Open Access
May 2018 Intertwinings of beta-Dyson Brownian motions of different dimensions
Kavita Ramanan, Mykhaylo Shkolnikov
Ann. Inst. H. Poincaré Probab. Statist. 54(2): 1152-1163 (May 2018). DOI: 10.1214/17-AIHP835

Abstract

We show that for all positive $\beta$ the semigroups of $\beta$-Dyson Brownian motions of different dimensions are intertwined. The proof relates $\beta$-Dyson Brownian motions directly to Jack symmetric polynomials and omits an approximation of the former by discrete space Markov chains, thereby disposing of the technical assumption $\beta\ge1$ in (Probab. Theory Related Fields 163 (2015) 413–463). The corresponding results for $\beta$-Dyson Ornstein–Uhlenbeck processes are also presented.

Nous montrons que pour tout $\beta>0$, les semigroupes des $\beta$-mouvements browniens de Dyson sont entrelacés. La preuve consiste à relier directement les $\beta$-mouvements browniens de Dyson aux polynômes symétriques de Jack, et évite donc un argument d’approximation par des chaînes de Markov à espace d’état discret, ce qui permet de se débarrasser de l’hypothèse technique $\beta\ge1$ faite dans (Probab. Theory Related Fields 163 (2015) 413–463). Les résultats correspondants pour les processus $\beta$-Ornstein Uhlenbeck de Dyson sont aussi présentés.

Citation

Download Citation

Kavita Ramanan. Mykhaylo Shkolnikov. "Intertwinings of beta-Dyson Brownian motions of different dimensions." Ann. Inst. H. Poincaré Probab. Statist. 54 (2) 1152 - 1163, May 2018. https://doi.org/10.1214/17-AIHP835

Information

Received: 4 August 2016; Revised: 27 February 2017; Accepted: 31 March 2017; Published: May 2018
First available in Project Euclid: 25 April 2018

zbMATH: 06897982
MathSciNet: MR3795080
Digital Object Identifier: 10.1214/17-AIHP835

Subjects:
Primary: 33D52 , 60H10 , 82C22

Keywords: Dixon–Anderson conditional probability density , Dyson Brownian motions , Dyson Ornstein–Uhlenbeck processes , Gaussian random matrix ensembles , Intertwinings , Jack symmetric polynomials

Rights: Copyright © 2018 Institut Henri Poincaré

Vol.54 • No. 2 • May 2018
Back to Top