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A FORWARD–BACKWARD STOCHASTIC ALGORITHM FOR
QUASI-LINEAR PDES1

BY FRANÇOIS DELARUE AND STÉPHANE MENOZZI

Université Paris VII

We propose a time-space discretization scheme for quasi-linear parabolic
PDEs. The algorithm relies on the theory of fully coupled forward–backward
SDEs, which provides an efficient probabilistic representation of this type of
equation. The derivated algorithm holds for strong solutions defined on any
interval of arbitrary length. As a bypass product, we obtain a discretization
procedure for the underlying FBSDE. In particular, our work provides an
alternative to the method described in [Douglas, Ma and Protter (1996) Ann.
Appl. Probab. 6 940–968] and weakens the regularity assumptions required
in this reference.

1. Introduction. Introduced first by Antonelli [1] and then by Ma, Protter
and Yong [14], forward–backward stochastic differential equations (FBSDEs in
short) provide an extension of the Feynman–Kac representation to a certain class
of quasi-linear parabolic PDEs. These equations also appear in a large number of
application fields such as the Hamiltonian formulation of control problems or the
option hedging problem with large investors in financial mathematics (i.e., when
the wealth or strategy of an agent has an impact on the volatility). We refer to the
monograph of Ma and Yong [15] for details and further applications.

1.1. FBSDE theory and discretization algorithm.

Connection between FBSDEs and quasi-linear parabolic PDEs. Consider
a probability space (�,F ,P) endowed with a d-dimensional Brownian mo-
tion (Bt )t∈[0,T ], where T denotes an arbitrarily prescribed positive real. For a given
initial condition x0 ∈ R

d , a forward–backward SDE strongly couples a diffusion
process U to the solution (V ,W) of a backward SDE (as defined in the earlier
work of Pardoux and Peng [20]):

∀ t ∈ [0, T ] Ut = x0 +
∫ t

0
b(Us,Vs,Ws) ds +

∫ t

0
σ(Us,Vs) dBs,

(E)

Vt = H(UT ) +
∫ T

t
f (Us,Vs,Ws) ds −

∫ T

t
Ws dBs.
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In this paper the coefficients b, f , σ and H are deterministic (and, for simplic-
ity, also time independent). In this case, Ma, Protter and Yong [14], Pardoux and
Tang [21] and Delarue [6] have investigated in detail the link with the following
quasi-linear PDE on [0, T [×R

d :

∂tu(t, x) + 〈
b
(
x,u(t, x),∇xu(t, x)σ

(
x,u(t, x)

))
,∇xu(t, x)

〉
+ 1

2 tr
(
a
(
x,u(t, x)

)∇2
x,xu(t, x)

)
(E )

+ f
(
x,u(t, x),∇xu(t, x)σ

(
x,u(t, x)

)) = 0,

u(T , x) = H(x),

with a(x, y) = (σσ ∗)(x, y), (x, y) ∈ R
d × R.

A probabilistic numerical method for FBSDEs and quasi-linear PDEs. This
paper aims to derive from the probabilistic theory of FBSDEs a completely
tractable algorithm to approximate the solution of equation (E ). As a bypass prod-
uct, the procedure also provides a discretization of the triple (U,V,W).

Most of the available numerical methods proposed so far are purely analytic
and involve finite-difference or finite-element techniques to approximate the solu-
tion u of (E ). For example, the discretization procedure for FBSDEs of type (E),
given in [10], consists in discretizing first the PDE (E) and then in deriving an
approximation of the underlying FBSDE.

At the opposite, we propose in this paper to derive from the FBSDE represen-
tation a numerical scheme for quasi-linear equations of type (E ). This strategy
finds its origin in the earlier work of Chevance [5], who introduced a time-space
discretization scheme in the decoupled or so-called “pure backward” case. In this
latter frame, the coefficients b and σ do not depend on V and W and the forward
equation reduces to a classical SDE. The process U then appears as an “objective
diffusion.” Note in this particular case that the time-space discretization scheme
and the specific form of the system (E) permit to use a standard “dynamic pro-
gramming principle.”

From a numerical point of view, two other kinds of approaches have been de-
veloped in the backward case. The first one is based on Monte Carlo simulations
and Malliavin integration by parts; see [4]. The other one relies on quantization
techniques for a discretization scheme of the underlying forward equation. Quan-
tization consists in approximating a random variable by a suitable discrete law.
It provides a cheap and numerically efficient alternative to usual Monte Carlo
methods to estimate expectations. In the works of Bally and Pagès [2] or Bally,
Pagès and Printems [3] on American options, the key idea is to perform an optimal
quantization procedure of a discretized version of the underlying diffusion process
in order to compute once for all by a Monte Carlo method the corresponding semi-
group. Then, the second step consists in doing a dynamic programming descent.
For other applications of quantization, we refer to the works of Pagès, Pham and
Printems [18] or Pagès and Printems [19].
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Discretization strategy. In the coupled case, or quasi-linear framework, the
diffusion U is not “objective” anymore. Indeed, due to the strong nonlinearity of
the equation (E ), the coefficients of the underlying forward diffusion depend on
the solution and on its gradient.

In particular, we cannot quantify a discretization scheme of the diffusion process
as explained above. This is well understood: without approximating u, we do not
have any a priori knowledge of the optimal shape of the associated grid. Hence,
we just focus on the quantization of the Brownian increments appearing in the
forward SDE and then choose to define the approximate diffusion on a sequence of
truncated d-dimensional Cartesian grids. Note that the discretization procedure of
U is now coupled to the approximation procedure of (u,∇xu) [denoted in a generic
way by (ū, v̄)] which is computed along the same sequence of grids. The time-
space discretization scheme allows to define (ū, v̄) and the approximations of the
transitions of U in order to recover a kind of “dynamic programming principle.”
Consider indeed a given regular time mesh (ti = ih)i∈{0,...,N} of [0, T ], h being
the step size. To every discretization time ti , associate a spatial Cartesian grid
Ci ≡ {(xi

k)k∈Ii
}, Ii ⊂ N

∗, such that ∀ i ∈ {0, . . . ,N −1}, Ci ⊂ Ci+1. Starting from
tN = T for which the solution of (E ) and its gradient are known, the transition of U

from ti to ti+1, i ∈ {0, . . . ,N −1}, is then updated iteratively through the Brownian
quantized increments and through the values of ū(ti+1, ·) and v̄(ti+1, ·) on the
grid Ci+1. This permits to express the approximation ū(ti , ·) through a discretized
version of the Feynman–Kac formula.

At this stage, it remains to specify the way we update the approximation of the
gradient of the solution u. We mention actually that the strategy aims to approxi-
mate the product ∇xu(tk, ·)σ (·, u(tk, ·)) instead of ∇xu(tk, ·) itself. This explains
the specific writing of the PDE (E). We then proceed in two different steps. A first
approximation is performed through a martingale increment procedure as done in
the discretization scheme of BSDEs explained in [4], or as used in [3]. A sec-
ond step consists in quantizing the Gaussian increments appearing in the former
representation. This is an alternative solution to the usual techniques based on
Monte Carlo simulations or on Malliavin integration by parts as employed in [4].
Of course, if the matrix σσ ∗ is nondegenerate, the strategy still applies, up to an
inversion procedure, to coefficients of the form (b, f )(x,u(t, x),∇xu(t, x)).

Extra references. Some of the preliminaries of our approach can be found
in [17] in the specific case where (b, f )(x, u(t, x),∇xu(t, x)σ (t, x, u(t, x))) re-
duces to (b, f )(x,u(t, x)). Note, however, that the proof of the convergence of the
underlying numerical scheme proposed in this reference just holds for so-called
“equations with small parameter” (i.e., with a small diffusion matrix). Generally
speaking, the authors have then to control the regularity properties of the solution
of the transport problem associated to the equation (E ) [i.e., the same equation
as (E ), but without any second-order terms]. Without discussing in detail the ba-
sic assumptions made in our paper, note that no condition of this type appears in
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the sequel: in particular, the matrix a is assumed to be uniformly elliptic. Hence,
we feel that the work of Milstein and Tretyakov [17] applies to a different frame-
work than ours. For this reason, we avoid any further comparisons between both
situations. Add finally, for the sake of completeness, that Makarov [16] has suc-
cessfully applied the strategy of Milstein and Tretyakov [17] to the case (b, f ) ≡
(b, f )(x,u(t, x),∇xu(t, x)σ (t, x, u(t, x))) under suitable smoothness properties
on the coefficients. Of course, the small parameter condition is then still neces-
sary.

1.2. Novelties brought by the paper.

A purely probabilistic point of view. The proof of the convergence of our al-
gorithm is somehow the first to be essentially of probabilistic nature, since we
are able to adapt the usual stability techniques of BSDE theory to the discretized
framework. Note, in particular, that we follow the proof of uniqueness in the four
step scheme given in [14] to handle the strong coupling between the forward and
backward components.

In the discretized framework, the gradient terms appearing in b and f bring ad-
ditional difficulties. Indeed, our gradient approximation does not appear as a repre-
sentation process given by the martingale representation theorem as the process W

in (E). In particular, the strategy introduced by Pardoux and Peng [20] to estimate
the L2 norm of W over [0, T ] fails in the discretized setting. We then propose a
specific probabilistic strategy to overcome this deep trouble and thus to handle the
nonlinearities of order one, see Sections 3.3 and 9.3 for details.

Convergence under weak assumptions. In [10], the authors handle the gradi-
ent terms by working under smoothness assumptions that allow them to study the
gradient of u as the solution of the differentiated PDE.

Our strategy permits to avoid to differentiate the PDE and thus to really weaken
the assumptions required both on the coefficients of (E) and on the smoothness of
the solution u of (E ) in the above reference. In the previous paper, the coefficients
are assumed to be smoothly differentiable and bounded. We just suppose that they
are Lipschitz continuous and bounded in x. In [10], the solution u of (E ) is at least
bounded in C2+α/2,4+α([0, T ] × R

d), α ∈]0,1[. In our paper we only impose u to
belong to C1,2([0, T ] × R

d) with bounded derivatives of order one in t and one
and two in x.

A completely tractable algorithm. Furthermore, in [10], the authors always
take into consideration the case of infinite spatial grids. This turns out to be simpler
for the convergence analysis, anyhow it does not provide in all generality a fully
implementable algorithm. We discuss the impact of the truncation of the grids and
analyze its contribution in the error.
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Finally, a linear interpolation procedure is also used in [10] to define the algo-
rithm. This can be heavy in large dimension. The algorithm we propose allows to
define the approximate solution only at the nodes of the spatial grid. In this way,
we feel that our method is simpler to implement and numerically cheaper. Note,
moreover, that we avoid the inversion of large linear systems associated to “usual”
numerical analysis techniques.

1.3. Organization of the paper. In Section 2 we detail general assumption and
notation, as well as several smoothness properties of the solution u of (E ). We also
specify the connection between the FBSDE (E) and the quasi-linear PDE (E ).
Section 3 explains the main algorithmic choices. We present, in particular, the
various steps that led us to the current discretization scheme. The main results are
stated and discussed in Section 4. In particular, we give an estimate of the speed
of convergence of the algorithm. As a probabilistic counterpart, we estimate the
difference between the approximating processes and the initial solution (U,V,W)

of (E). Numerical examples are presented in Section 5.
The end of the paper is then mainly devoted to the proof of the convergence

results. The proof is divided into three parts. Various a priori controls of the dis-
crete objects are stated and proved in Section 6. In Section 7 we adapt the FBSDE
machinery to our setting to prove a suitable stability property. Section 8 is then
devoted to the last step of the proof and, more precisely, to a specific refinement of
Gronwall’s lemma. In order to be concise, we sometimes only sketch the proofs.
They are presented in detail in the electronic version Delarue and Menozzi [9].

As a conclusion, we compare in Section 9 our strategy to other methods and
explain some technical points that motivated the choice of our current algorithm.
We also indicate further conceivable extensions.

2. Nonlinear Feynman–Kac formula. In this section we first give the as-
sumptions on the coefficients of the FBSDE and then briefly recall the connection
with quasi-linear PDEs. As detailed later, under these assumptions, the underlying
PDE admits a unique strong solution, whose partial derivatives of order one in t

and one and two in x are controlled on the whole domain by known parameters.
For the sake of simplicity, we also assume that the coefficients do not depend on
time.

2.1. Coefficients of the equation. For a given d ∈ N
∗, we consider the co-

efficients b : Rd × R × R
d → R

d , f : Rd × R × R
d → R, σ : Rd × R → R

d×d ,
H : Rd → R.

ASSUMPTION (A). We say that the functions b, f , H and σ satisfy Assump-
tion (A) if they are bounded in space and have at most linear growth in the other
variables, are uniformly Lipschitz continuous w.r.t. all the variables, a = σσ ∗ is
uniformly elliptic and H is bounded in C2+α(Rd).

From now on, Assumption (A) is in force.
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2.2. Forward–backward SDE. Consider now a given T > 0 and a probabil-
ity space (�,F ,P) endowed with a Brownian motion (Bt )0≤t≤T whose natural
filtration, augmented with P null sets, is denoted by {Ft }0≤t≤T .

Fix an initial condition x0 ∈ R
d and recall (see [14] and [6]) that there exists a

unique progressively measurable triple (U,V,W), with values in R
d × R × R

d ,
such that E supt∈[0,T ](|Ut |2 + |Vt |2) < +∞, E

∫ T
0 |Wt |2 dt < +∞, and which sat-

isfies P almost surely the couple of equations (E).

2.3. Quasi-linear PDE. Thanks to [13], Chapter VI, Theorem 4.1, and to [14]
(up to a regularization procedure of the coefficients), we claim that (E ) admits a
solution u ∈ C1,2([0, T ] × R

d,R) satisfying the following:

THEOREM 2.1. There exists a constant C2.1, only depending on T and on
known parameters deriving from Assumption (A), such that ∀ (t, x) ∈ [0, T ] × R

d ,

|u(t, x)| + |∇xu(t, x)| + |∇2
x,xu(t, x)| + |∂tu(t, x)|

+ sup
t ′∈[0,T ],t �=t ′

[|t − t ′|−1/2|∇xu(t, x) − ∇xu(t ′, x)|] ≤ C2.1.

Moreover, u is unique in the class of functions ũ ∈ C([0, T ] × R
d,R) ∩ C1,2([0,

T [×R
d,R) which satisfy sup(t,x)∈[0,T [×Rd (|ũ(t, x)| + |∇xũ(t, x)|) < +∞.

From [6, 14, 21], the FBSDE (E) is connected with the PDE (E ). Set
∀ (t, x) ∈ [0, T [×R

d , v(t, x) = ∇xu(t, x)σ (x,u(t, x)). The relationship between
(E) and (E ) can be summed up as follows: ∀ t ∈ [0, T ],

Vt = u(t,Ut ), Wt = v(t,Ut ),
(2.1)

Vt = E[VT |Ft ] + E

[∫ T

t
f (Us,Vs,Ws) ds

∣∣∣Ft

]
.

3. Approximation procedure. In this section we detail the construction of
the approximation algorithm of the solution u of (E ). We explain how the final
form of the discretization procedure can be derived step by step from the forward–
backward representation (E). We also present the quantization techniques used in
order to compute expectations related to Brownian increments and we discuss the
choice of the underlying spatial grids which appear in the approximating scheme.

3.1. Rough algorithms.

Localization procedure. Recall from the Introduction that the forward–
backward equation (E) appears as the starting point of our discretization pro-
cedure. Indeed, this couple of stochastic equations provides a probabilistic
representation of the quasi-linear PDE (E ) and summarizes in an integral form
the local evolution of the solution u. Define now, for a given integer N ≥ 1, a reg-
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ular mesh of [0, T ] with step h ≡ T/N , that is, set tk ≡ kh, ∀ k ∈ {0, . . . ,N}.
Writing the local evolution of (E) and conditioning by Utk = x ∈ R

d , we deduce
∀ k ∈ {0, . . . ,N − 1},

U
tk,x
tk+1

= x +
∫ tk+1

tk

b(Utk,x
s , V tk,x

s ,W tk,x
s ) ds +

∫ tk+1

tk

σ (Utk,x
s , V tk,x

s ) dBs(3.1)

and

V
tk,x
tk

= E

[
V

tk,x
tk+1

+
∫ tk+1

tk

f (Utk,x
s , V tk,x

s ,W tk,x
s ) ds

]
,

E

[∫ tk+1

tk

W tk,x
s ds

]
= E

[
V

tk,x
tk+1

(
Btk+1 − Btk

)] + O(h3/2),

where the superscript (tk, x) denotes the starting point of the diffusion process U .
The remaining term O(h3/2) is a consequence of Assumption (A), (2.1) (rela-
tionships between V,W and u) and Theorem 2.1 (boundedness of u and ∇xu).
Relation (2.1) also yields

u(tk, x) = E

[
u
(
tk+1,U

tk,x
tk+1

) +
∫ tk+1

tk

f (Utk,x
s , V tk,x

s ,W tk,x
s ) ds

]
,

(3.2)

E

[∫ tk+1

tk

W tk,x
s ds

]
= E

[
u
(
tk+1,U

tk,x
tk+1

)(
Btk+1 − Btk

)] + O(h3/2).

In the following the Brownian increment Btk+1 − Btk is denoted by �Bk . In par-
ticular, we derive from the above relation that, neglecting the rest, the best con-
stant approximation of (W

tk,x
s )s∈[tk,tk+1] in the L2([tk, tk+1] × �,ds ⊗ dP) sense

is given by

Ŵ
tk,x
tk

≡ h−1
E

[
u
(
tk+1,U

tk,x
tk+1

)
�Bk].(3.3)

Relationships (3.1), (3.2) and (3.3) provide a rough background to discretize the
FBSDE (E). However, this first form is not satisfactory from an algorithmic point
of view. Indeed, because of the strong coupling between the forward and the back-
ward equations, the transition of the diffusion depends on the solution itself, both
in the drift term and in the martingale part. At the opposite, in the so-called “pure
backward” case, or, correspondingly, for semi-linear equations, the underlying op-
erator does not depend on the solution. In such a case, the classical Euler machin-
ery applies to discretize the decoupled diffusion U .

Induction principle. Recall that similar difficulties occur to establish the
unique solvability of the FBSDE (E). In [6] the first author overcomes the strong
coupling between the forward and backward equations by solving by induction
the local versions of (E) on [tk, tk+1], k running downward from N − 1 to 0. By
analogy with this approach, the discretization procedure of the forward compo-
nent on a step [tk, tk+1[, 0 ≤ k ≤ N − 1, must take into account the issues of the
former local discretizations of the backward equation and, more specifically, the
approximations of u(tk+1, ·) and v(tk+1, ·).
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Predictors. Assume to this end that, at time tk+1, some approximations
ū(tk+1, ·), v̄(tk+1, ·) of u(tk+1, ·), v(tk+1, ·) are available on the whole space. These
approximations appear as the “natural” predictors of the true solution and of its
gradient on [tk, tk+1[. Introducing the forward approximating transition

T (tk, x) ≡ b
(
x, ū(tk+1, x), v̄(tk+1, x)

)
h + σ

(
x, ū(tk+1, x)

)
�Bk,(3.4)

we derive an associated updating procedure by setting

ū(tk, x) ≡ E
[
ū
(
tk+1, x + T (tk, x)

)] + hf
(
x, ū(tk+1, x), v̄(tk+1, x)

)
,

(3.5)
v̄(tk, x) ≡ h−1

E
[
ū
(
tk+1, x + T (tk, x)

)
�Bk].

Once the predictors are updated, the procedure can be iterated. Of course, at time
T = tN , we set ū(tN , ·) ≡ H(·) and v̄(tN , ·) ≡ ∇xH(·)σ (·,H(·)). Note, in particu-
lar, that the expectations appearing in (3.5) are correctly defined. Indeed, a simple
induction procedure shows from Assumption (A) that ū and v̄ are bounded on
{t0, . . . , tN } × R

d (but the bound depends on the discretization parameters).

Spatial discretization. To obtain a numerical scheme, the most natural strat-
egy consists in defining the approximations ū(tk, ·) and v̄(tk, ·) of the true so-
lution and its gradient on a discrete subset of R

d . Those approximations could
then be extended to the whole space with a linear interpolation procedure. How-
ever, in high dimension, this last operation can be computationally demanding.
We thus prefer, for simplicity, to restrict the approximations to a given spatial grid
Ck ≡ {(xk

j )j∈Ik
,Ik ⊂ N

∗} ⊂ R
d , for k ∈ {0, . . . ,N}. This choice imposes to mod-

ify (3.5). Indeed, the “terminal” value x + T (tk, x) must belong to the former
grid Ck+1.

Hence, denoting by �k+1 a projection mapping on the grid Ck+1, we re-
place (3.5) by, ∀x ∈ Ck ,

ū(tk, x) ≡ E
[
ū
(
tk+1,�k+1

(
x + T (tk, x)

))]
+ hf

(
x, ū(tk+1, x), v̄(tk+1, x)

)
,(3.6)

v̄(tk, x) ≡ h−1
E

[
ū
(
tk+1,�k+1

(
x + T (tk, x)

))
�Bk].

In the following, we suppose that ∀ (i, j) ∈ {0, . . . ,N}2, j < i ⇒ Cj ⊂ Ci , so
that ū(tk+1, x), v̄(tk+1, x) are well defined for x ∈ Ck . Note that, if the cardinal
of Ck is finite for every k, the above scheme is already implementable up to the
computations of the underlying expectations.

Global updating. The use of the predictors ū(tk+1, ·), v̄(tk+1, ·) is an alterna-
tive to the standard fixed point procedure. This latter consists in giving first some
global predictors ū0(tk, ·), v̄0(tk, ·), k ∈ {0, . . . ,N}. These are used to compute the
transitions of the approximating forward process. In this way, we obtain a de-
coupled forward–backward system, whose solution may be computed by a stan-
dard dynamic programming algorithm. A complete descent of this algorithm from
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k = N to k = 0 produces ū1(tk, ·), v̄1(tk, ·), k ∈ {0, . . . ,N}, from which we can
iterate the previous procedure. In this frame, the underlying distance used to de-
scribe the convergence of the fixed point procedure involves all the discretization
times and all the spatial points. This strategy appears as a “global updating” one.

From a numerical point of view, this seems unrealistic. Indeed, one would need
to solve a large number of linear problems. This would either require to use mas-
sive Monte Carlo simulations at each step of the algorithm or to apply, again at
each step of the algorithm, a quantization procedure of the approximate diffusion
process associated to the current linear problem. Furthermore, it seems intuitively
clear that a local updating is far more efficient than a global one.

3.2. Quantization.

Expectations approximation. Two methods are conceivable to compute expec-
tations appearing in (3.6).

The first one consists in applying the classical Monte Carlo procedure for every
k ∈ {0, . . . ,N − 1} and for every x ∈ Ck and, therefore, to repeat this argument∑N−1

k=0 |Ik| times. Such a strategy would lead to perform
∑N−1

k=0 |Ik| × ε−2
MC ele-

mentary operations to compute underlying expectations up to the error term εMC.
This approach seems rather hopeless.

A more efficient method consists in replacing the Gaussian variables appear-
ing in (3.6) by discrete ones with known weights. This procedure is known as
“quantization.” Consider to this end a probability measure on R

d with finite sup-
port (yi)i∈{1,...,M} and denote by (pi)i∈{1,...,M} the associated weights. Replace
then the Gaussian distribution in (3.6) by this law. For a given x ∈ Ck , 0 ≤ k ≤ N ,
the expectations appearing in the induction scheme (3.6) then write as computable
finite sums.

Quantization principle. Generally speaking, for a given random variable
� ∈ ⋂

p≥1 Lp(P), the quantization procedure consists in replacing � by its projec-
tion on a finite grid �(M) ≡ {(yi)i∈{1,...,M}} ⊂ R

d , M ∈ N
∗. In order to measure

the error associated to the grid �(M), we introduce the so-called “p-distortion”:
D�,p(�(M)) ≡ ‖� − G�(M)(�)‖Lp(P), p ≥ 1, where G�(M) denotes the projec-
tion mapping on �(M). We refer to the monograph of Graf and Luschgy [11] for
details.

Optimal grids. The crucial step therefore lies in the choice of the grid. The
Bucklew–Wise theorem (see Theorem 6.2, Chapter II in [11] for details) then
gives, for �∗(M) achieving the minimum in the p-distortion,

Mp/dD
p
�,p(�∗(M)) −→ C(p,d) as M → +∞,(3.7)

where C(p,d) is a constant depending on p,d and the variable at hand.



A PROBABILISTIC ALGORITHM FOR QUASI-LINEAR PDES 149

Various algorithms are available to compute an optimal grid �∗(M), see, for
instance, [2]. We also recall that, for d > 1, the optimal grid is not unique.

Up to a rescaling, the basic object associated to Brownian increments is a
d-dimensional standard normal random variable. Hence, we assume in the fol-
lowing that a grid �(M) for � ∼ N (0, Id), as well as the associated weights
(pi)i∈{1,...,M}, are given and “perfectly” computed.

Quantized algorithm. We are now in position to introduce a more tractable
induction principle. Set to this end, for all k ∈ {0, . . . ,N − 1}, g(�Bk) ≡
h1/2G�(M)(h

−1/2�Bk). Note from the electronic version [9] that, w.l.o.g., for
every p ≥ 1, there exists a constant CQuantiz(p, d) such that

E[|g(�Bk) − �Bk|p]1/p ≤ CQuantiz(p, d)h1/2M−1/d .(3.8)

Turn now (3.4) and (3.6) into

T (tk, x) ≡ b
(
x, ū(tk+1, x), v̄(tk+1, x)

)
h + σ

(
x, ū(tk+1, x)

)
g(�Bk)(3.9)

and

ū(tk, x) ≡ E
[
ū
(
tk+1,�k+1

(
x + T (tk, x)

))]
+ hf

(
x, ū(tk+1, x), v̄(tk+1, x)

)
,(3.10)

v̄(tk, x) ≡ h−1
E

[
ū
(
tk+1,�k+1

(
x + T (tk, x)

))
g(�Bk)

]
.

To sum up our strategy, the use of predictors allows us to recover a kind of stan-
dard dynamic programming principle. The quantization gives an easy, cheap and
computable algorithm.

3.3. Algorithm. For technical reasons detailed in Section 9, we consider for
the convergence analysis a slightly different version of the above algorithm.
Namely, we need to change, at a given time tk , the discretization of b and f

and, in particular, to replace v̄(tk+1, ·) by a new predictor. Concerning the driver
of the BSDE, we replace f (x, ū(tk+1, x), v̄(tk+1, x)) by f (x, ū(tk+1, x), v̄(tk, x)):
the definition of v̄(tk, x) does not involve ū(tk, x).

The story is rather different for b. Indeed, the definition of v̄(tk, x) relies on the
choice of the underlying transition. In particular, putting v̄(tk, x) in b as done in f

would lead to an implicit scheme.
Nevertheless, for a given intermediate predictor v̂(tk, ·) of v(tk, ·), we can put

T (tk, x) ≡ b
(
x, ū(tk+1, x), v̂(tk, x)

)
h + σ

(
x, ū(tk+1, x)

)
g(�Bk).

The whole difficulty is then hidden in the choice of v̂(tk, x). Our strategy consists
in choosing v̂(tk, x) as the expectation of v̄(tk+1, ·), with respect to the transition
T 0(tk, x) ≡ σ(x, ū(tk+1, x))g(�Bk). This transition differs from T (tk, x) in the
drift b and leads to an explicit scheme. Namely, we set

v̂(tk, x) ≡ E
[
v̄
(
tk+1,�k+1

(
x + T 0(tk, x)

))]
.(3.11)
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The predictor v̂(tk, ·) appears as a “regularized” version of v̄(tk+1, ·). Thanks to
a Gaussian change of variable, the laws of the underlying transitions T 0(tk, x)

and T (tk, x) can be compared; see [9], Section 7.3, for details.

Final algorithm.

ALGORITHM 3.1. The final algorithm writes

∀x ∈ CN, ū(T , x) ≡ H(x), v̄(T , x) ≡ ∇xH(x)σ
(
x,H(x)

)
,

∀ k ∈ {0, . . . ,N − 1}, ∀x ∈ Ck,

T 0(tk, x) ≡ σ
(
x, ū(tk+1, x)

)
g(�Bk),

v̂(tk, x) ≡ E
[
v̄
(
tk+1,�k+1

(
x + T 0(tk, x)

))]
,

T (tk, x) ≡ b
(
x, ū(tk+1, x), v̂(tk, x)

)
h + σ

(
x, ū(tk+1, x)

)
g(�Bk),

v̄(tk, x) ≡ h−1
E

[
ū
(
tk+1,�k+1

(
x + T (tk, x)

))
g(�Bk)

]
,

ū(tk, x) ≡ E
[
ū
(
tk+1,�k+1

(
x + T (tk, x)

))] + f
(
x, ū(tk+1, x), v̄(tk, x)

)
h.

A discrete probabilistic representation. Following the link between (E)
and (E ), define, for x0 ∈ C0, a Markov process on the grids (Ck)0≤k≤N accord-
ing to the transitions (T (tk, x))k∈{0,...,N−1},x∈Ck

,

X0 ≡ x0, ∀ k ∈ {0, . . . ,N − 1}, Xtk+1 ≡ �k+1
(
Xtk + T

(
tk,Xtk

))
.(3.12)

Referring to the connection between U and (V ,W) [see, e.g. (2.1)], put now

∀ k ∈ {0, . . . ,N}, Ytk ≡ ū
(
tk,Xtk

)
, Ztk ≡ v̄

(
tk,Xtk

)
.(3.13)

Note that Y and Z are correctly defined since Xtk belongs to the grid Ck .
The couple (Y,Z) appears as a discrete version of the couple (V ,W) in (E).
More precisely, one can prove the following discrete Feynman–Kac formula:
∀0 ≤ k ≤ N − 1,

Ytk = E

[
H

(
XtN

) + h

N∑
i=k+1

f
(
Xti−1, ū

(
ti ,Xti−1

)
,Zti−1

)∣∣∣Ftk

]
.(3.14)

Note anyhow that the process Z does not appear as the martingale part of the
process Y . However, thanks to the martingale representation theorem, there exists
a progressively measurable process �Z, with finite moment of order two, such that

YtN + h

N∑
i=1

f
(
Xti−1, ū

(
ti ,Xti−1

)
,Zti−1

) = Y0 +
∫ tN

0
�Zs dBs.(3.15)

Of course, the process �Z does not match exactly the process Z. However, for a
given k ∈ {0, . . . ,N − 1}, it is readily seen from the above expression that the
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best Ftk -measurable approximation of (�Zs)s∈[tk,tk+1] in L2([tk, tk+1] × �,ds ⊗
dP) is given by h−1

E[Ytk+1�Bk|Ftk ]. Up to the quantization procedure, this term
coincides with v̄(tk,Xtk ). In other words, the processes Z and �Z may be considered
as close.

3.4. Choice of the grids. Because of the strong coupling, little is a priori
known on the behavior of the paths of the forward process. Hence, we cannot
compute a kind of optimal grid for X. The most natural choice turns out to be the
one of Cartesian grids.

Unbounded Cartesian grids. Two different choices of grids are conceivable.
First, we can treat the case of infinite Cartesian grids: ∀ k ∈ {0, . . . ,N}, Ck ≡ C∞,
C∞ ≡ δZ

d , where δ > 0 denotes a spatial discretization parameter. In this case, the
projection mapping writes ∀x ∈ R

d , �∞(x) ≡ ∑
y∈C∞[y ∏d

j=1 1[−δ/2,δ/2[(xj −
yj )]. In other words, for every j ∈ {1, . . . , d}, the coordinate j of �∞(x) is given
by (�∞(x))j = δ�δ−1xj + 1/2�.

This choice actually simplifies the convergence analysis and allows a direct
comparison with the results from the existing literature; see [10]. Note, however,
that it does not provide a fully implementable scheme since the set C∞ is infinite.

Truncated grids. Several truncation procedures may be considered, but all
need to take into account the specific geometry of a nondegenerate diffusion, or,
more simply, of the Brownian motion. Set, for example, for a given R > 0, and for
all i ∈ {0, . . . ,N}, Ci ≡ C∞ ∩ �i , where

�i ≡ {
x ∈ R

d,∀1 ≤ j ≤ d,
(3.16)

−δ
⌊(

R + ρψ(ti)
)
δ−1⌋ − δ/2 ≤ xj < δ

⌊(
R + ρψ(ti)

)
δ−1⌋ + δ/2

}
,

where ψ(t) = tη1{t>0}, η ∈ [0,1/2), is meant to take into account the Hölder reg-
ularity of the Brownian path. The larger is η, the smaller is the number of points
involved in the discretization procedure. However, since the proof of the conver-
gence of the algorithm is far from being trivial, we restrict our analysis to the case
η = 0.

Note also that the particular choice of the bounds in the definition of �i en-
sures that for all x ∈ R

d , �∞(x) ∈ Ci ⇔ x ∈ �i . Hence, for every i ∈ {0, . . . ,N},
�i writes

∀0 ≤ i ≤ N, ∀x ∈ �i, �i(x) ≡ Q
(
R + ρ,�∞(x)

) = �∞(x),

∀1 ≤ i ≤ N, ∀x /∈ �i, �i(x) ≡ Q
(
R + ρ,�∞(x)

)
,(3.17)

∀x /∈ �0, �0(x) ≡ Q
(
R,�∞(x)

)
,

where, for a given (r, y) ∈ R
+∗ × R

d , Q(r, y) denotes the orthogonal projection
of y on the hypercube [−δ�rδ−1�, δ�rδ−1�]d :Q(r, y) ≡ ((yi ∨ (−δ�rδ−1�)) ∧
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(δ�rδ−1�))1≤i≤d . Note finally that R is fixed by the reader once for all in function
of the set on which u has to be approximated at the initial time. At the opposite,
ρ appears as a discretization parameter chosen by the reader in function of the
required precision and of the affordable complexity for Algorithm 3.1.

4. Convergence results. This section is devoted to the convergence analysis
of ū to u. As stated in the following theorem, which is the main result of the paper,
five different types of errors can be distinguished:

THEOREM 4.1. Let p ≥ 2. There exist two constants c4.1 and C4.1, only de-
pending on p, T and on known parameters deriving from Assumption (A), such
that, for h < c4.1, δ2 < h, M−2/d < h and ρ ≥ 1,

sup
x∈C0

|u(0, x) − ū(0, x)|2 ≤ C4.1E
2(global),

with E2(global) ≡ E2(time)+E2(space)+E2(trunc)+E2(quantiz)+E2(gradient,
p) and E(time) ≡ h1/2, E(space) ≡ h−1δ, E(trunc) ≡ R/(R + ρ), E(quantiz) ≡
h−1/2M−1/d , E(gradient,p) ≡ hp/2+d/4−1/2M−p/dδ−p−d/2.

REMARK 4.1. The FBSDE counterpart of Theorem 4.1 is given in Sec-
tion 4.3: see Theorems 4.2 and 4.3.

4.1. Classification of errors. We now detail the meaning of the different errors
appearing in Theorem 4.1:

Temporal discretization error E(time). The 1/2 exponent appearing in the de-
finition of E(time) corresponds to the Hölder regularity of u and ∇xu in time and
to the L2(P) 1/2-Hölder property of the Brownian increments.

Spatial discretization error E(space). This quantity highly depends on the ra-
tio between the spatial and the temporal steps. This connection between δ and h

can be explained as follows: the drift part of the transitions (T (tk, ·))0≤k≤N is of
order h and the diffusive one is of order h1/2. Thus, to take into account the in-
fluence of the drift at the local level, the spatial discretization parameter must be
smaller than h. In other words, δh−1 must be small.

Quantization error E(quantiz). This error depends on the ratio between the
distortion and the temporal step. The quantity E(quantiz) represents the typi-
cal bound between v̄(tk,Xtk ) and the best Ftk measurable approximation of the
process (�Zs)s∈[tk,tk+1], that is, between v̄(tk,Xtk ) and h−1

E[ū(tk+1, �k+1(Xtk +
T (tk,Xtk )))�Bk|Ftk ]. Note, indeed, that the distance between �Bk and g(�Bk)

is of order h1/2M−1/d , see (3.8). Since the underlying expectation is divided by h,
this leads to a term in h−1/2M−1/d .
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Truncation error E(trunc). As written in Theorem 4.1, it depends on R and ρ,
where R denotes the radius of the initial grid C0 and R + ρ the radius of the grids
(Ck)1≤k≤N . If ρ tends to +∞, that is, if the grids are not truncated, this error term
reduces to zero.

Generally speaking, E(trunc) appears as the Bienaymé–Chebyshev estimate of
the probability that the approximating process X stays inside the grids (Ck)0≤k≤N .
The lack of relevant estimates of the discretized version of the drift b (recall that
the function b is not bounded) and, more specially, of the discretized gradient v̄,
explains the reason why the Bienaymé–Chebyshev estimate applies in this frame-
work and not better ones (as the Bernstein inequality). We also recall that the
unboundedness of the coefficients is the most common case in the applications,
see, for example, Section 5.2.

Gradient error E(gradient,p). This extra error is generated by the lack of es-
timates of the discretized gradient v̄. This term follows from the specific choice of
the predictor v̂ made in Section 3.3 and appears in the second step of the proof of
Theorem 4.1; see, more precisely, Sections 7.1 and 7.3.

The convergence of E(gradient,p) toward 0 relies on the term hp/2M−p/d δ−p ,
M being chosen large enough and p as large as necessary. In short, this reduced
form represents the probability that the distance between the Gaussian increment
and its quantization exceeds the spatial step δ. Note, indeed, from (3.8) that, for
every p ≥ 2, P{|�Bk − g(�Bk)| > δ} ≤ CQuantiz(p, d)hp/2 M−p/dδ−p . Thus, the
error term E(gradient,p) depends on the ratio between the spatial discretization
step and the quantization distortion of the underlying Gaussian increments.

The above probability appears in the control of the distance between the pre-
dictor v̂ and the true gradient v. In this frame, the strategy consists in writing
the predictor v̂ as an expectation with respect to the Gaussian kernel and not to its
quantized version. Generally speaking, this strategy holds when the quantized tran-
sition T (tk, x) and its Gaussian counterpart belong to the same cell of the spatial
grid, that is, when the distance between the Brownian increment and the quantized
one is of the same order as the length of a given cell. Since the spatial grid step is
given by δ, we then need to control the probability that the difference between the
increments exceeds δ.

Of course, when b does not depend on z, there is no reason to define v̂. In such
a case, E(gradient,p) reduces to 0.

4.2. Comments on the rate of convergence.

Error in function of h. To detail in a more explicit way the rate of convergence
given by Theorem 4.1, we give an example in which ρ (ρ < +∞), δ and M are
expressed as powers of h. Assume, indeed, that ρ, δ and M are chosen in the
following way: ρ = Rh−1/2, δ ≡ h1+γ , M−2/d ≡ h1+β , γ,β ≥ 0.
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In such a case, E(gradient,p) = exp[ln(h)[p(β/2 − γ ) − (d/2 + 1 + γ d)/2]].
To ensure the convergence of the algorithm, we then need to choose

p(β/2 − γ ) − (d/2 + 1 + γ d)/2 > 0 ⇐⇒ β > 2γ + (1/p)(d/2 + 1 + γ d).

Put finally β = 2γ + (d/2 + 1 + γ d)/p + η, η > 0. The rate of convergence of the
fully implementable algorithm is given by supx∈C0

|u(0, x)− ū(0, x)|2 ≤ C4.1[h+
h2γ + hβ + hpη].

Taking γ = 1/2 and η = 1/p then yields supx∈C0
|u(0, x) − ū(0, x)|2 ≤ C4.1h.

In particular, for p large enough, the exponent β is close to 1 and the number M

of points needed to quantify the Brownian increments is close to h−d . Here is the
limit of the method: for a large d and a small h, we need a rather large number
of points for the Gaussian quantization. Recall anyhow that the Gaussian grids are
computed once for all. Thus, the numerical effort to get sharp quantization grids
can be made apart from our algorithm.

Estimates of ∇xu. The reader might wonder about the estimate of the gradient
of u. Note in this framework that two strategies are conceivable.

First, the probabilistic counterpart of Theorem 4.1 given in Section 4.3 provides
an L2 estimate of the distance between v̄ and the gradient of the true solution. Note,
however, that the underlying L2 norm is taken with respect to the distribution of
the discrete process X [cf. (3.12)].

To get a joint estimate of the solution and of its gradient with respect to the
supremum norm, the reader can apply the following strategy: differentiate if pos-
sible the PDE (E ) and apply, once again if possible, Algorithm 3.1 to (u,∇xu),
seen as the solution of a system of parabolic quasi-linear PDEs. Such a strategy is
applied in Section 5 to the solution of the porous media equation and to its gradi-
ent. Note that this approach coincides with the one followed by Douglas, Ma and
Protter [10].

4.3. Estimates of the discrete processes. We now translate Theorem 4.1 in a
more probabilistic way. Recall indeed that, in several situations (e.g., in financial
mathematics), the knowledge of the triple (U,V,W) is as crucial as the knowledge
of the couple (u,∇xu).

We then prove that (X,Y,Z) and (U,V,W) get closer in a suitable sense as h, δ,
M−1 and ρ−1 vanish. Note, however, that we are not able to prove that the distance
between (X,Y,Z) and (U,V,W) over the whole interval [0, T ] tends to zero. In-
deed, since the projections (�i)0≤i≤N map every point outside the sets (�i)0≤i≤N

onto the boundaries of (Ci )0≤i≤N [see, e.g., (3.17)], we do not control efficiently
the transition of the process X after the first hitting time of the boundaries of the
grids by X. It is then well understood that we have to stop the triple (X,Y,Z) at
this first hitting time. Put to this end

τ∞ ≡ inf
{
(tk)1≤k≤N,Xtk−1 + T

(
tk−1,Xtk−1

)
/∈ �k

}
, inf(∅) = +∞.(4.1)
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First, as a bypass product of the proof of Theorem 4.1, the function v̄ provides an
approximation of v in the following L2 sense:

THEOREM 4.2. Let p ≥ 2. Then, there exist two constants c4.2 and C4.2, only
depending on p and on known parameters deriving from Assumption (A), such
that, for h < c4.2, δ2 < h, M−2/d < h and ρ ≥ 1,

h

N−1∑
i=0

E
[∣∣v̄(

ti ,Xti

)
1{ti<τ∞} − v

(
ti ,Xti

)∣∣2] ≤ C4.2E
2(global).

Moreover, the triple (X,Y,Z) stopped at time τ∞ satisfies the following:

THEOREM 4.3. Let p ≥ 2. Then, there exist two constants c4.3 and C4.3, only
depending on p and on known parameters deriving from Assumption (A), such
that, for h, δ,M as in the previous theorem

E

[
sup

i∈{0,...,N}
∣∣Xti∧τ∞ − Uti

∣∣2]
+ E

[
sup

i∈{0,...,N}
∣∣Yti∧τ∞ − Vti

∣∣2]

+ h

N−1∑
i=0

E
[∣∣Zti 1{ti<τ∞} − Wti

∣∣2] ≤ C4.3E
2(global).

5. Numerical examples. In order to compare the results we obtain with our
algorithm to a reference value, we choose equations that admit an explicit solution.
In this frame, we focus on three examples: the one-dimensional Burgers equation,
the deterministic KPZ equation in dimension two and the one-dimensional porous
media equation.

5.1. One-dimensional Burgers equation. Consider first the backward Burgers
equation:

∂tu(t, x) − (u∂xu)(t, x) + ε2

2
∂2
x,xu(t, x) = 0,

(t, x) ∈ [0, T [×R, ε > 0(5.1)

u(T , x) = H(x), x ∈ R,H ∈ C2+α
b (R), α ∈]0,1[.

Using a nonlinear transformation, one can derive an explicit expression of the so-
lution of (5.1). This is known as the Cole–Hopf factorization, see [23], Chapter IV,
or [24], Chapter III, for details. The solution of (5.1) then writes

∀ (t, x) ∈ [0, T ] × R, u(t, x) = E[H(x + εBT −t )φ(x + εBT −t )]
E[φ(x + εBT −t )] ,(5.2)
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where B is a standard Brownian motion and

∀y ∈ R, φ(y) ≡ exp
(
−ε−2

∫ y

0
H(u)du

)
.

From the explicit representation (5.2), we can derive numerically, using, for
example, a Riemann sum, a Monte Carlo method or a quantized version of the
expectation (5.2), a reference solution to test the algorithm.

The reader may object that the Burgers equation is actually semi-linear and
not quasi-linear. Actually, it depends on whether we consider the nonlinear term
as a drift or as a second member. We describe below the algorithms associated
to these two points of view, even if the coupled case is the only one to fulfill
Assumption (A).

Moreover, in the forward–backward representation of the Burgers equation, the
estimation procedure of the gradient is not necessary to compute the approximate
solution ū. Numerically, this case turns out to be the most robust. Finally, in both
cases, the intermediate predictor v̂ is useless: in the coupled case, the drift of the
diffusion U reduces to V (and thus does not depend on W ), and in the decoupled
one, the drift vanishes.

5.1.1. Explicit expression of the algorithms. For a given final condition
H ∈ C2+α

b (R), α ∈]0,1[, we write the following:

ALGORITHM 5.1 (Coupled case).

∀x ∈ CN, ū(T , x) ≡ H(x),

∀ k ∈ {0, . . . ,N − 1}, ∀x ∈ Ck,

ū(tk, x) ≡ E
[
ū
(
tk+1,�k+1

(
x − ū(tk+1, x)h + εg(�Bk)

))]
,

v̄(tk, x) ≡ h−1
E

[
ū
(
tk+1,�k+1

(
x − ū(tk+1, x)h + εg(�Bk)

))
g(�Bk)

]
.

ALGORITHM 5.2 (Pure backward case).

∀x ∈ CN, ū(T , x) ≡ H(x),

∀ k ∈ {0, . . . ,N − 1}, ∀x ∈ Ck,

ū(tk, x) ≡ E
[
ū
(
tk+1,�k+1

(
x + εg(�Bk)

))] − hε−1ū(tk+1, x)v̄(tk, x),

v̄(tk, x) ≡ h−1
E

[
ū
(
tk+1,�k+1

(
x + εg(�Bk)

))
g(�Bk)

]
.

5.1.2. Numerical results. In order to avoid first to truncate the grids, we
choose a periodic initial solution. Put to this end H(x) = sin(2πx) and derive from
(5.2) that u is 1-periodic. This allows to define ū(tk, ·) on C∞ by setting ∀x ∈ C∞,
ū(tk, x) ≡ ū(tk, x − �x�). Hence, we can set Ck ≡ C∞ for k ∈ {0, . . . ,N − 1}. For
T = 1, δ = 10−3, h = 0.01, M = 160, ε = 0.15, we present below the results of
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the previous algorithms. The explicit solution given by (5.2) is approximated by
quantization techniques with a 500 points grid. We plot below some profiles of the
reference value for various discretization times, as well as the pointwise absolute
error between this reference solution and the approximations obtained with our
algorithms. See Figure 1.

On the profiles of the explicit solution, the abscises of the peaks of the initial
sinusoidal wave are going closer to each other up to a given time t0. This is a
typical shocking wave behavior. Because of the viscosity, that is, ε is nonzero,
there is no shock and the amplitude of the wave decays when t goes to zero.

From a numerical point of view, the coupled case provides several advantages.
First, the convergence of Algorithm 5.1 does not rely on the discretization proce-
dure of the gradient. In short, there is no reason to update the gradient in order
to obtain the approximate solution with the first algorithm. The computation of
v̄ just provides in this case an L2 estimate of the gradient. At the opposite, this
computation is necessary in Algorithm 5.2.

Moreover, since the coefficient f (y, z) = ε−1yz is not globally Lipschitz in
the pure backward case, it is then another story to establish the convergence of
Algorithm 5.2.

These theoretical remarks are confirmed by the pictures below. Even though Al-
gorithm 5.2 does not behave too poorly, it is still less precise than Algorithm 5.1.

FIG. 1.
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The factor between the absolute pointwise errors of the two algorithms is approx-
imately 5.

Truncation error. We now illustrate the effects of truncation and deal with a
nonperiodic final data. Namely, we take H(x) = exp(−x2/2), T = 1, h = 0.02,
ρ = 3, δ = ρ/500, M = 250. The reference value, see profiles below, is computed
from the Cole–Hopf explicit solution by quantization techniques with a 500 points
grid. We run Algorithm 3.1 with the previous parameters to obtain Figure 2.

Choose now R = 1: the expected truncated error E(trunc) is given by 0.25,
whereas the absolute point-wise error between both solutions is bounded by 0.05
on [−1,1]. This emphasizes the difficulty to control the truncation procedure in
our algorithm. There are two possible arguments to explain this difference between
0.25 and 0.05. First, as explained in Section 9.1, our way to estimate E(trunc) is
suitable for unbounded drifts b and, more particulary, for drifts depending on the
gradient. In our case, the drift is bounded (since the solution is bounded by 1),
and most relevant estimates could apply. Second, the fast decay of the final condi-
tion H may explain the low influence of distant points on the values of the solution
on [−1,1].

Note also that the relative error is close to 0.1 on [−1,1]. A possible strategy to
decrease it would consist in refining the spatial mesh.

FIG. 2.
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FIG. 3.

We also feel that the choice of the rough projection mappings (�k)0≤k≤N

deeply affects the global error. To investigate more precisely their influence, we
replace them by standard linear interpolation procedures (which are defined in an
obvious way since the underlying space is one dimensional). In short, this permits
to extend continuously the approximated solution ū to the whole space. With the
same parameters as above, we then get Figure 3.

Numerically, the interpolation can thus be really relevant to improve the conver-
gence (see Section 9.2 for further details and explanations on this point). To obtain
the same precision without interpolation, we need to refine significantly the para-
meters (taking, e.g., δ = 2 × 10−4). Let us finally mention that the results obtained
with the coupled representation and the linear interpolation are still more accurate
than with the backward one.

5.2. Deterministic KPZ equation. In this subsection we focus on the so-called
“deterministic KPZ” equation (see, e.g., [12] and [24], Chapter I, for a physical
interpretation):

∂tu(t, x) + 1

2
tr

(
σσ ∗∇2

x,xu(t, x)
) + ν

2
|σ ∗∇xu(t, x)|2 = 0,

(t, x) ∈ [0, T [×R
d,(5.3)

u(T , x) = H(x), x ∈ R
d,

where ν ∈ R
+∗ is a given parameter and σ a given constant matrix such that σσ ∗

is positive definite.
Such an equation admits too a “Cole–Hopf explicit solution” (see again [12])

that writes u(t, x) = ν−1 log(E[exp(νH(x + σBT −t ))]). We then apply Algo-
rithm 3.1 to (5.3) seen as a true quasi-linear equation (so-called “coupled case”
in the former subsection).

Concerning the initial condition, we choose H(x) = ∏d
i=1 sin(2πxi). By con-

struction, we have ∀x ∈ R
d , ∀ k ∈ Z

d , u(t, x + k) = u(t, x). Since the solution is
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periodic, ū can be defined on the whole grid C∞ (see also Section 5.1.2). We now
present the results for d = 2, ν = 0.3, T = 0.5, h = 0.02, δ = 5 × 10−4, M = 160
and σσ ∗ = (1 θ

θ 1

)
with θ = 0.8. The reference value and its gradient have been de-

rived from the explicit writing of u using quantization techniques with a 500 points
grid. At t = 0, one has Figure 4.

The relative error between the approximate and true solutions is at most 0.25.
The explanation seems rather simple: the explicit solution quickly decays as time
decreases. Anyway, we feel that our algorithm manages to catch this specific de-
creasing phenomenon.

FIG. 4.
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Let us also mention that the last picture represents the pointwise difference of
the true and approximated gradients, but the control given by Theorem 4.2 just
holds in L2.

5.3. Porous media equation. To conclude this section, we focus on the equa-
tion (this example is taken from [16])

∂tu(t, x) + (u∂2
x,xu)(t, x) + (∂xu)2(t, x) + u2(t, x) = 0,

(t, x) ∈]0, T ] × R,(5.4)

u(T , x) = T −1 4

3
cos2

(
πx

L

)
, L = 2

√
2π,

which admits the L-periodic explicit solution

u(t, x) = t−1 4

3
cos2

(
πx

L

)
.

Note that (5.4) does not fulfill Assumption (A). In the sequel, we choose without
any rigorous justifications to apply Algorithm 3.1 on [T/2, T ] (note, however,
for a rough explanation that the quadratic growth of the coefficients ensures that
Theorem 4.1 holds on a suitable interval [t, T ], for t close enough to T and, in the
same way, Theorem 2.1 applies away from 0).

Nevertheless, as explained in Section 4.2, this procedure just provides an
L2-estimate of ∇xu. In this framework, we have decided to apply the so-called
“differentiated” approach, described in Section 4.2, to obtain a pointwise estimate
of ∇xu (see Algorithm 5.3 below).

Note finally from the periodicity of u that ū can be defined on the whole grid C∞
as in the previous example (see also Section 5.1.2).

ALGORITHM 5.3 (Differentiated algorithm).

∀x ∈ CN, ū(T , x) = T −1 4

3
cos2

(
πx

L

)
,

w̄(T , x) = T −1
(
−8π

3L
cos

(
πx

L

)
sin

(
πx

L

))
,

∀ k ∈ {0, . . . ,N − 1}, ∀x ∈ Ck,

ū(tk, x) = E
[
ū
(
tk+1,�k+1

(
x + w̄(tk+1, x)h +

√
2ū(tk+1, x)g(�Bk)

))]
+ hū(tk+1, x)2,

w̄(tk, x) = E
[
w̄

(
tk+1,�k+1

(
x + 3w̄(tk+1, x)h +

√
2ū(tk+1, x)g(�Bk)

))]
+ 2hū(tk+1, x)w̄(tk+1, x).
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For T = 1, h = 0.02, δ = L/500, M = 160, we present below the results ob-
tained first with Algorithm 3.1 (the approximation of the gradient with this algo-
rithm is undefined at x = ±L/2 and we thus arbitrarily set it to zero) and then with
Algorithm 5.3. See Figure 5 for the results on [−L/2,L/2].

We first observe that the approximated solutions obtained with the two algo-
rithms are not significantly different. The main advantage of the differentiated al-
gorithm is, as expected, for the pointwise approximation of the gradient. Indeed, in
that case there is a factor 4 between the absolute pointwise errors associated to the
two methods. Let us also indicate that both methods present some “singularity”

FIG. 5.
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in the neighborhood of x = ±L/2 for the estimation of the gradient. This could
be expected for Algorithm 3.1 since the estimation of the gradient is obtained by
dividing v̄ by

√
2ū that goes to 0 when x → ±L/2. It is a bit more surprising for

Algorithm 5.3.

6. Proof. First step: a priori controls. In this section we give various a priori
estimates of the couple (Y,Z) introduced in (3.13) and of the approximate diffu-
sion X defined in (3.12). These controls are necessary to establish Theorems 4.1,
4.2 and 4.3.

About constants. In the following, we keep the same notation C,Cϑ, cϑ

(or C′,C′
ϑ, c′

ϑ ) for all finite, nonnegative constants which appear in our compu-
tations: they may depend on known parameters deriving from Assumption (A),
on T and on p, but not on any of the discretization parameters. The index ϑ in the
previous notation refers to the numbering of the Proposition, Lemma, Theorem, . . .

where the constant appears.

Conditions on parameters. We assume that the conditions of Theorem 4.1
on h, δ, M , ρ and p are fulfilled.

6.1. Discrete backward equation and a priori estimates.

Discrete Feynman–Kac formula. By iteration of the dynamic programming
principle in Algorithm 3.1, it is plain to prove the discrete Feynman–Kac formula
(3.14).

Both formulae (3.14) and (3.15) [representation of YtN + h
∑N

i=1 f (Xti−1,

ū(ti ,Xti−1),Zti−1) through the martingale representation theorem] permit to apply
the BSDE machinery to our frame. However, as well known in the literature de-
voted to SDEs (or, equivalently, to PDEs), several a priori estimates of the solution
are necessary to apply this strategy.

PROPOSITION 6.1. There exists a constant C6.1 s.t.

sup
i=0,...,N

[
sup
x∈Ci

|ū(ti , x)|2
]

≤ C6.1.

PROPOSITION 6.2. There exists a constant C6.2 s.t.

E

[∫ T

0
|�Zs |2 ds

]
+ h

N−1∑
i=0

E
[∣∣Zti

∣∣2]
+ h sup

i=0,...,N

[
sup
x∈Ci

|v̄(ti , x)|2
]

+ h sup
i=0,...,N−1

[
sup
x∈Ci

|v̂(ti , x)|2
]

≤ C6.2.
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The distance between Z and �Z can be estimated as follows:

LEMMA 6.3. There exists a constant C6.3 s.t., for k ∈ {1, . . . ,N},

E

∣∣∣∣hZtk−1 − E

[∫ tk

tk−1

�Zs ds
∣∣∣Ftk−1

]∣∣∣∣2 ≤ C6.3h
2E2(quantiz).

6.2. Approximate diffusion.

Jumps of the discrete forward process. Start first with the following:

LEMMA 6.4. For a given k ∈ {0, . . . ,N − 1}, the norm of the increment
Xtk+1 − Xtk is always bounded by |T (tk,Xtk )| + δ. In particular, there exists a
constant C6.4 such that

E
[∣∣Xtk+1 − Xtk

∣∣2|Ftk

] ≤ C6.4[h + δ2].

PROOF. Since Xtk ∈ C∞, one has �∞(Xtk + T (tk,Xtk )) = Xtk + �∞(T (tk,

Xtk )) (invariance by translation of the grid C∞). Moreover, for every y in the
image of the projection Q(R + ρ, ·) and for every z ∈ R

d , the distance |Q(R + ρ,

y + z) − y| is bounded by |z|. Hence,∣∣Xtk+1 − Xtk

∣∣ = ∣∣Q(
R + ρ,Xtk + �∞

(
T

(
tk,Xtk

))) − Xtk

∣∣
(6.1)

≤ ∣∣�∞
(
T

(
tk,Xtk

))∣∣ ≤ ∣∣T (
tk,Xtk

)∣∣ + δ.

Thanks to Propositions 6.1 and 6.2, we are able to bound the drift b appearing in the
transition. Since E[|g(�Bk)|2] ≤ Ch, from Assumption (A) and Proposition 6.1,
we also control the martingale part of the transition. This completes the proof. �

Extension of the “discrete diffusion.” For the proof, we need to extend the defi-
nition of X to the whole set [0, T ]. Put, for all k ∈ {0, . . . ,N −1} and t ∈ [tk, tk+1[,

Xt ≡ Xtk + b
(
Xtk , ū

(
tk+1,Xtk

)
, v̂

(
tk,Xtk

))
(t − tk)

(6.2)
+ σ

(
Xtk , ū

(
tk+1,Xtk

))[
Bt − Btk

]
.

From Proposition 6.2, we get the following:

LEMMA 6.5. There exists a constant C6.5 s.t., for every k ∈ {0, . . . ,N − 1},
∀ t ∈ [tk, tk+1[, E

[∣∣Xt − Xtk

∣∣2|Ftk

] ≤ C6.5h.

The extended process (Xt)0≤t≤T is discontinuous at times (tk)1≤k≤N . At a given
time tk , 1 ≤ k ≤ N , the size of the jump performed by the process depends on
the quantization error and on the spatial projection error. The first error is easily
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controlled by the distortion. Concerning the second one, the projection error is
close to the spatial step δ when the grids are infinite. For truncated grids, the story
is slightly different. In fact, as soon as the process stays inside (�k)0≤k≤N , the
projection error is close to the step δ of the interior mesh of the grid (Ck)0≤k≤N .
At the opposite, outside (�k)0≤k≤N , the jump of the process may take large values.

The time continuous extension of X remains close to the discrete version of X

up to time τ∞.

LEMMA 6.6. There exists a constant C6.6 such that

N−1∑
i=0

E
[
1{ti+1<τ∞}

∣∣Xti+1 − Xti+1−
∣∣2] ≤ C6.6h

(
E2(space) + E2(quantiz)

)
.

PROOF (SKETCH). From (6.2), the difference Xti+1 − Xti+1− writes

Xti+1 − Xti+1− = [
�i+1

(
Xti + T

(
ti ,Xti

)) − (
Xti + T

(
ti ,Xti

))]
+ σ

(
Xti , ū

(
ti+1,Xti

))[g(�Bi) − �Bi](6.3)

≡ E1(i + 1) + E2(i + 1).

E1(i + 1) appears as a projection error and E2(i + 1) as a quantization one. It is
readily seen that E1(i + 1) is bounded by δ on {ti+1 < τ∞}. From (3.8), one also
gets E[|E2(i + 1)|2|Fti ] ≤ ChM−2/d . �

6.3. Sketches of the proofs of the a priori controls.

Discrete BSDE. This section is devoted to the proof of Propositions 6.1, 6.2
and Lemma 6.3. We first give a control of the L2 norm between Ztk−1 and the
conditional expectation of

∫ tk
tk−1

�Zs ds appearing in Lemma 6.3. This preliminary
estimate permits to prove Proposition 6.1. We then derive the complete proofs of
Proposition 6.2 and Lemma 6.3.

Step one: preliminary control in Lemma 6.3. From (3.15), write, for a given
k ∈ {0, . . . ,N − 1},

Ytk+1 + hf
(
Xtk , ū

(
tk+1,Xtk

)
,Ztk

) = Ytk +
∫ tk+1

tk

�Zs dBs.

Multiply this identity by �Bk , take the conditional expectation w.r.t. Ftk and plug
the definition of Ztk [cf. (3.13)]:

hZtk − E

[∫ tk+1

tk

�Zs ds
∣∣∣Ftk

]
= E

[
Ytk+1

(
g(�Bk) − �Bk)|Ftk

]
.(6.4)
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Referring to (3.8), there exists C s.t.

E

[∣∣∣∣hZtk − E

[∫ tk+1

tk

�Zs ds
∣∣∣Ftk

]∣∣∣∣2]
≤ ChM−2/d

E
[
Y 2

tk+1

]
.(6.5)

This preliminary estimate (6.5) is necessary to prove Proposition 6.1 from which
we will derive E[Y 2

tk+1
] ≤ C, and thus complete the proof of Lemma 6.3.

Step two: proof of Proposition 6.1. To estimate the supremum norm of ū over
the grids C0, . . . ,CN , we follow the basic strategy of the BSDE theory and, there-
fore, apply a discrete version of Itô’s formula to the discrete BSDE formula given
in (3.14)–(3.15). Such a formula can be found in [22], Chapter VII, Section 9.
We obtain

E|YT |2 = |Y0|2 + 2h

N∑
i=1

E
〈−f

(
Xti−1, ū

(
ti ,Xti−1

)
,Zti−1

)
, Yti−1

〉
(6.6)

+ h2
N∑

i=1

E
[
f 2(

Xti−1, ū
(
ti ,Xti−1

)
,Zti−1

)] + E

∫ T

0
|�Zs |2 ds.

Following standard computations in BSDE theory, it is plain to derive from
(6.5) and (6.6):

|ū(0, x0)|2 + E

∫ T

0
|�Zs |2 ds + h

N−1∑
i=0

E
[∣∣Zti

∣∣2] ≤ C + Ch

N∑
i=0

sup
x∈Ci

|ū(ti , x)|2.(6.7)

There exists a constant c > 0 such that, for h < c (recall indeed that h is small),
the above inequality holds but with i = 1 instead of i = 0 as initial condition in the
r.h.s. of (6.7). As usual in BSDE theory, we can establish in a similar way that, for
every initial condition (tk, x), 1 ≤ k ≤ N ,

∀ k ∈ {0, . . . ,N − 1}, sup
x∈Ck

|ū(tk, x)|2 ≤ C + Ch

N∑
i=k+1

sup
x∈Ci

|ū(ti , x)|2.

A discrete version of Gronwall’s lemma yields the result.

Step three: proofs of Proposition 6.2 and Lemma 6.3. The L2-estimates of Z

and �Z in Proposition 6.2 follow from Proposition 6.1 and (6.7). Moreover, as a
consequence of Proposition 6.1 and the definitions of v̄ and v̂, see Algorithm 3.1,
we deduce the estimates of the supremum norms of v̄ and v̂. Lemma 6.3 follows
from (6.5) and Proposition 6.1.

7. Proof. Second step: stability properties. This section focuses on the sec-
ond step of the proof of Theorems 4.1, 4.2 and 4.3, and aims to establish more
specifically a suitable intermediate inequality, close to usual stability properties of
FBSDEs.
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Strategy. Recall first that two main strategies are conceivable in the theoretical
framework to establish classical stability theorems for FBSDEs.

Denote to this end by (U ′,V ′,W ′) a solution of another FBSDE of type (E)
with different coefficients. The associated PDE solution is just denoted by u′. In
order to compare u′ with u, the following approaches have been employed in the
literature:

1. First, the recent induction principle given in [6] can be applied. In short,
u and u′ are compared on a neighborhood of the boundary T with classical
arguments of stochastic analysis and the estimate of the difference between
these solutions is then extended by induction from the final bound T to the ini-
tial bound 0. The local estimates consist in studying the distance between U

and U ′ and between (V ,W) and (V ′,W ′). This strategy has been successfully
applied to various contexts (see [6] for the solvability of FBSDEs and [8] for
homogenization of quasilinear PDEs).

2. A second approach follows the earlier Four Step Scheme of Ma, Protter and
Yong [14]. Instead of studying the difference between U and U ′ and between
(V ,W) and (V ′,W ′), the process (u(t,U ′

t ))0≤t≤T is written with Itô’s formula
as the solution of a BSDE. This BSDE is then compared with the one satisfied
by (V ′,W ′). In particular, these BSDEs are both written with respect to the
same diffusion U ′. Generally speaking, this strategy holds when u is smooth
enough (e.g., if u satisfies Theorem 2.1). It is then more direct than the previous
one.

Under Assumption (A) we apply the second strategy and compare the process Y

with the process (u(t,Xt))0≤t≤T ∧τ∞ [see (6.2) for the definition of the extension
of X].

7.1. Statements of the stability results.

First stability property. Applying the usual FBSDE machinery, we are able to
establish in Section 7.2 the following first inequality:

PROPOSITION 7.1. There exists a constant C7.1 such that, for η small enough,

|(ū − u)(0, x0)|2 + C−1
7.1h

N∑
j=1

E
[∣∣(v̄ − v)

(
tj−1,Xtj−1

)∣∣21{tj−1<τ∞}
]

≤ C7.1

[
P{τ∞ < +∞} + E2(time) + E2(space) + E2(quantiz)

+ η−1h

N∑
j=1

E
[∣∣(ū − u)

(
tj ,Xtj−1

)∣∣21{tj−1<τ∞}
]

(7.1)
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+ η−1h

N∑
j=1

E
[∣∣(ū − u)

(
tj−1,Xtj−1

)∣∣21{tj−1<τ∞}
]

+ (η + h)h

N∑
j=1

E
[∣∣(v̂ − v)

(
tj−1,Xtj−1

)∣∣21{tj−1<τ∞}
]]

.

When the drift b does not depend on z, the last term of the r.h.s. does not appear.

Estimates of the gradient increment. Assume for the moment that Proposi-
tion 7.1 holds. Note that the main problem then remains to estimate the last term
in the r.h.s. of (7.1). Thanks to the specific choice of v̂ in Section 3.3, we are able
to establish in Section 7.3 the following control:

PROPOSITION 7.2. There exists a constant C7.2 such that, for k ∈ {0, . . . ,

N − 1}, on {tk < τ∞},∣∣(v̂ − v)
(
tk,Xtk

)∣∣ ≤ C7.2
[
E(gradient,p) + E(time) + hE(space)

+ E
[∣∣(v̄ − v)

(
tk+1,Xtk+1

)∣∣2|Ftk

]1/2]
.

Main stability theorem. From Propositions 7.1 and 7.2, we claim the follow-
ing:

THEOREM 7.3. Proposition 7.1 holds with the last term in the r.h.s. of (7.1)
replaced by

E2(gradient,p) + (η + h)h

N∑
j=1

E
[∣∣(v̄ − v)

(
tj ,Xtj

)∣∣21{tj−1<τ∞}
]
.

Application of Theorem 7.3 to the proof of Theorems 4.1, 4.2 and 4.3 is given
in Section 8.

7.2. Proof of Proposition 7.1.

Starting point: time continuous backward processes. Following the second
strategy and referring to the structure of the PDE (E ), set for notational conve-
nience

∀ t ∈ [0, T ], �Vt ≡ u(t,Xt), �Wt ≡ ∇xu(t,Xt)σ (Xt , �Vt).(7.2)

Note, moreover, that the martingale part of (�Vt)0≤t≤T is driven by

∀ t ∈ [0, T [, Ŵt ≡ ∇xu(t,Xt)σ
(
Xφ(t), ū

(
φ(t) + h,Xφ(t)

))
,(7.3)

where φ(t) = tk for tk ≤ t < tk+1, k ∈ {0, . . . ,N − 1}. From Theorem 2.1 and
Lemma 6.5, we derive the following a priori estimates of �V , �W for s ∈ [tk, tk+1[:

E
[∣∣�Vs − �Vtk

∣∣ + ∣∣ �Ws − �Wtk

∣∣|Ftk

] ≤ Ch1/2.(7.4)
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Step one: Itô’s formula for �V . Using Itô’s formula and the PDE satisfied by u,
we obtain, for i ∈ {0, . . . ,N − 1},

�Vti+1 − �Vti = �Vti+1 − �Vti+1− +
∫ ti+1

ti

[
F

(
s,Xs,Xti , ū

(
ti+1,Xti

)
, v̂

(
ti ,Xti

))
− F(s,Xs,Xs, �Vs, �Ws)

]
ds

−
∫ ti+1

ti

f (Xs, �Vs, �Ws)ds +
∫ ti+1

ti

Ŵs dBs,

with F(s, x, x̂, y, z) = 〈∇xu(s, x), b(x̂, y, z)〉 + (1/2) tr(a(x̂, y)∇2
x,xu(s, x)).

Step two: difference of the processes. The strategy is well known: we aim to
make the difference between �V and Y and then to apply the usual BSDE machinery
to estimate the distance between these processes. Hence, we claim from (3.15)

�Vti+1 − Yti+1 − [�Vti − Yti

]
= �Vti+1 − �Vti+1−

+
∫ ti+1

ti

[
F

(
s,Xs,Xti , ū

(
ti+1,Xti

)
, v̂

(
ti ,Xti

)) − F(s,Xs,Xs, �Vs, �Ws)
]
ds

−
∫ ti+1

ti

[
f (Xs, �Vs, �Ws) − f

(
Xti , ū

(
ti+1,Xti

)
,Zti

)]
ds

+
∫ ti+1

ti

[Ŵs − �Zs]dBs

≡ �Ei+1(1) + �Ei+1(2) + �Ei+1(3) + �Ei+1(4).

The discrete Itô formula [see the derivation of (6.6)] and standard computations
yield

|�V0 − Y0|2 + 1
2D(3) ≤ E

∣∣�VT ∧τ∞ − YT ∧τ∞
∣∣2 + D(1) + D(2),(7.5)

with

D(1) ≡ −2E

N∑
j=1

[
1{tj−1<τ∞}

[�Vtj−1 − Ytj−1

]
Ej

]
,

D(2) ≡
N∑

j=1

E
[
1{tj−1<τ∞}E2

j

]
, D(3) ≡

N∑
j=1

E
[
1{tj−1<τ∞}�Ej(4)2]

,(7.6)

Ej ≡ �Ej(1) + �Ej(2) + �Ej(3), j ∈ {1, . . . ,N}.

Step three: standard BSDE techniques. Following the BSDE techniques, we
have to upper bound D(1),D(2) [resp. lower bound D(3)] by terms appearing in
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the r.h.s. (resp. l.h.s.) of (7.1). The following lemmas whose proofs are postponed
to the end of the subsection give the needed controls.

LEMMA 7.4. Denote by RHS(7.1) the r.h.s. of (7.1). Then, there exists a con-
stant C7.4 such that, for η ∈]0,1],

|D(1)| + D(2) ≤ C

[
RHS(7.1)

+ h(η + h)

N∑
j=1

E
[∣∣(v̄ − v)

(
tj−1,Xtj−1

)∣∣21{tj−1<τ∞}
]]

.

LEMMA 7.5. There exists a constant C7.5 > 0 such that

D(3) ≥ C−1
7.5h

N∑
j=1

E
[
1{tj−1<τ∞}

∣∣(v̄ − v)
(
tj−1,Xtj−1

)∣∣2]
− C7.5

(
E2(quantiz) + E2(time)

)
− C7.5h

N∑
j=1

E
[
1{tj−1<τ∞}

∣∣(ū − u)
(
tj ,Xtj−1

)∣∣2]
.

Note to conclude the proof of Proposition 7.1 that YT = �VT . Hence, from The-
orem 2.1 and Proposition 6.1 (boundedness of u and ū), E|�VT ∧τ∞ − YT ∧τ∞|2 ≤
CP{τ∞ < T } ≤ CP{τ∞ < +∞}. Choose finally η small enough to obtain inequal-
ity (7.1) from (7.5), (7.6), and Lemmas 7.4 and 7.5. This completes, up to the
proofs of Lemmas 7.4 and 7.5, the proof of Proposition 7.1.

PROOF OF LEMMA 7.4. Note from Theorem 2.1 that �Ej(2) and �Ej(3)

may be seen as “Lipschitz” differences since the partial derivatives of u of or-
der one and two in x are bounded. Recall also that �Vs = u(s,Xs), �Wtj−1 =
v(tj−1,Xtj−1) and Ztj−1 = v̄(tj−1,Xtj−1). From Theorem 2.1 (Hölder regularity
of u in t), (7.4) (regularity of �V and �W ), Lemma 6.5 (control of the increments of
X) and Young’s inequality, it comes, for every η ∈]0,1],

|D(1)| ≤ CE2(time)

+ CE

N∑
j=1

[
1{tj−1<τ∞}

∣∣�Vtj−1 − Ytj−1

∣∣∣∣�Vtj − �Vtj−
∣∣]

+ Ch

N∑
j=1

[
η−1

E
[∣∣(ū − u)

(
tj−1,Xtj−1

)∣∣21{tj−1<τ∞}
]

(7.7)
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+ E
[∣∣(ū − u)

(
tj ,Xtj−1

)∣∣21{tj−1<τ∞}
]]

+ ηh

N∑
j=1

[
E

[∣∣(v̂ − v)
(
tj−1,Xtj−1

)∣∣21{tj−1<τ∞}
]

+ E
[∣∣(v̄ − v)

(
tj−1,Xtj−1

)∣∣21{tj−1<τ∞}
]]

.

It now remains to estimate the second term in the r.h.s. of (7.7). Note first that,
for all j ∈ {1, . . . ,N}, {tj−1 < τ∞} = {tj < τ∞} ∪ {tj = τ∞}. Hence, thanks to the
boundedness of u and ū (see Theorem 2.1 and Proposition 6.1), to Lemma 6.6
( jumps of the process X) and to the global Lipschitz property of u (see Theo-
rem 2.1),

E

N∑
j=1

[
1{tj−1<τ∞}

[∣∣�Vtj−1 − Ytj−1

∣∣∣∣�Vtj − �Vtj−
∣∣]]

≤ E

N∑
j=1

[
1{tj<τ∞}

[∣∣�Vtj−1 − Ytj−1

∣∣2 + ∣∣�Vtj − �Vtj−
∣∣2]]

+ CP{τ∞ < +∞}(7.8)

≤ ChE

N∑
j=1

[
1{tj<τ∞}

∣∣(ū − u)
(
tj−1,Xtj−1

)∣∣2]
+ C

(
E2(space) + E2(quantiz)

) + CP{τ∞ < +∞}.
Plug (7.8) in (7.7) to derive the required control for D(1).

Turn to the estimation of D(2): apply again Lemma 6.6 to control �Ej(1),
for a given j ∈ {1, . . . ,N}, and treat the “Lipschitz” differences as done to esti-
mate D(1). �

PROOF OF LEMMA 7.5. Write first

h

N∑
j=1

E
[
1{tj−1<τ∞}

∣∣v̄(
tj−1,Xtj−1

) − v
(
tj−1,Xtj−1

)∣∣2]

≤ Ch

N∑
j=1

{
E

[
1{tj−1<τ∞}

∣∣∣∣v̄(
tj−1,Xtj−1

) − 1

h
E

[∫ tj

tj−1

�Zs ds
∣∣∣Ftj−1

]∣∣∣∣2]

+ E

[
1{tj−1<τ∞}

∣∣∣∣1

h
E

[∫ tj

tj−1

[�Zs − Ŵs]ds
∣∣∣Ftj−1

]∣∣∣∣2]

+ E

[
1{tj−1<τ∞}

∣∣∣∣1

h
E

[∫ tj

tj−1

[
Ŵs − v

(
tj−1,Xtj−1

)]
ds

∣∣Ftj−1

]∣∣∣∣2]}
≡ A(1) + A(2) + A(3).



172 F. DELARUE AND S. MENOZZI

From Lemma 6.3 (distance between Z and �Z ), we then derive A(1) ≤
CE2(quantiz). For the term A(2), the Cauchy–Schwarz inequality yields A(2) ≤
CD(3). Concerning A(3), we get

A(3) ≤ C

N∑
j=1

E

[
1{tj−1<τ∞}

×
∫ tj

tj−1

∣∣∇xu(s,Xs)σ
(
Xtj−1, ū(tj ,Xtj−1)

)
− ∇xu

(
tj−1,Xtj−1

)
σ

(
Xtj−1, u

(
tj−1,Xtj−1

))∣∣2 ds

]
.

Following the techniques employed in the previous proof, relying on the smooth-
ness of the true solution (see Theorem 2.1) on the boundedness of the approximate
solution, see Proposition 6.1, and on intermediate controls of the process X, see
Lemma 6.5, we get

A(3) ≤ Ch

[
1 +

N∑
j=1

E
[
1{tj−1<τ∞}

∣∣ū(
tj ,Xtj−1

) − u
(
tj ,Xtj−1

)∣∣2]]
.

The above estimates of A(1),A(2),A(3) complete the proof. �

7.3. Proof of Proposition 7.2 (difference of the gradients).

Strategy. In Proposition 7.2, we aim to control the quantity |(v̂ − v)(tk, Xtk )|
for tk < τ∞, with v̂(tk,Xtk ) = E[v̄(tk+1,�k+1(Xtk + T 0(tk,Xtk )))|Ftk ] (see Al-
gorithm 3.1). We first write v(tk,Xtk ) in a similar way to study the difference
(v̂ − v)(tk,Xtk ). From Theorem 2.1 (regularity of u) and from the proof of
Lemma 6.4 (with T 0 instead of T ), we claim∣∣E[

v
(
tk+1,�k+1

(
Xtk + T 0(

tk,Xtk

)))∣∣Ftk

] − v
(
tk,Xtk

)∣∣ ≤ C[h1/2 + δ].
Hence,∣∣(v̂ − v)

(
tk,Xtk

)∣∣
(7.9)

≤ CE
[∣∣(v̄ − v)

(
tk+1,�k+1

(
Xtk + T 0(

tk,Xtk

)))∣∣|Ftk

] + C(h1/2 + δ).

Proposition 7.2 directly follows from (7.9) and the next theorem:

THEOREM 7.6. There exists a constant C7.6 such that on {tk < τ∞}
E

[∣∣(v̄ − v)
(
tk+1,�k+1

(
Xtk + T 0(

tk,Xtk

)))∣∣|Ftk

]
≤ C7.6E(gradient,p) + C7.6E

[∣∣(v̄ − v)
(
tk+1,Xtk+1

)∣∣2|Ftk

]1/2
.
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The main difficulty to prove Theorem 7.6 lies in the lack of regularity of v̄. To
overcome this point, note first that

E
[∣∣(v̄ − v)

(
tk+1,�k+1

(
Xtk + T 0(

tk,Xtk

)))∣∣|Ftk

]
(7.10)

and

E
[∣∣(v̄ − v)

(
tk+1,�k+1

(
Xtk + T

(
tk,Xtk

)))∣∣2|Ftk

]1/2(7.11)

write as expectations of a given function with respect to two different kernels.
We then aim to compare these underlying kernels. Recall that for a given x ∈ Ck ,
both T 0(tk, x) and T (tk, x) are, up to a quantization procedure, Gaussian random
variables with same covariance matrices but different means. The strategy then
consists in applying a Gaussian change of variable to pass from the first kernel to
the second one.

Step one: Proof of Theorem 7.6, exhibition of underlying kernels. We first
write (7.10) with respect to the underlying kernel T 0. Note in this frame, with the
notation of Section 3.4, that, for every x ∈ R

d , �k+1(x) = �k+1 ◦ �∞(x) since
�∞(x) ∈ �k ⇔ x ∈ �k . Thus, using the invariance by translation of C∞ (see the
proof of Lemma 6.4), (7.10) writes

E
[∣∣(v̄ − v)

(
tk+1,�k+1

(
Xtk + T 0(

tk,Xtk

)))∣∣|Ftk

]
= ∑

y∈C∞

[∣∣(v̄ − v)
(
tk+1,�k+1

(
Xtk + y

))∣∣(7.12)

× P
{
�∞

(
T 0(

tk,Xtk

)) = y|Ftk

}]
.

In the same way, the square of (7.11) writes

E
[∣∣(v̄ − v)

(
tk+1,�k+1

(
Xtk + T

(
tk,Xtk

)))∣∣2|Ftk

]
= ∑

y∈C∞

[∣∣(v̄ − v)
(
tk+1,�k+1

(
Xtk + y

))∣∣2(7.13)

× P
{
�∞

(
T

(
tk,Xtk

)) = y|Ftk

}]
.

Equations (7.12) and (7.13) provide relevant writings to estimate (7.10) and (7.11).
Indeed, it is sufficient to bound for a given x ∈ Ck and a given y ∈ C∞ the prob-
ability P{�∞(T 0(tk, x)) = y} by (up to a multiplicative constant) the probability
P{�∞(T (tk, x)) = y}. We set

�(tk+1, x) = σ
(
x, ū(tk+1, x)

)
, µ(tk+1, x) = b

(
x, ū(tk+1, x), v̂(tk, x)

)
.

Put ‖�(resp. µ)‖∞ = supk∈{0,...,N}[supx∈Ck
|�(resp. µ)(tk, x)|]. From Assump-

tion (A) and Propositions 6.1 and 6.2 (boundedness of ū and h1/2v̂), ‖�‖∞ +
h1/2‖µ‖∞ ≤ C.
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Step two: Proof of Theorem 7.6, comparison of kernels. The proof of the fol-
lowing proposition relies on a standard Gaussian change of variable and rather
tedious computations (the detailed proof is given in Section 7.3 in the electronic
version [9]):

PROPOSITION 7.7. There exists a constant C7.7 > 0 such that, for every
y ∈ C∞,

P
{
�∞

(
T 0(tk, x)

) = y
} ≤ αk(y) + β(y)

(
ηk + P

1/2{
�∞

(
T (tk, x)

) = y
})

,

where

αk(y) ≡ P{|�(tk+1, x)g(�Bk) − y|∞ ≤ δ/2,

|g(�Bk) − �Bk|∞ > δ/(2‖�‖∞)},
β(y) ≡ C7.7δ

d/2h−d/4 exp[−C−1
7.7h−1|y|2],

ηk ≡ P
1/2{|g(�Bk) − �Bk|∞ > δ/(4‖�‖∞)}.

In the above expression, for all z ∈ R
d , |z|∞ ≡ maxi∈{1,...,d} |zi |.

From Proposition 6.2, h1/2v̄ is bounded by a known constant. Denote by
RHS(Xtk , 7.13) the r.h.s. in (7.13) and by �(h,C) the sum

∑
y∈C∞ exp[−C−1 ×

h−1|y|2]. Owing to Proposition 7.7 and (7.12), we then get∑
y∈C∞

[∣∣(v̄ − v)
(
tk+1,�k+1(x + y)

)∣∣P{
�∞

(
T 0(tk, x)

) = y
}]

≤ Ch−1/2
P{|g(�Bk) − �Bk|∞ > δ/(2‖�‖∞)}

+ Cδd/2h−d/4−1/2
P

1/2{|g(�Bk) − �Bk|∞ > δ/(4‖�‖∞)}
(7.14)

× �(h,C)

+ C[δdh−d/2�(h,C)]1/2[RHS(x,7.13)]1/2

≡ T (1) + T (2) + T (3).

Due to (3.8) and to the Bienaymé–Chebyshev inequality, T (1) ≤ Chp/2−1/2

δ−pM−p/d . Thanks again to (3.8) (applied to the exponent 2p), T (2) ≤
Chp/2−d/4−1/2δ−p+d/2M−p/d�(h,C) = CE(gradient,p)(δh−1/2)d�(h,C).

Note now from (7.13) that

T (3) = C[δdh−d/2�(h,C/2)]1/2
E

[∣∣(v̄ − v)
(
tk+1,�k+1

(
x + T (tk, x)

))∣∣2]1/2
.

A standard comparison with a Gaussian integral yields (δh−1/2)d�(h,C) ≤ C′′.
Plugging the different estimates of T (1), T (2) and T (3) in (7.14), we complete
the proof of Theorem 7.6 [recall again that h−1δ2 is small to dominate T (1) by
E(gradient,p)].
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8. Proof. Third step: Gronwall’s lemma. Here is the final step of the proof
of Theorems 4.1, 4.2 and 4.3.

8.1. Proof of Theorem 4.1, infinite grids. We first explain how to derive The-
orem 4.1 from Theorem 7.3 when ρ = +∞, that is, when τ∞ = +∞ a.s. In this
framework, the term E2(trunc) in E2(global) reduces to 0. The general case is de-
tailed in the next subsection. For infinite grids, for η and h small enough, we obtain
from Theorem 7.3 and from the equality v̄(T , x) = v(T , x), for all x ∈ CN ,

|(ū − u)(0, x0)|2 ≤ C

[
E2(global) + h

N∑
j=0

sup
x∈Cj

|(ū − u)(tj , x)|2
]
.(8.1)

As usual in BSDE theory, the estimate (8.1) holds actually for any starting point
(tk, x), 0 ≤ k ≤ N , x ∈ Ck . Hence, there is no difficulty to apply Gronwall’s lemma
[at least for h small, as in (6.7)] and to complete the proof of Theorem 4.1 when
ρ = +∞.

8.2. Proof of Theorem 4.1, general case. We now turn to the case of truncated
grids. Generally speaking, most of the approach given in the former subsection
still applies in the general framework. It is, however, impossible to mimic word
for word the arguments given above and we need to refine the previous Gronwall
argument.

First step. We first aim to get rid of the difference v̄ − v appearing in the new
r.h.s. in Theorem 7.3. Due to the functions (1{tj−1<τ∞})j=1,...,N , the machinery
used in the previous subsection does not apply. To overcome this difficulty, we
write {tj−1 < τ∞} = {tj < τ∞} ∪ {tj = τ∞}. Indeed, since v̄(T , x) = v(T , x) for
x ∈ CN and h|v̄−v|2 is bounded (see Theorem 2.1 and Proposition 6.2), we obtain
for η and h small enough

|(ū − u)(0, x0)|2 + C−1h

N∑
j=1

E
[∣∣(v̄ − v)

(
tj−1,Xtj−1

)∣∣21{tj−1<τ∞}
]

≤ C

[
P{τ∞ < +∞} + E2(global)

(8.2)

+ h

N∑
j=1

E
[∣∣(ū − u)

(
tj ,Xtj−1

)∣∣21{tj−1<τ∞}
]

+ h

N∑
j=2

E
[∣∣(ū − u)

(
tj−1,Xtj−1

)∣∣21{tj−1<τ∞}
]]

.

Even though we employed E2(global) for notational convenience, we mention
carefully that the origin of the term E2(trunc) has not been explained yet. It is
in the following lines.
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Second step. Note that (8.2) still holds if X starts at a given time ti ,
i ∈ {0, . . . ,N}, from an Fti -measurable and square integrable random variable ξ

with values in Ci . In such a case, (8.2) still holds with (0, x0) replaced by (ti , ξ),
Xtj by X

ti,ξ
tj

and τ∞ by τ
ti ,ξ∞ [the superscript (ti, ξ) denotes the initial condition

of the process X]. Due to the shift between tj−1 and tj in the r.h.s., there is no
possible choice of ξ to recover the same form of terms in the left and right-hand
sides. In particular, Gronwall’s lemma does not apply at this stage of the proof.
Note, in fact, that the same problem occurred in Section 8.1: this was the reason
why the supremum was taken in the r.h.s. of (8.1).

In the current frame, taking the supremum over x ∈ Ci in (8.2) induces a new
term, namely, supx∈Ci

P{τ ti ,x∞ < +∞}. Unfortunately, for x close to the boundary
of the grid Ci , the underlying probability is far from being small. In particular,
there is no hope to prove Theorem 4.1 in the case ρ < +∞ with the arguments
used in Section 8.1.

Strategy. Our strategy then consists in applying (8.2) to a suitable choice of ξ .
We then have to estimate the probability P{τ ti ,ξ∞ < +∞} for a random initial condi-
tion (ti, ξ), ξ ∈ L2(�,Fti ,P) with values in Ci . To this end, we need to control ef-
ficiently the tails of the variables (X

ti,ξ

tj∧τ
ti ,ξ∞

)i≤j≤N . Since the drift b is not bounded,

a natural approach consists in estimating the L2 norms of these variables.

LEMMA 8.1 (L2 control of the process X). For all k ∈ {0, . . . ,N}, put τk =
τ∞ ∧ tk . Then, there exists a constant C8.1 such that, for all i ∈ {0, . . . ,N} and
ξ ∈ L2(�,Fti ,P) with values in Ci ,

∀ k ∈ {i, . . . ,N}, E
[∣∣Xti,ξ

τk

∣∣2] ≤ C8.1[E|ξ |2+1+E2(space)+E2(gradient,p)].

PROOF (SKETCH). We remove the superscript (ti, ξ) in the writing of X.
Then

Xτk
= ξ +

k−1∑
j=i

[
T

(
tj ,Xtj

)
1{tj<τ∞}

]

+
k−1∑
j=i

[(
�j+1

(
Xtj + T

(
tj ,Xtj

)) − Xtj − T
(
tj ,Xtj

))
1{tj+1<τ∞}

]
(8.3)

+
k−1∑
j=i

[(
�j+1

(
Xtj + T

(
tj ,Xtj

)) − Xtj − T
(
tj ,Xtj

))
1{tj+1=τ∞}

]
≡ ξ + S(1) + S(2) + S(3).
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The term S(2) corresponds to a standard projection error. Thus, E[|S(2)|2] ≤
δ2(k − i)2 ≤ CE2(space). For S(3), Lemma 6.4 and Young’s inequality yield

E[|S(3)|2] ≤ Cδ2 + C

k−1∑
j=i

E
[∣∣T (

tj ,Xtj

)∣∣21{tj+1=τ∞}
]

(8.4)

≤ Ch2E2(space) + CP{τ∞ < +∞} + C

k−1∑
j=i

E
[∣∣T (

tj ,Xtj

)∣∣4]
.

From Propositions 6.1 and 6.2, we can prove that E[|T (tj ,Xtj )|4] ≤ Ch2. We
finally deduce (h being small) E[|S(3)|2] ≤ C[P{τ∞ < +∞} + E2(time) +
E2(space)].

Deal now with S(1). Thanks to Propositions 6.1 and 6.2, we estimate the drift,
and thanks to the independence of the Brownian increments, we bound the martin-
gale part. From Assumption (A), there exists a constant C such that

E[|S(1)|2] ≤ Ch(k − i)

[
1 + h

k−1∑
j=i

E
[∣∣v̂(

tj ,Xtj

)∣∣21{tj<τ∞}
]]

.

Apply now Propositions 7.2 and 6.2, and derive that E[|S(1)|2] ≤ C[1 +
E2(gradient,p)]. �

Estimate of the probability of hitting the boundary. Thanks to the previous
lemma, we are now able to estimate the probability P{τ ti ,ξ∞ < +∞}, with (i, ξ) as
in Lemma 8.1. Indeed, {τ ti ,ξ∞ < +∞} ⊂ {|Xti,ξ

τN |∞ + δ ≥ R + ρ}. Thanks to the
Bienaymé–Chebyshev inequality and to Lemma 8.1 (with k = N ), we get

P{τ ti ,ξ∞ < +∞}
(8.5)

≤ C[(R + ρ)−2
E[|ξ |2] + E2(space) + E2(trunc) + E2(gradient,p)].

Plug now (8.5) into (8.2) to obtain

E[|(ū − u)(ti, ξ)|2]

≤ C

[
(R + ρ)−2

E[|ξ |2] + E2(global)

(8.6)

+ h

N∑
j=i+1

E
[∣∣(ū − u)

(
tj ,X

ti,ξ
tj−1

)∣∣21{tj−1<τ
ti ,ξ∞ }

]

+ h

N∑
j=i+2

E
[∣∣(ū − u)

(
tj−1,X

ti,ξ
tj−1

)∣∣21{tj−1<τ
ti ,ξ∞ }

]]
.
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A refined Gronwall argument. The key idea is to find by induction a sequence
of constants ci(1), ci(2), i ∈ {0, . . . ,N}, such that, for any ξ ∈ L2(�,Fti ,P) with
values in Ci ,

E[|(ū − u)(ti, ξ)|2]
(8.7)

≤ ci(1)E2(global) + ci(2)(R + ρ)−2
E[|ξ |2].

Thanks to Lemma 8.1, we are able to build two sequences ci(1) and ci(2),
i ∈ {0, . . . ,N}, satisfying (8.7) and uniformly bounded by a constant C. Choosing
i = 0 and ξ = x0 ∈ C0, we then complete the proof of Theorem 4.1. The explicit
construction of ci(1) and ci(2), i ∈ {0, . . . ,N}, is given in the electronic version
[see (8.12) in there].

8.3. Proofs of Theorems 4.2 and 4.3. We turn to the proof of Theorems 4.2
and 4.3. The initial condition of the process X is given by X0 = x0, x0 ∈ C0, as
in (3.12).

PROOF OF THEOREM 4.2. From inequalities (8.2) (deriving from the stability
theorem), (8.5) (probability of hitting the boundary of the grids) and (8.7) [estimate
of ū − u, recall that cj (1), cj (2), j ∈ {0, . . . ,N}, are uniformly bounded], Theo-
rem 4.2 holds with v(ti,Xti )1{ti<τ∞} instead of v(ti,Xti ). Since v is bounded (see
Theorem 2.1) and since the probability of hitting the boundaries of the grids is
controlled [see again (8.5)], we easily complete the proof. �

PROOF OF THEOREM 4.3. It just remains to study the convergence of (Xtk ,
Ytk ,Ztk )0≤tk≤τ∞∧T toward the solution (U,V,W) of (E). Thanks to the Lipschitz
properties of b and σ , we first deduce by standard computations (see, e.g., the
proof of Lemma 8.1) the analogue of Proposition 7.1.

PROPOSITION 8.2. There exists a constant C8.2 s.t., for k ∈ {1, . . . ,N},
E

∣∣Xτk
− Uτk

∣∣2
≤ C8.2

[
P{τ∞ < +∞} + E2(global)

(8.8)

+ h

k−1∑
j=0

[
E

[
1{tj<τ∞}

(∣∣Xtj − Utj

∣∣2 + ∣∣(ū − u)
(
tj+1,Xtj

)∣∣2
+ ∣∣(v̂ − v)

(
tj ,Xtj

)∣∣2)]]
.

Recall now from Proposition 7.2 (estimate of v̂ − v), Theorem 4.2 (L2 estimate
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of v̄ − v) and (8.5) (probability of hitting the boundary of the grids):

h

k−1∑
j=0

E
[∣∣(v̂ − v)

(
tj ,Xtj

)∣∣21{tj<τ∞}
]

≤ C

[
E2(time) + E2(space) + E2(gradient,p)

(8.9)

+ h

k∑
j=1

E
[∣∣(v̄ − v)

(
tj ,Xtj

)∣∣2(
1{tj<τ∞} + 1{tj=τ∞}

)]]

≤ C[E2(global) + P{τ∞ < +∞}] ≤ CE2(global).

Apply now inequality (8.7) (estimate of ū − u) and (8.9) to (8.8) and deduce
from Gronwall’s lemma that supk∈{0,...,N} E|Xτk

− Uτk
|2 ≤ CE2(global). Finally,

according to Theorem 2.1, to Theorem 4.2 (L2 estimate of v̄ − v) and to (8.7), we
deduce the following intermediate estimate:

sup
k∈{0,...,N}

E
[∣∣Xτk

− Uτk

∣∣2 + ∣∣Yτk
− Vτk

∣∣2]
(8.10)

+ h

N−1∑
j=0

E
[∣∣Ztj − Wtj

∣∣21{tj<τ∞}
] ≤ CE2(global).

Applying Doob’s inequality, we derive the same bound but with the supremum
inside the expectation. It finally remains to prove the same result, but with
(Utk ,Vtk ,Wtk )0≤k≤N instead of (Uτk

,Vτk
,Wtk 1{tk<τ∞})0≤k≤N . Since the same ar-

guments apply for V and W , we just detail the case of U . Note indeed that, for
every k ∈ {0, . . . ,N},

sup
k∈{0,...,N}

∣∣Xτk
− Utk

∣∣2 ≤ C sup
k∈{0,...,N}

∣∣Xτk
− Uτk

∣∣2 + C sup
k∈{0,...,N}

∣∣Uτk
− Utk

∣∣2.
Thanks to the Burkholder, Davis and Gundy inequalities, it is readily seen that

E

[
sup

k∈{0,...,N}
∣∣Uτk

− Utk

∣∣2]
≤ CE

[
(tN − τ∞)1{τ∞<+∞}

] ≤ CT P{τ∞ < +∞}.

Referring to (8.5), we easily complete the proof of Theorem 4.3. �

9. Conclusion. As a conclusion, we first give in Section 9.1 further com-
ments on Theorem 4.1 and compare, in particular, the global error with the one
obtained by Douglas, Ma and Protter [10]. We then give some easy extensions in
Section 9.2. Finally, we detail in Section 9.3 the technical difficulties associated
with the natural algorithm (3.9)–(3.10).
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9.1. Comments and comparisons with other methods. We discuss in this sub-
section the total complexity and the rate of convergence of Algorithm 3.1.

Complexity of the algorithm. Note first that the order of the total complexity
of the algorithm is h−1 × M × (2δ−1(ρ + R))d .

Rate of convergence. Recall also that the global error of the algorithm is given
by Theorem 4.1. Comparing with the results in [10], this global error is worse
in our case. There are two reasons to explain this difference. The first one does
not depend on the algorithm, but is a consequence of our working assumptions.
Indeed, under suitable smoothness properties of the coefficients b,f,σ and of the
solution u, standard Itô developments in D(1) (see Lemma 7.4) would lead to
E2(time) = h2 as in [10].

At the opposite, the second reason for which the global error is worse, in our
case, depends on the specific structure of the algorithm. Indeed, our choice to avoid
linear interpolation procedures induces a rather large projection error E2(space).
To reach a term of order one with respect to h for E2(space), we then need to
take δ ≡ h3/2. This choice is far from being satisfactory and highly increases the
complexity when the dimension d increases. Intuitively, there is no specific reason
for such a relationship between δ and h: as explained in Section 4.1, δ has just to
be small in front of h to take into account the influence of the drift b at the local
level. For this reason, we aim to study in further investigations the convergence
analysis of the algorithm when using a suitable “smooth” interpolation operator
instead of a rough projection mapping. This point is discussed in a detailed way in
the next subsection.

Further comments on errors. To conclude this subsection, we investigate the
three last error terms, E(trunc), E(quantiz) and E(gradient,p).

The truncation error decays linearly when the grid size increases. This control
may seem rather poor to the reader. Recall indeed that E(trunc) appears, up to the
discretization procedure, as the probability that a diffusion process leaves a given
bounded set. In the case of elliptic diffusions with bounded coefficients, it is well
known that this probability decays exponentially fast as the size of the underly-
ing set increases. Recall in this frame from Theorem 2.1 that the coefficients of
the elliptic diffusion U are bounded. Note, however, that this rough argument fails
in the discretized setting since there is no a priori sharp estimate of the approxi-
mate gradient v̄ and thus of the associated approximate drift. This explains why
our strategy to estimate E(trunc) lies on the Bienaymé–Chebyshev inequality and,
thus, provides the current form given by Theorem 4.1. Similar techniques could
yield a polynomial decay for every q ≥ 1, the constant of the theorem being an
increasing function of q [see Lemma 8.1 and (8.5)].

Note finally that the errors associated to the quantization procedure,
E2(quantiz), and to the probabilistic approximation of the gradient, E2(gradient,
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p), are explicitly controlled in terms of M , h and δ. They emphasize the price to
pay to weaken the assumptions: we have to assume that the quantization grid is
rather small compared to the spatial discretization one. Obviously, this increases
the number of elementary operations of the algorithm and, thus, its total com-
plexity. However, this does not affect so much the discretization procedure of the
Gaussian law itself since quantization grids can be computed once for all apart
from the implementation procedure of the algorithm.

9.2. Extensions and further investigations. We now discuss some possible ex-
tensions of our work.

Interpolation procedure. As stated later in this subsection, we first investigate
the assets and liabilities of a smooth interpolation procedure. One of the main
advantages of the spatial discretization proposed in Section 3.4, and then used in
Algorithm 3.1, lies in its simplicity of implementation. However, from a purely
mathematical point of view, this procedure may be rather awkward since it ignores
more or less the deep smoothness of the true solution u.

Note in this framework that the function �∞ may be seen as an operator acting
on functions from R

d into R. For such a function, the operator provides a rough
interpolation of order 0 depending on the values of the function on the spatial
mesh C∞. As mentioned above, this interpolation procedure does not preserve
the smoothness properties of the underlying function: in any cases, except if the
function is constant, the interpolation procedure induces jumps of size of order δ.
As a consequence, the distance between the function and the interpolated one is
also of order δ.

A relevant strategy would consist in replacing the projection �∞ by a smoother
interpolation operator. In our framework, an interpolation operator is said to be
smooth if the distance between a given function � and the interpolated one de-
creases with the regularity order of �. For example, in dimension 1, the linear
interpolation operator,

� �→ (
x �→ δ−1(δ+δ�δ−1x�−x)�(δ�δ−1x�)+δ−1(x −δ�δ−1x�)�(δ�δ−1x�+δ)

)
,

maps a C2(R,R) function into a piecewise smooth function and the distance be-
tween them is of order δ2.

Algorithm 3.1 can be written with respect to this new choice, but we also be-
lieve that the proof would be more difficult to detail. Moreover, smooth interpo-
lation procedures in higher dimension slow down the running of the underlying
algorithm.

Weakening assumption. Note to conclude this subsection that some assump-
tions could be weakened. First, Theorem 2.1 still holds if b and f are just Hölder
in x: in such a case, usual estimates of the gradient of u hold and Schauder’s theory
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still applies. In particular, the reader can verify that Theorems 4.1 and 4.2 are still
valid in this case (but Theorem 4.3 given in Section 4.3 is not).

Moreover, Algorithm 3.1 still converges if b,f and σ depend on t in a Hölder
way.

Finally, the following extension is conceivable. For H ∈ C1+α , α ∈]0,1[, the
partial derivatives of order two of u have an integrable singularity in the neighbor-
hood of T . In this frame, it would be interesting to adapt the Gronwall arguments
given in Section 8.

9.3. Justification of Algorithm 3.1. We finally explain why we are not able to
show the convergence of Algorithm (3.9)–(3.10).

Convergence of algorithm (3.9)–(3.10). Recall that the main difference be-
tween the algorithm (3.9)–(3.10) and Algorithm 3.1 lies in the definition of the
forward transitions. Indeed, in the algorithm (3.9)–(3.10),

T (tk, x) ≡ b
(
x, ū(tk+1, x), v̄(tk+1, x)

)
h + σ

(
x, ū(tk+1, x)

)
g(�Bk),

X0 ≡ x0, ∀ k ∈ {0, . . . ,N − 1}, Xtk+1 = �k+1
(
Xtk + T

(
tk,Xtk

))
.

Unfortunately, in this case, the well-known BSDE machinery fails under Assump-
tion (A). At first sight, this could seem rather amazing. Indeed, recall that very
strong a priori estimates of the solution u and of its partial derivatives hold in our
framework. In particular, we could expect the discretization procedure of u and of
its gradient to converge under such smoothness properties.

The main difficulty encountered to establish the convergence of the algorithm
(3.9)–(3.10) appears in Section 7. The lack of a priori controls of the regularity of
ū and v̄ makes the stability strategy fruitless. Note, indeed, that inequality (7.1)
becomes in the frame of the indicated algorithm

|(ū − u)(0, x0)|2 + C−1
7.1h

N∑
j=1

E
[∣∣(v̄ − v)

(
tj−1,Xtj−1

)∣∣21{tj−1<τ∞}
]

≤ C7.1

[
P{τ∞ < +∞} + E2(time) + E2(space) + E2(quantiz)

+ η−1h

N∑
j=1

E
[∣∣(ū − u)

(
tj ,Xtj−1

)∣∣21{tj−1<τ∞}
]

(9.1)

+ η−1h

N∑
j=1

E
[∣∣(ū − u)

(
tj−1,Xtj−1

)∣∣21{tj−1<τ∞}
]

+ (η + h)h

N∑
j=1

E
[∣∣(v̄ − v)

(
tj ,Xtj−1

)∣∣21{tj−1<τ∞}
]]

.
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Inequalities (7.1) and (9.1) just differ in the last term: v̂(tj−1,Xtj−1) becomes
v̄(tj ,Xtj−1). Note that to be complete a similar shift occurs in v but, due to Theo-
rem 2.1, it can be removed without any difficulties. To apply the strategy used in
Section 7, and, in particular, to derive an equivalent of Theorem 7.3 from (9.1), we
then need to investigate the regularity in space of v̄. According to the definition
of v̄, a first step then consists in studying the regularity in space of ū.

Lipschitz control of ū. Note that the natural strategy to control the oscilla-
tions of ū would consist in applying the usual FBSDE machinery to the triples
(Xtk,x, Y tk,x,Ztk,x) and (Xtk,y, Y tk,y,Ztk,y) for k ∈ {0, . . . ,N − 1} and x, y ∈ Ck .
Of course, superscripts (tk, x) and (tk, y) denote the initial conditions of the
Markov process X.

Nevertheless, we are not able to apply the strategies used in [6, 7] to derive from
the forward–backward writing local and global estimates of the discrete gradient
of ū. There are two reasons to explain this failure.

First, the rough projection mapping chosen induces an irreducible error greater
than δ when estimating the difference between ū(tk, x) and ū(tk, y) in function
of the parameters deriving from Assumption (A). The strategy to overcome this
difficulty is well known: the projection mapping has to be replaced by a smoother
interpolation operator.

Second, any probabilistic strategy to estimate the Lipschitz constant of ū in x

such as the one exposed in [6] leads one way or another to the same difficulty as
the one encountered to apply the stability procedure to the algorithm (3.9)–(3.10).
More precisely, studying the difference between the triples (Xtk,x, Y tk,x,Ztk,x) and
(Xtk,y, Y tk,y,Ztk,y), for k ∈ {0, . . . ,N − 1} and x, y ∈ Ck , leads to investigate the
regularity of v̄. In short, one needs to estimate first the regularity of v̄ to derive the
one of ū. Intuitively, it is well understood that this is hopeless.
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