Abstract
In this work, a one-ended unimodular random planar triangulation is constructed that has no invariant circle packing; i.e., a circle packing such that its distribution is invariant under translations. This gives a negative answer to a problem posed by I. Benjamini and A. Timar (2019). A natural weaker problem is the existence, for unimodular graphs, of point-stationary circle packings, which are random circle packings that satisfy a certain mass transport principle. It is shown that this problem is related to the large scale properties of the circle packings and the answer is again negative. Two examples are provided with two different approaches: Using indistinguishability and approximation by finite graphs.
Dans ce travail, on construit une triangulation planaire aléatoire unimodulaire avec une extrémité qui n’a pas d’empilement de cercle invariant par translation. Ceci répond de façon négative à un problème posé par I. Benjamini et A. Timar (2019). Un autre problème naturel et moins exigeant est l’existence, pour les graphes unimodulaires, d’empilements de cercles ponctuellement-stationnaire, c’est à dire, d’empilements aléatoires de cercles vérifiant un certain principe de transport de masse. Il est démontré que ce problème est lié aux propriétés de grande échelle des empilements de cercles et que la réponse est encore négative. On donne deux exemples fondés sur deux approches différentes, l’un sur l’indistinguabilité, et l’autre sur l’approximation par des graphes finis.
Acknowledgments
This research was in part supported by a grant from IPM (No. 98490118). Part of the paper was prepared while the author was affiliated with Inria and was supported by the ERC NEMO grant, under the European Union’s Horizon 2020 research and innovation programme, grant agreement number 788851 to INRIA. The author thanks Mir-Omid Haji-Mirsadeghi for discussions about the proof of Theorem 4.18. We also thank Meysam Nassiri and Hesameddin Rajabzadeh for fruitful discussions on the circle packing of the graph in Example 3.5 and Proposition 4.15. We thank Adam Timar for his detailed comments on the paper.
Citation
Ali Khezeli. "Counter examples to invariant circle packing." Ann. Inst. H. Poincaré Probab. Statist. 58 (4) 1981 - 1997, November 2022. https://doi.org/10.1214/21-AIHP1234
Information