Abstract
We consider a symmetric matrix-valued Gaussian process and its empirical spectral measure process . Under some mild conditions on the covariance function of , we find an explicit expression for the limit distribution of
where , for , with each component belonging to a large class of test functions, and
More precisely, we establish the stable convergence of and determine its limiting distribution. An upper bound for the total variation distance of the law of to its limiting distribution, for a test function f and fixed, is also given.
Nous considérons un processus gaussien symétrique à valeurs matricielles et son processus des mesures spectrales empiriques . Sous des conditions assez faibles sur la fonction de covariance de nous trouvons une expression explicite pour la loi limite de
où , pour , avec chaque composant appartenant à une grande classe des fonctions test, et
Plus précism´ent, nous établissons la convergence stable de et nous déterminons sa loi limite. Nous donnons également une borne supérieure pour la distance en variation totale entre la loi de et sa loi limite, pour une fonction test f et fixés.
Funding Statement
JCP acknowledges support from the Royal Society and CONACYT (CB-250590).
The work of MD was supported in part by the Consejo Nacional de Ciencia y Tecnología (CONACYT) under grant A1-S-976.
Acknowledgements
This work was concluded whilst JCP was on sabbatical leave holding a David Parkin Visiting Professorship at the University of Bath, he gratefully acknowledges the kind hospitality of the Department and University. This work was started when AJ was postdoctoral researcher jointly at the University of Luxembourg and the National University of Singapore.
Citation
Mario Diaz. Arturo Jaramillo. Juan Carlos Pardo. "Fluctuations for matrix-valued Gaussian processes." Ann. Inst. H. Poincaré Probab. Statist. 58 (4) 2216 - 2249, November 2022. https://doi.org/10.1214/21-AIHP1238
Information