Open Access
February 2006 A forward–backward stochastic algorithm for quasi-linear PDEs
François Delarue, Stéphane Menozzi
Ann. Appl. Probab. 16(1): 140-184 (February 2006). DOI: 10.1214/105051605000000674
Abstract

We propose a time-space discretization scheme for quasi-linear parabolic PDEs. The algorithm relies on the theory of fully coupled forward–backward SDEs, which provides an efficient probabilistic representation of this type of equation. The derivated algorithm holds for strong solutions defined on any interval of arbitrary length. As a bypass product, we obtain a discretization procedure for the underlying FBSDE. In particular, our work provides an alternative to the method described in [Douglas, Ma and Protter (1996) Ann. Appl. Probab. 6 940–968] and weakens the regularity assumptions required in this reference.

References

1.

Antonelli, F. (1993). Backward–forward stochastic differential equations. Ann. Appl. Probab. 3 777–793.  MR1233625 0780.60058 10.1214/aoap/1177005363 euclid.aoap/1177005363 Antonelli, F. (1993). Backward–forward stochastic differential equations. Ann. Appl. Probab. 3 777–793.  MR1233625 0780.60058 10.1214/aoap/1177005363 euclid.aoap/1177005363

2.

Bally, V. and Pagès, G. (2003). A quantization algorithm for solving discrete time multi-dimensional optimal stopping problems. Bernoulli 9 1003–1049.  MR2046816 10.3150/bj/1072215199 euclid.bj/1072215199 Bally, V. and Pagès, G. (2003). A quantization algorithm for solving discrete time multi-dimensional optimal stopping problems. Bernoulli 9 1003–1049.  MR2046816 10.3150/bj/1072215199 euclid.bj/1072215199

3.

Bally, V., Pagès, G. and Printems, J. (2005). A quantization tree method for pricing and hedging multi-dimensional American options. Math. Finance 15 119–168.  MR2116799 10.1111/j.0960-1627.2005.00213.x Bally, V., Pagès, G. and Printems, J. (2005). A quantization tree method for pricing and hedging multi-dimensional American options. Math. Finance 15 119–168.  MR2116799 10.1111/j.0960-1627.2005.00213.x

4.

Bouchard, B. and Touzi, N. (2004). Discrete time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stoch. Process. Appl. 111 175–206.  MR2056536 1071.60059 10.1016/j.spa.2004.01.001 Bouchard, B. and Touzi, N. (2004). Discrete time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stoch. Process. Appl. 111 175–206.  MR2056536 1071.60059 10.1016/j.spa.2004.01.001

5.

Chevance, D. (1997). Numerical methods for backward stochastic differential equations. In Numerical Methods in Finance (L. C. G. Rogers and D. Talay, eds.) 232–234. Cambridge Univ. Press.  MR1470517 0898.90031 Chevance, D. (1997). Numerical methods for backward stochastic differential equations. In Numerical Methods in Finance (L. C. G. Rogers and D. Talay, eds.) 232–234. Cambridge Univ. Press.  MR1470517 0898.90031

6.

Delarue, F. (2002). On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case. Stoch. Process. Appl. 99 209–286.  MR1901154 1058.60042 10.1016/S0304-4149(02)00085-6 Delarue, F. (2002). On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case. Stoch. Process. Appl. 99 209–286.  MR1901154 1058.60042 10.1016/S0304-4149(02)00085-6

7.

Delarue, F. (2003). Estimates of the solutions of a system of quasilinear PDEs. A probabilistic scheme. Séminaire de Probabilités XXXVII. Lecture Notes in Math. 1832 290–332. Springer, Berlin.  MR2053051 Delarue, F. (2003). Estimates of the solutions of a system of quasilinear PDEs. A probabilistic scheme. Séminaire de Probabilités XXXVII. Lecture Notes in Math. 1832 290–332. Springer, Berlin.  MR2053051

8.

Delarue, F. (2004). Auxiliary SDEs for homogenization of quasilinear PDEs with periodic coefficients. Ann. Probab. 32 2305–2361.  MR2078542 1073.35021 10.1214/009117904000000144 euclid.aop/1091813615 Delarue, F. (2004). Auxiliary SDEs for homogenization of quasilinear PDEs with periodic coefficients. Ann. Probab. 32 2305–2361.  MR2078542 1073.35021 10.1214/009117904000000144 euclid.aop/1091813615

9.

Delarue, F. and Menozzi, S. (2005). A probabilistic algorithm for quasilinear PDEs. Available at http://hal.ccsd.cnrs.fr/ccsd-00005448/en/.  http://hal.ccsd.cnrs.fr/ccsd-00005448/en/ 1097.65011 10.1214/105051605000000674 euclid.aoap/1141654284 Delarue, F. and Menozzi, S. (2005). A probabilistic algorithm for quasilinear PDEs. Available at http://hal.ccsd.cnrs.fr/ccsd-00005448/en/.  http://hal.ccsd.cnrs.fr/ccsd-00005448/en/ 1097.65011 10.1214/105051605000000674 euclid.aoap/1141654284

10.

Douglas, J., Ma, J. and Protter, P. (1996). Numerical methods for forward–backward stochastic differential equations. Ann. Appl. Probab. 6 940–968.  MR1410123 0861.65131 10.1214/aoap/1034968235 euclid.aoap/1034968235 Douglas, J., Ma, J. and Protter, P. (1996). Numerical methods for forward–backward stochastic differential equations. Ann. Appl. Probab. 6 940–968.  MR1410123 0861.65131 10.1214/aoap/1034968235 euclid.aoap/1034968235

11.

Graf, S. and Luschgy, H. (2000). Foundations of Quantization for Random Vectors. Springer, Berlin.  0951.60003 Graf, S. and Luschgy, H. (2000). Foundations of Quantization for Random Vectors. Springer, Berlin.  0951.60003

12.

Kardar, M., Parisi, G. and Zhang, Y.-C. (1986). Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 889–892.  1101.82329 10.1103/PhysRevLett.56.889 Kardar, M., Parisi, G. and Zhang, Y.-C. (1986). Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 889–892.  1101.82329 10.1103/PhysRevLett.56.889

13.

Ladyzenskaja, O., Solonnikov, V. and Ural'ceva, N. (1968). Linear and Quasilinear Equations of Parabolic Type. Amer. Math. Soc., Providence, RI. Ladyzenskaja, O., Solonnikov, V. and Ural'ceva, N. (1968). Linear and Quasilinear Equations of Parabolic Type. Amer. Math. Soc., Providence, RI.

14.

Ma, J., Protter, P. and Yong, J. (1994). Solving forward–backward stochastic differential equations explicitly–-a four step scheme. Probab. Theory Related Fields 98 339–359.  MR1262970 10.1007/BF01192258 Ma, J., Protter, P. and Yong, J. (1994). Solving forward–backward stochastic differential equations explicitly–-a four step scheme. Probab. Theory Related Fields 98 339–359.  MR1262970 10.1007/BF01192258

15.

Ma, J. and Yong, J. (1999). Forward–Backward Stochastic Differential Equations and Their Applications. Springer, Berlin.  MR1704232 Ma, J. and Yong, J. (1999). Forward–Backward Stochastic Differential Equations and Their Applications. Springer, Berlin.  MR1704232

16.

Makarov, R. N. (2003). Numerical solution of quasilinear parabolic equations and backward stochastic differential equations. Russian J. Numer. Anal. Math. Modelling 18 397–412.  MR2017290 10.1515/156939803770736015 Makarov, R. N. (2003). Numerical solution of quasilinear parabolic equations and backward stochastic differential equations. Russian J. Numer. Anal. Math. Modelling 18 397–412.  MR2017290 10.1515/156939803770736015

17.

Milstein, G. N. and Tretyakov, M. V. (1999). Numerical algorithms for semilinear parabolic equations with small parameter based on approximation of stochastic equations. Math. Comp. 69 237–267.  MR1653966 0935.35062 10.1090/S0025-5718-99-01134-5 Milstein, G. N. and Tretyakov, M. V. (1999). Numerical algorithms for semilinear parabolic equations with small parameter based on approximation of stochastic equations. Math. Comp. 69 237–267.  MR1653966 0935.35062 10.1090/S0025-5718-99-01134-5

18.

Pagès, G., Pham, H. and Printems, J. (2004). Optimal quantization methods and applications to numerical problems in finance. In Handbook on Numerical Methods in Finance (S. Rachev, ed.) 253–298. Birkhäuser, Boston.  MR2083055 Pagès, G., Pham, H. and Printems, J. (2004). Optimal quantization methods and applications to numerical problems in finance. In Handbook on Numerical Methods in Finance (S. Rachev, ed.) 253–298. Birkhäuser, Boston.  MR2083055

19.

Pagès, G. and Printems, J. (2004). Functional quantization for numerics with an application to option pricing. Technical Report LPMA 930, Univ. Paris VI–VII. Monte Carlo Methods Appl. To appear. Pagès, G. and Printems, J. (2004). Functional quantization for numerics with an application to option pricing. Technical Report LPMA 930, Univ. Paris VI–VII. Monte Carlo Methods Appl. To appear.

20.

Pardoux, E. and Peng, S. (1990). Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 55–61.  MR1037747 0692.93064 10.1016/0167-6911(90)90082-6 Pardoux, E. and Peng, S. (1990). Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 55–61.  MR1037747 0692.93064 10.1016/0167-6911(90)90082-6

21.

Pardoux, E. and Tang, S. (1999). Forward–backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theory Related Fields 114 123–150.  MR1701517 10.1007/s004409970001 Pardoux, E. and Tang, S. (1999). Forward–backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theory Related Fields 114 123–150.  MR1701517 10.1007/s004409970001

22.

Shiryaev, A. (1996). Probability, 2nd ed. Springer, New York.  MR1368405 0909.01009 Shiryaev, A. (1996). Probability, 2nd ed. Springer, New York.  MR1368405 0909.01009

23.

Whitham, N. (1974). Linear and Nonlinear Waves. Pure and Applied Mathemathics. Wiley–Interscience, New York.  0373.76001 Whitham, N. (1974). Linear and Nonlinear Waves. Pure and Applied Mathemathics. Wiley–Interscience, New York.  0373.76001

24.

Woyczyński, W. A. (1998). Burgers-KPZ Turbulence. Springer, Berlin.  MR1732301 Woyczyński, W. A. (1998). Burgers-KPZ Turbulence. Springer, Berlin.  MR1732301
Copyright © 2006 Institute of Mathematical Statistics
François Delarue and Stéphane Menozzi "A forward–backward stochastic algorithm for quasi-linear PDEs," The Annals of Applied Probability 16(1), 140-184, (February 2006). https://doi.org/10.1214/105051605000000674
Published: February 2006
Vol.16 • No. 1 • February 2006
Back to Top