May 2023 Recurrence and transience of random difference equations in the critical case
Gerold Alsmeyer, Alexander Iksanov
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 59(2): 606-620 (May 2023). DOI: 10.1214/22-AIHP1274

Abstract

For i.i.d. random vectors (M1,Q1),(M2,Q2), such that M>0 a.s., Q0 a.s. and P(Q=0)<1, the random difference equation Xn=MnXn1+Qn, n=1,2,, is studied in the critical case when the random walk with increments logM1, logM2, is oscillating. We provide conditions for the null recurrence and transience of the Markov chain (Xn)n0 by inter alia drawing on techniques developed in the related article (J. Appl. Probab. 54 (2017) 1089–1110) for another case exhibiting the null recurrence/transience dichotomy.

Étant donnés des vecteurs aléatoires i.i.d. (M1,Q1),(M2,Q2), tels que M>0 et Q0 p.s., et P(Q=0)<1, nous étudions l’équation aux différences aléatoires Xn=MnXn1+Qn, n=1,2, dans le cas critique, lorsque la marche aléatoire avec incréments logM1, logM2, est oscillante. Nous obtenons des conditions pour la récurrence nulle et la transience de la chaîne de Markov (Xn)n0, en utilisant notamment des techniques développées dans l’article lié (J. Appl. Probab. 54 (2017) 1089–1110), qui traite d’un autre cas présentant la dichotomie récurrence nulle/transience.

Funding Statement

The first author was supported in part by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy EXC 2044–390685587, Mathematics Münster: Dynamics–Geometry–Structure.
The second author was supported by the National Research Foundation of Ukraine (project 2020.02/0014 “Asymptotic regimes of perturbed random walks: on the edge of modern and classical probability”).

Acknowledgements

The authors would like to thank an anonymous referee for various suggestions that helped to improve the presentation of our results.

Citation

Download Citation

Gerold Alsmeyer. Alexander Iksanov. "Recurrence and transience of random difference equations in the critical case." Ann. Inst. H. Poincaré Probab. Statist. 59 (2) 606 - 620, May 2023. https://doi.org/10.1214/22-AIHP1274

Information

Received: 11 May 2021; Revised: 19 December 2021; Accepted: 7 April 2022; Published: May 2023
First available in Project Euclid: 12 April 2023

MathSciNet: MR4575010
zbMATH: 1516.60041
Digital Object Identifier: 10.1214/22-AIHP1274

Subjects:
Primary: 60J10
Secondary: 60F15

Keywords: Invariant Radon measure , null recurrence , perpetuity , random difference equation , transience

Rights: Copyright © 2023 Association des Publications de l’Institut Henri Poincaré

Vol.59 • No. 2 • May 2023
Back to Top