Abstract
We correct the proof of Theorem 3 in the paper (G. Dhariwal, F. Huber, A. Jüngel, C. Kuehn, and A. Neamţu, Ann. Inst. Henri Poincaré Probab. Stat. 57 (2021) 577–602). The correction is based on a new regularization of quasilinear stochastic PDEs, which was suggested in (M. Braukhoff, F. Huber, and A. Jüngel, Stoch. Partial Differ. Eqs.: Anal. Comput. 43 (2023) 3839–3861. https://doi.org/10.1007/s40072-023-00289-7).
Nous corrigeons la preuve du théorème 3 dans l’article (G. Dhariwal, F. Huber, A. Jüngel, C. Kuehn, and A. Neamţu, Ann. Inst. Henri Poincaré Probab. Stat. 57 (2021) 577–602). La correction est basée sur une nouvelle régularisation des EDP stochastiques quasi-linéaires, qui a été suggérée dans (M. Braukhoff, F. Huber, et A. Jüngel, Stoch. Partial Differ. Eqs.: Anal. Comput. 43 (2023) 3839–3861. https://doi.org/10.1007/s40072-023-00289-7).
Funding Statement
The first author has been supported by the FWF, grant Y1235 of the START program. The authors acknowledge partial support from the Austrian Science Fund (FWF), grants P33010 and F65. This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, ERC Advanced Grant no. 101018153.
Acknowledgments
The authors thank Benjamin Gess for pointing out an error in the existence proof of [4].
Citation
Florian Huber. Ansgar Jüngel. "Corrigendum: Global martingale solutions for quasilinear SPDEs via the boundedness-by-entropy method." Ann. Inst. H. Poincaré Probab. Statist. 60 (4) 3009 - 3012, November 2024. https://doi.org/10.1214/23-AIHP1422
Information