May 2022 Topological expansion in isomorphism theorems between matrix-valued fields and random walks
Titus Lupu
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 58(2): 695-721 (May 2022). DOI: 10.1214/21-AIHP1198

Abstract

We consider Gaussian fields of real symmetric, complex Hermitian or quaternionic Hermitian matrices over an electrical network, and describe how the isomorphisms between these fields and random walks give rise to topological expansions encoded by ribbon graphs. We further consider matrix-valued Gaussian fields twisted by an orthogonal, unitary or symplectic connection. In this case the isomorphisms involve traces of holonomies of the connection along random walk loops parametrized by boundary cycles of ribbon graphs.

On considère des champs gaussiens de matrices symétriques réelles, hermitiennes complexes ou hermitiennes quaternioniques au dessus un réseau électrique, et on décrit comment l’isomorphisme entre ces champs et les marches aléatoires fait apparaître des développements topologiques représentées par des graphes à rubans. De plus, on considère des champs gaussiens matriciels tordus par une connexion orthogonale, unitaire ou symplectique. Dans ce cas les isomorphismes font intervenir des traces d’holonomies de la connexion le long des boucles de marche aléatoire paramétrées par les cycles de bord des graphes à rubans.

Funding Statement

This work was supported by the French National Research Agency (ANR) grant within the project MALIN (ANR-16-CE93-0003).

Acknowledgements

The author thanks the two anonymous reviewers for their helpful remarks on the previous version of this paper.

Citation

Download Citation

Titus Lupu. "Topological expansion in isomorphism theorems between matrix-valued fields and random walks." Ann. Inst. H. Poincaré Probab. Statist. 58 (2) 695 - 721, May 2022. https://doi.org/10.1214/21-AIHP1198

Information

Received: 10 March 2020; Revised: 19 January 2021; Accepted: 3 June 2021; Published: May 2022
First available in Project Euclid: 15 May 2022

MathSciNet: MR4421605
zbMATH: 1492.60089
Digital Object Identifier: 10.1214/21-AIHP1198

Subjects:
Primary: 60G15 , 81T18 , 81T25
Secondary: 15B52 , 60J55

Keywords: Discrete gauge theory , Gaussian free field , Gaussian Orthogonal Ensemble , Gaussian Symplectic Ensemble , Gaussian unitary ensemble , holonomy , isomorphism theorems , matrix integrals , Matrix models , random matrices , Random walks , ribbon graphs , topological expansion , Wilson loops

Rights: Copyright © 2022 Association des Publications de l’Institut Henri Poincaré

Vol.58 • No. 2 • May 2022
Back to Top