Abstract
For i.i.d. random vectors such that a.s., a.s. and , the random difference equation , , is studied in the critical case when the random walk with increments , is oscillating. We provide conditions for the null recurrence and transience of the Markov chain by inter alia drawing on techniques developed in the related article (J. Appl. Probab. 54 (2017) 1089–1110) for another case exhibiting the null recurrence/transience dichotomy.
Étant donnés des vecteurs aléatoires i.i.d. tels que et p.s., et , nous étudions l’équation aux différences aléatoires , dans le cas critique, lorsque la marche aléatoire avec incréments , est oscillante. Nous obtenons des conditions pour la récurrence nulle et la transience de la chaîne de Markov , en utilisant notamment des techniques développées dans l’article lié (J. Appl. Probab. 54 (2017) 1089–1110), qui traite d’un autre cas présentant la dichotomie récurrence nulle/transience.
Funding Statement
The first author was supported in part by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy EXC 2044–390685587, Mathematics Münster: Dynamics–Geometry–Structure.
The second author was supported by the National Research Foundation of Ukraine (project 2020.02/0014 “Asymptotic regimes of perturbed random walks: on the edge of modern and classical probability”).
Acknowledgements
The authors would like to thank an anonymous referee for various suggestions that helped to improve the presentation of our results.
Citation
Gerold Alsmeyer. Alexander Iksanov. "Recurrence and transience of random difference equations in the critical case." Ann. Inst. H. Poincaré Probab. Statist. 59 (2) 606 - 620, May 2023. https://doi.org/10.1214/22-AIHP1274
Information