 0. Again, by continuity of t �→ Z(�,U, t), we conclude that
Z(�,U)=X up to indistinguishability, which proves the claim. �

A.2. Existence of jump-diffusions. We now provide a constructive proof for
the existence of a solution of (A.1) on a specific stochastic basis which is defined
as follows:

• (�, F , (Ft )t≥0) is a filtered space, where � := �1 × �2, Ft := Gt ⊗ Ht and
F = G ⊗ H are precisely defined below. Note that we do not have a measure
on (�, F ) for the moment. The generic sample element will be denoted by
ω= (ω1,ω2) ∈�.

• (�1, G, (Gt )t≥0,P1) is some filtered probability space satisfying the usual con-
ditions and carrying an m-dimensional standard Brownian motion W . We shall
consider the above diffusion SDE (A.2) on �1 and thus obtain the respective
solution Z(θ, x,ω1, t) satisfying the regularity properties of Theorem A.2.
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• (�2, H) is the canonical space for Rn-valued marked point processes (see,
e.g., [30]): �2 consists of all càdlàg, piecewise constant functions ω2 : [0,
T∞(ω2)) → Rn with ω2(0) = 0 and T∞(ω2) = limn→∞ Tn(ω2) ≤ ∞, where
Tn(ω2), defined by T0 = 0 and

Tn(ω2) := inf{t > Tn−1(ω2) | ω2(t) 
= ω2(t−)} ∧∞, n≥ 1,

are the successive jump times of ω2. We denote by

Jt (ω)= Jt (ω2)= ω2(t) on [0, T∞(ω2))

the canonical jump process, and let Ht = σ(Js | s ≤ t) be its natural filtration
with H = H∞. Note that Tn are (Ht ) and (Ft )-stopping times if interpreted as
Tn(ω)= Tn(ω2).

The following statement is meant to be pointwise, referring to the filtered mea-
sure space (�, F , (Ft )) without reference to a probability measure.

LEMMA A.3. Let Z(θ, x,ω1, t) be as of Theorem A.2. Then for an FTn -
measurable random variable U(ω1,ω2) the process Z(Tn(ω2),U(ω1,ω2),ω1, t)

is:

(i) continuous in t for all (ω1,ω2),
(ii) Ft -adapted on {Tn ≤ t}.

PROOF. The first assertion is a consequence of Theorem A.2(i). The second
one follows from the B([0,∞]×Rn)⊗P -measurability of Z(θ, x,ω1, t), as stated
in Theorem A.2(ii), and the fact that Tn and U are Ft -measurable on {Tn ≤ t}. �

Here is our existence result for (A.1).

THEOREM A.4. There exists a càdlàg Ft -adapted process X and a proba-
bility measure P on (�, F ) with P|G = P1, such that X is a solution of (A.1) on
(�, F , (Ft ),P).

PROOF. We follow the arguments in the proof of [21], Theorem 5.1, which is
based on [30], Theorem 3.6, and proceed in three steps.

Step 1. We start by solving (A.1) along every path ω2. To this end, let us define
recursively: 
ω2(0)=
ω2(∞)= 0, X

(0)
0 = x, and for n≥ 1:

X
(n)
t (ω1,ω2)=

⎧⎪⎨⎪⎩
Z
(
Tn−1(ω2),X

(n−1)
Tn−1

(ω1,ω2)

+
ω2(Tn−1),ω1, t
)
, t ∈ [0,∞),

x0, t =∞,
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where x0 is any fixed point in D ⊂ Rn and Z satisfies the properties of Theo-
rem A.2. By Lemma A.3, every X(n) is continuous in t for all (ω1,ω2) and Ft -
adapted on {Tn ≤ t} since X

(n−1)
Tn−1

(ω1,ω2)+
ω2(Tn−1) is FTn -measurable. Thus,
the process

Xt(ω1,ω2)=
∑
n≥1

X
(n)
t (ω1,ω2)1{Tn−1≤t<Tn}(A.7)

is càdlàg Ft -adapted and solves (A.1) on (�1, G, (Gt ),P1) for t ∈ [0, T∞(ω2)) and
any fixed path ω2.

Step 2. It remains to show that there exists a probability measure P such that
K(Xt, dξ) is the compensator of J and P|G = P1 holds true. For this purpose, we
shall make use of [30], Theorem 3.6. Let us define the following random measure
ν by

ν(dt, dξ)=
{

K(Xt, dξ) dt, t < T∞,
0, t ≥ T∞.

Observe that ν is predictable, since Xt is càdlàg and Ft -adapted. Theorem 3.6
in [30] now implies that there exists a unique probability kernel P2 from �1
to H, such that ν is the compensator of the random measure μ associated to the
jumps of J . On (�, F ) we then define the probability measure P by P(dω) =
P1(dω1)P2(ω1, dω2) whose restriction to G is equal to P1.

Step 3. We finally show that X defined by (A.7) solves (A.1) on (�, F , (Ft ),P)

for all t ≥ 0. Note that W(ω) = W(ω1) is an (�, F , (Ft ),P)-Brownian mo-
tion. This implies that Z(θ, x,ω, t) = Z(θ, x,ω1, t) is a solution of (A.2) on
(�, F , (Ft ),P), satisfying the properties of Theorem A.2. It thus remains to show
that T∞ =∞ P-a.s. Let μ be the random measure associated with the jumps. As
x �→K(x,Rn) is bounded, we have for all T ≥ 0,

EP

[
μ([0, T ] ×Rn)

]= EP

[
ν([0, T ] ×Rn)

]= EP

[∫ T

0
K(Xt,Rn) dt

]
≤ CT

for some constant C. This implies that μ([0, T ] ×Rn) <∞ a.s. for all T ≥ 0 and
hence P[T∞ <∞]= 0 or equivalently T∞ =∞ a.s. �

A.3. Viability of jump-diffusions. Consider a nonempty closed convex set
D ⊂ Rn. We now provide sufficient conditions for the solution X in (A.7) to be
D-valued. This result is based on [13], Theorem 4.1. We recall the notion of the
normal cone

ND(x)= {u ∈Rn | 〈u,y − x〉 ≥ 0, for all y ∈D}(A.8)

of D at x ∈D, consisting of inward pointing vectors. See, for example, [28], Def-
inition III.5.2.3, except for a change of the sign.
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THEOREM A.5. Assume that σ also has a Lipschitz continuous derivative.
Suppose furthermore that

x + supp(K(x, ·))⊆D,(A.9)

〈σ i(x), u〉 = 0,(A.10) 〈
b(x)− 1

2

n∑
i=1

Dσi(x)σ i(x), u

〉
≥ 0,(A.11)

for all u ∈ ND(x) and x ∈ D, where σ i denotes the ith column of σ . Then, for
every initial point x ∈D, the process X defined in (A.7) is a D-valued solution of
(A.1).

PROOF. We have to show that Xt =∑
n≥1 X

(n)
t (ω1,ω2)1{Tn−1≤t<Tn} ∈D a.s.

for all t ≥ 0. We proceed by induction on n. For n= 1, X
(1)
t , is simply given by

X
(1)
t = x +

∫ t

0
b
(
X(1)

s

)
ds +

∫ t

0
σ
(
X(1)

s

)
dWs.

Due to [13], Theorem 4.1, conditions (A.10) and (A.11) imply that for all t ≥ 0,
X

(1)
t ∈D a.s. Let us now assume that for all t ≥ 0, X

(n−1)
t ∈D a.s., thus in partic-

ular X
(n−1)
Tn−1

=XTn−1− ∈D a.s. If Tn−1 =∞, then we immediately obtain

X
(n)
t =X

(n−1)
Tn−1

+
JTn−1 = x0 ∈D.

Otherwise, let f ∈ Cb(R
n,R+) satisfy supp(f )⊆Dc. Then,

E
[
f
(
X

(n−1)
Tn−1

+
JTn−1

)]= E[f (XTn−1− +
JTn−1)]

= E

[∫
Rn\{0}

f (XTn−1− + ξ)K(XTn−1−, dξ)

]
= 0,

since by (A.9), XTn−1− + supp(K(XTn−1−, ·)) ⊆ D a.s. and f (D) = 0. Hence,

f (X
(n−1)
Tn−1

+ 
JTn−1) = 0 a.s., implying that X
(n−1)
Tn−1

+ 
JTn−1 /∈ supp(f ) a.s.
As this holds true for all f ∈ Cb(R

n,R+) with supp(f ) ⊆ Dc, it follows that
X

(n−1)
Tn−1

+
JTn−1 ∈D a.s. Thus, again by [13], Theorem 4.1, and conditions (A.10)
and (A.11)

X
(n)
t =X

(n−1)
Tn−1

+
JTn−1 +
∫ t

0
b
(
X(n)

s

)
1{Tn−1≤s} ds +

∫ t

0
σ
(
X(n)

s

)
1{Tn−1≤s} dWs

a.s. takes values in D, which proves the induction hypothesis. The definition of X

then yields the assertion. �
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APPENDIX B: AN APPROXIMATION LEMMA ON THE CONE OF
POSITIVE SEMIDEFINITE MATRICES

In this section, we deliver a differentiable variant of the Stone–Weierstrass the-
orem for C∞-functions on S+d . This approximation statement is essential for the
description of the generator of an affine semigroup, as is elaborated in Section 4.2.

We employ multi-index notation in the sequel. For n ≥ 1, a multi-index is an
element α = (α1, . . . , αn) ∈Nn

0 having length |α| := α1+· · ·+αn. The factorial is
defined by α! :=∏n

i=1 αi !. The partial order ≤ is understood componentwise, and
so are the elementary operations +,−. That is, α ≥ β if and only if αi ≥ βi for
i = 1, . . . , n. Moreover, for α ≥ β , the multinomial coefficient is defined by(

α
β

)
:= α!

(α − β)!β! .

We define the monomial xα := ∏n
i=1 x

αi

i , and the differential operator ∂α :=
∂ |α|

∂
α1
x1 ···∂αn

xn

. Corresponding to a polynomial P(x) =∑
|α|≤k aαxα , we introduce the

differential operator P(∂) :=∑
|α|≤k aα

∂ |α|
∂xα .

Let S = S(Sd) denote the locally convex space of rapidly decreasing C∞-
functions on Sd (see [46], Chapter 7), and define the space of rapidly decreasing
C∞-functions on S+d via the restriction

S+ = {f = F |S+d :F ∈ S}.(B.1)

Equipped with the increasing family of semi-norms

pk,+(f ) := sup
x∈S+d ,|α+β|≤k

|xα ∂βf (x)|,(B.2)

S+ becomes a locally convex vector space (see [46], Theorem 1.37).
For technical reasons, we also introduce for ε ≥ 0 the semi-norms

pk,ε(f ) := sup
x∈S+d +B≤ε(0),|α+β|≤k

|xα∂βf (x)|

on C∞(Sd), where B≤r (y)= {z ∈ Sd | ‖z− y‖ ≤ r} denotes the closed ball with
radius r and center y. Note that pk,+ = pk,0. We first give an alternative description
of S+.

LEMMA B.1. We have

S+ = {f =G |S+d :G ∈ C∞(Sd) and ∃ε > 0 such that pk,ε(G) <∞ ∀k ≥ 0}.

PROOF. The inclusion ⊆ is trivial. Hence, we prove ⊇. So let f =G |S+d for
some G ∈ C∞(Sd) with pk,ε(G) <∞ for all k ≥ 0 and some ε > 0.

We choose a standard mollifier ρ ∈ C∞
c (Sd) supported in B≤ε/2(0) and satisfy-

ing ρ ≥ 0,
∫

ρ = 1. For δ > 0 we introduce the neighborhoods Kδ := S+d +B≤δ(0)
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of S+d . The convolution ϕ := ρ ∗1Kε/2 ∈ C∞(Sd) of the indicator function for Kε/2

with ρ satisfies ϕ = 1 on S+d and it vanishes outside Kε . Furthermore, all deriva-
tives of ϕ are bounded, since

|∂αϕ(x)| =
∣∣∣∣∫

Kε/2

∂αρ(y − x)dy

∣∣∣∣= ∣∣∣∣∫
Kε/2−x

∂αρ(z) dz

∣∣∣∣
≤

∫
B≤ε/2(0)

|∂αρ(z)|dz <∞,

where the last estimate holds because suppρ ⊆ B≤ε/2(0).
Now we set F :=G · ϕ. By construction F ∈ C∞(Sd), F |S+d = f and F van-

ishes outside Kε , because ϕ does. What is left to show is that F ∈ S . Since F

vanishes outside Kε , it is sufficient to deliver all estimates of its derivatives on Kε .
Let α,β ∈N

d(d+1)/2
0 , then we have by the Leibniz rule

xα ∂βF(x)= xα
∑

0≤γ≤β

(
β
γ

)
(∂β−γ ϕ(x))(∂γ G(x))

= ∑
0≤γ≤β

(
β
γ

)
(∂β−γ ϕ(x))(xα ∂γ G(x)).

By assumption xα ∂γ G is bounded on Kε , and (∂β−γ ϕ(x)) is bounded on all
of Sd . Hence, by the last equation, we have supx∈Sd ,|α+β|≤k|xα ∂βF(x)|<∞ for
all k ∈N0, which by definition means F ∈ S . �

LEMMA B.2. Let u ∈ S++d . Then for each ε ≥ 0, and for all k ≥ 0 we have
pk,ε(exp(−〈u, ·〉)) <∞. In particular, we have

fu := exp(−〈u, ·〉)|S+d ∈ S+.

That is, fu = Fu |S+d for some Fu ∈ S .

PROOF. Since u ∈ S++d , there exists a positive constant c such that 〈u,x〉 ≥
c‖x‖, for all x ∈ S+d . Hence, we obtain by a straightforward calculation,
pk,+(exp(−〈u, ·〉)) <∞, for all k ≥ 0.

Next, let ε > 0, and write x = y + z, where y ∈ S+d and z ∈ B≤ε(0) and pick

multi-indices α,β ∈N
d(d+1)/2
0 . Then we have by the binomial formula

xα ∂βe−〈u,x〉 = xα(−1)|β|uβe−〈u,x〉

= (y + z)α(−1)|β|uβe−〈u,y+z〉

= (−1)|β|uβ
∑

0≤γ≤α

(
α
γ

)(
yαe−〈u,y〉)(zα−γ e−〈u,z〉).
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Now since z ranges in a compact set, and since pk,+(exp(−〈u, ·〉)) < ∞ we
see that xα∂βe−〈u,x〉 must be bounded uniformly in x ∈ S+d + B≤ε(0). Hence,
pk,ε(exp(−〈u, ·〉)) <∞, for all k ≥ 0.

Together with Lemma B.1, this implies fu ∈ S+. �

We are now prepared to deliver the following density result for the R-linear hull
M of {fu = exp(−〈u, ·〉)|S+d , u ∈ S++d } in S+.

THEOREM B.3. M is dense in S+.

PROOF. Denote by S ′ = S ′(Sd) and S ′+ the topological dual of S and S+,
respectively. The former, S ′, is known as the space of tempered distributions. The
distributional action is denoted by 〈·, ·〉 and 〈·, ·〉+ for S ′ and S ′+, respectively.

Now suppose by contradiction, that M is not dense in S+. Then by [46],
Theorem 3.5, there exists some T1 ∈ S ′+ \ {0} such that T1 = 0 on M. Hence,
〈T1, fu〉+ = 0, for all u ∈ S++d . The restriction F �→ F |S+d yields a continuous
linear embedding S ↪→ S+. Hence, the restriction T of T1 to S , given by

〈T ,ϕ〉 := 〈T1, ϕ|S+d 〉+, ϕ ∈ S(Sd),

yields an element of S ′ with supp(T ) ⊆ S+d . Pick an Fu ∈ S according to Lem-
ma B.2. By the definition of T , we have 〈T ,Fu〉 = 〈T1, fu〉+ = 0, for all u ∈ S++d .
By the Bros–Epstein–Glaser theorem (see [42], Theorem IX.15), there exists a
function G ∈ C(Sd) with supp(G)⊆ S+d , polynomially bounded [i.e., for suitable
constants C,N we have |G(x)| ≤ C(1+‖x‖)N , for all x ∈ S+d ] and a real polyno-
mial P(x) such that P(∂)G= T in S ′. Hence, we obtain for any u ∈ S++d

0= 〈T ,Fu〉 = 〈P(∂)G,Fu〉 = 〈G,P (−∂)Fu〉
=

∫
S+d

G(x)P (−∂)Fu(x) dx = P(u)

∫
S+d

G(x) exp(−〈u,x〉) dx.

But the last factor is just the Laplace transform of G. This implies G= 0, hence
T = 0, which in turn implies that T1 vanishes on all of S+, a contradiction. �
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