February 2024 Maxima of a random model of the Riemann zeta function over intervals of varying length
Louis-Pierre Arguin, Guillaume Dubach, Lisa Hartung
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 60(1): 588-611 (February 2024). DOI: 10.1214/22-AIHP1323

Abstract

We consider a model of the Riemann zeta function on the critical axis and study its maximum over intervals of length (logT)θ, where θ is either fixed or tends to zero at a suitable rate. It is shown that the deterministic level of the maximum interpolates smoothly between the ones of log-correlated variables and of i.i.d. random variables, exhibiting a smooth transition ‘from 34 to 14’ in the second order. This provides a natural context where extreme value statistics of log-correlated variables with time-dependent variance and rate occur. A key ingredient of the proof is a precise upper tail tightness estimate for the maximum of the model on intervals of size one, that includes a Gaussian correction. This correction is expected to be present for the Riemann zeta function and pertains to the question of the correct order of the maximum of the zeta function in large intervals.

Nous considérons un modèle aléatoire des valeurs de la fonction zêta de Riemann sur sa droite critique pour en étudier le maximum sur des intervalles de longueur (logT)θ, où θ est soit fixé, soit tend vers zéro à une vitesse spécifiquement calibrée. Nous établissons que la valeur déterministe attendue de ce maximum passe continûment de celle obtenue pour des variables log-corrélées à celle de variables i.i.d., effectuant une transition ‘de 3/4 à 1/4’ au second ordre. Il s’agit d’un contexte naturel pour l’étude des valeurs extrêmes de variables log-corrélées avec un taux et une variance variables en temps. Un ingrédient-clef de notre preuve est une estimation fine de la queue de distribution du maximum sur des intervalles de longueur unité, qui inclut une correction de type gaussien. Un telle correction est également escomptée dans les statistiques du maximum de la véritable fonction zêta sur des intervalles aléatoires de taille unité, ce qui est lié à la question analogue du maximum de la fonction zêta sur des intervalles plus longs de la droite critique.

Funding Statement

The research of L.-P. A. is supported in part by the granst NSF CAREER DMS-1653602 and NSF DMS-2153803.
G. D. gratefully acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411.
The research of L. H. is supported in part by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through Project-ID 233630050-TRR 146, Project-ID 443891315 within SPP 2265 and Project-ID 446173099.

Acknowledgements

The authors would like to thank the referee for the numerous insightful comments that led to a substantial improvement of the first version of the paper.

Citation

Download Citation

Louis-Pierre Arguin. Guillaume Dubach. Lisa Hartung. "Maxima of a random model of the Riemann zeta function over intervals of varying length." Ann. Inst. H. Poincaré Probab. Statist. 60 (1) 588 - 611, February 2024. https://doi.org/10.1214/22-AIHP1323

Information

Received: 30 April 2021; Revised: 7 September 2022; Accepted: 23 September 2022; Published: February 2024
First available in Project Euclid: 3 March 2024

MathSciNet: MR4718391
Digital Object Identifier: 10.1214/22-AIHP1323

Subjects:
Primary: 11M06 , 60G70
Secondary: 60J80

Keywords: Branching random walk , Extreme value theory , Riemann zeta function

Rights: Copyright © 2024 Association des Publications de l’Institut Henri Poincaré

Vol.60 • No. 1 • February 2024
Back to Top