Abstract
In this paper we introduce the notion of Kudō-continuity for real-valued functions on the space of all complete sub-σ-algebras of a standard probability space. This is an a priori strengthening of continuity with respect to strong convergence. We show that conditional entropies are Kudō-continuous, and discuss an application to the study of Furstenberg entropy spectra of SAT*-spaces.
Dans cet article, nous introduisons la notion de Kud-continuité pour les fonctions à valeurs réelles sur l’espace de toutes les sous-σ-algèbres complètes d’un espace de probabilité standard. A priori il s’agit d’un renforcement de la continuité par rapport à la convergence forte. Nous montrons que les entropies conditionnelles sont Kudō-continues, et discutons une application à l’étude des spectres d’entropie de Furstenberg des espaces SAT*.
Funding Statement
MB was supported by GoCas Young Excellence grant 11423310 and Swedish VR-grant 11253320, YH was partially supported by ISF grant 1175/18, and HO was partially supported by FWF: P31889-N35
Citation
Michael Björklund. Yair Hartman. Hanna Oppelmayer. "Kudō-continuity of conditional entropies." Ann. Inst. H. Poincaré Probab. Statist. 59 (3) 1677 - 1687, August 2023. https://doi.org/10.1214/22-AIHP1313
Information