August 2023 Free energy upper bound for mean-field vector spin glasses
Jean-Christophe Mourrat
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 59(3): 1143-1182 (August 2023). DOI: 10.1214/22-AIHP1292

Abstract

We consider vector spin glasses whose energy function is a Gaussian random field with covariance given in terms of the matrix of scalar products. For essentially any model in this class, we give an upper bound for the limit free energy, which is expected to be sharp. The bound is expressed in terms of an infinite-dimensional Hamilton–Jacobi equation.

Nous considérons des verres de spins vectoriels dont la fonction d’énergie est un champ aléatoire gaussien avec une covariance s’exprimant en termes de la matrice des produits scalaires. Pour essentiellement tous les modèles de cette classe, nous donnons une limite supérieure pour l’énergie libre limite, qui devrait être exacte. La limite est exprimée en termes d’une équation de Hamilton–Jacobi de dimension infinie.

Acknowledgements

I was partially supported by the NSF grant DMS-1954357.

Citation

Download Citation

Jean-Christophe Mourrat. "Free energy upper bound for mean-field vector spin glasses." Ann. Inst. H. Poincaré Probab. Statist. 59 (3) 1143 - 1182, August 2023. https://doi.org/10.1214/22-AIHP1292

Information

Received: 24 October 2020; Revised: 3 December 2021; Accepted: 9 June 2022; Published: August 2023
First available in Project Euclid: 31 August 2023

MathSciNet: MR4635706
Digital Object Identifier: 10.1214/22-AIHP1292

Subjects:
Primary: 82B44 , 82D30

Keywords: Hamilton–Jacobi equation , Parisi formula , Spin glass

Rights: Copyright © 2023 Association des Publications de l’Institut Henri Poincaré

Vol.59 • No. 3 • August 2023
Back to Top