May 2023 Recurrence of horizontal–vertical walks
Swee Hong Chan
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 59(2): 578-605 (May 2023). DOI: 10.1214/22-AIHP1277

Abstract

Consider a nearest neighbor random walk on the two-dimensional integer lattice, where each vertex is initially labeled either ‘H’ or ‘V’, uniformly and independently. At each discrete time step, the walker resamples the label at its current location (changing ‘H’ to ‘V’ and ‘V’ to ‘H’ with probability q). Then, it takes a mean zero horizontal step if the new label is ‘H’, and a mean zero vertical step if the new label is ‘V’. This model is a randomized version of the deterministic rotor walk, for which its recurrence (i.e., visiting every vertex infinitely often with probability 1) in two dimensions is still an open problem. We answer the analogous question for the horizontal–vertical walk, by showing that the horizontal–vertical walk is recurrent for q(13,1].

Considérons une marche aléatoire aux plus proches voisins sur le réseau entier bidimensionnel, où chaque sommet est initialement étiqueté soit “H” soit “V”, uniformément et indépendamment. À chaque pas de temps discret, le marcheur ré-échantillonne l’étiquette à son emplacement actuel (en changeant “H” en “V” et “V” en “H” avec la probabilité q). Ensuite, il fait un pas horizontal de moyenne nulle si la nouvelle étiquette est “H”, et un pas vertical de moyenne nulle si la nouvelle étiquette est “V”. Ce modèle est une version randomisée de la marche déterministe du rotor, pour laquelle sa récurrence (c’est-à-dire visiter chaque sommet infiniment souvent avec une probabilité de 1) en deux dimensions est encore un problème ouvert. Nous répondons à la question analogue pour la marche horizontale-verticale, en montrant que la marche horizontale-verticale est récurrente pour q]13,1].

Funding Statement

The author was partially supported by NSF Grant DMS-1455272 and by the Simons Foundation.

Acknowledgements

The author would like to thank Lionel Levine and Yuval Peres for their advising throughout the whole project, Lila Greco for performing the simulations for Figure 1, and Peter Li for inspiring discussions. Part of this work was done when the author was visiting the Theory Group at Microsoft Research, Redmond, and when the author was a graduate student at Cornell University. The author would also like to thank the anonymous referee and the editor for valuable comments and references that greatly improves the paper. In particular, the proof of Lemma 4.2 is greatly simplified thanks to the referee’s comment.

Citation

Download Citation

Swee Hong Chan. "Recurrence of horizontal–vertical walks." Ann. Inst. H. Poincaré Probab. Statist. 59 (2) 578 - 605, May 2023. https://doi.org/10.1214/22-AIHP1277

Information

Received: 8 January 2021; Revised: 9 February 2022; Accepted: 11 April 2022; Published: May 2023
First available in Project Euclid: 12 April 2023

MathSciNet: MR4575009
zbMATH: 07699934
Digital Object Identifier: 10.1214/22-AIHP1277

Subjects:
Primary: 60K35
Secondary: 60F20 , 60J10 , 82C41

Keywords: random environment , Random walk , recurrence , rotor-router , transience

Rights: Copyright © 2023 Association des Publications de l’Institut Henri Poincaré

Vol.59 • No. 2 • May 2023
Back to Top