November 2022 Negative correlation of adjacent Busemann increments
Ian Alevy, Arjun Krishnan
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 58(4): 1942-1958 (November 2022). DOI: 10.1214/21-AIHP1236

Abstract

We consider i.i.d. last-passage percolation on Z2 with weights having distribution F and time-constant gF. We provide an explicit condition on the large deviation rate function for independent sums of F that determines when some adjacent Busemann function increments are negatively correlated. As an example, we prove that Bernoulli(p) weights for p>p0.6504 satisfy this condition. We prove this condition by establishing a direct relationship between the negative correlations of adjacent Busemann increments and the dominance of gF by the function describing the time-constant of last-passage percolation with exponential or geometric weights.

Nous considérons la percolation de dernier passage i.i.d. sur Z2 avec des poids de loi F et de constante temporelle gF. Nous donnons une condition explicite sur la fonction de taux de grande déviation de la somme de variables aléatoires indépendantes de loi F, qui détermine quand certains accroissements de Busemann adjacents sont négativement corrélés. À titre d’exemple nous montrons que les poids Bernoulli(p) avec p>p0.6504 vérifient cette condition. Nous obtenons cette condition en établissant un lien direct entre les corrélations négatives des accroissements de Busemann adjacents et la domination de la constante temporelle gF par la fonction qui décrit la constante de temps de la percolation de dernier passage avec poids exponentiels ou géométriques.

Funding Statement

A. Krishnan would like to acknowledge support from a Simons Collaboration Grant 638966.

Acknowledgements

We would like to thank T. Seppäläinen for sharing a short note that connects zero correlations of adjacent Busemann increments and the universal exponential limit-shape function (2); M. Damron for suggesting the use of coarse graining to improve the union bound in (26); C. Janjigian for pointing out that pre-Busemann functions always exist; and M. Hegde for sharing his simulation of the χ2 distribution and showing us a better way to present our simulations.

Citation

Download Citation

Ian Alevy. Arjun Krishnan. "Negative correlation of adjacent Busemann increments." Ann. Inst. H. Poincaré Probab. Statist. 58 (4) 1942 - 1958, November 2022. https://doi.org/10.1214/21-AIHP1236

Information

Received: 10 August 2021; Revised: 6 December 2021; Accepted: 12 December 2021; Published: November 2022
First available in Project Euclid: 6 October 2022

MathSciNet: MR4492966
zbMATH: 1503.60141
Digital Object Identifier: 10.1214/21-AIHP1236

Subjects:
Primary: 60K35 , 60K37

Keywords: Busemann function , Large deviation rate-function , Negative correlation criterion , Time-constant domination

Rights: Copyright © 2022 Association des Publications de l’Institut Henri Poincaré

Vol.58 • No. 4 • November 2022
Back to Top