November 2024 Higher order fluctuations of extremal eigenvalues of sparse random matrices
Jaehun Lee
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 60(4): 2694-2735 (November 2024). DOI: 10.1214/23-AIHP1398

Abstract

We consider extremal eigenvalues of sparse random matrices, a class of random matrices including the adjacency matrices of Erdős–Rényi graphs G(N,p). Recently, it was shown that the leading order fluctuations of extremal eigenvalues are given by a single random variable associated with the total degree of the graph (Ann. Probab. 48 (2020) 916–962; Probab. Theory Related Fields 180 (2021) 985–1056). We construct a sequence of random correction terms to capture higher (sub-leading) order fluctuations of extremal eigenvalues in the regime Nϵ<pN<N1/3ϵ. Using these random correction terms, we prove a local law up to a shifted edge and recover the rigidity of extremal eigenvalues under some corrections for pN>Nϵ.

Nous considérons les valeurs propres extrêmes des matrices aléatoires éparses, une classe de matrices aléatoires comprenant les matrices d’adjacence des graphes d’Erdős–Rényi G(N,p). Récemment, il a été démontré que les fluctuations d’ordre principal des valeurs propres extrêmes sont données par une seule variable aléatoire associée au degré total du graphe (Ann. Probab. 48 (2020) 916–962 ; Probab. Theory Related Fields 180 (2021) 985–1056). Nous construisons une suite de termes de correction aléatoires pour capter les fluctuations d’ordre supérieur (secondaire) des valeurs propres extrêmes dans le régime Nϵ<pN<N1/3ϵ. En utilisant ces termes de correction aléatoires, nous prouvons une loi locale jusqu’à un bord décalé et retrouvons la rigidité des valeurs propres extrêmes sous certaines corrections pour pN>Nϵ.

Funding Statement

This work was supported in part by the National Research Foundation of Korea (NRF-2017R1A2B2001952, NRF-2019R1A5A1028324) and the Hong Kong Research Grants Council (GRF-16301519, GRF-16301520).

Acknowledgements

This research was motivated by discussions with Charles Bordenave. The author thanks Yukun He, Paul Jung and Ji Oon Lee for their helpful comments and suggestions. The author is also grateful to the referees for their careful reading of the manuscript and many helpful suggestions.

The first draft of this paper was done while the author was at KAIST, South Korea.

Citation

Download Citation

Jaehun Lee. "Higher order fluctuations of extremal eigenvalues of sparse random matrices." Ann. Inst. H. Poincaré Probab. Statist. 60 (4) 2694 - 2735, November 2024. https://doi.org/10.1214/23-AIHP1398

Information

Received: 23 November 2021; Revised: 20 January 2023; Accepted: 18 April 2023; Published: November 2024
First available in Project Euclid: 19 November 2024

MathSciNet: MR4828855
Digital Object Identifier: 10.1214/23-AIHP1398

Subjects:
Primary: 60B20

Keywords: Edge rigidity , Extremal eigenvalues , Random correction terms , sparse random matrices

Rights: Copyright © 2024 Association des Publications de l’Institut Henri Poincaré

Vol.60 • No. 4 • November 2024
Back to Top