Open Access
May 2016 Rescaled bipartite planar maps converge to the Brownian map
Céline Abraham
Ann. Inst. H. Poincaré Probab. Statist. 52(2): 575-595 (May 2016). DOI: 10.1214/14-AIHP657

Abstract

For every integer $n\geq1$, we consider a random planar map $\mathcal{M}_{n}$ which is uniformly distributed over the class of all rooted bipartite planar maps with $n$ edges. We prove that the vertex set of $\mathcal{M}_{n}$ equipped with the graph distance rescaled by the factor $(2n)^{-1/4}$ converges in distribution, in the Gromov–Hausdorff sense, to the Brownian map. This complements several recent results giving the convergence of various classes of random planar maps to the Brownian map.

Pour tout entier $n$ strictement positif, on considère une carte planaire aléatoire $\mathcal{M}_{n}$ de loi uniforme sur l’ensemble des cartes biparties enracinées à $n$ arêtes. On montre que l’ensemble des sommets de $\mathcal{M}_{n}$ muni de la distance de graphe renormalisée par $(2n)^{-1/4}$ converge en loi au sens de Gromov–Hausdorff vers la carte brownienne. Ce travail complète une série de résultats de convergence de différents modèles de cartes aléatoires vers la carte brownienne.

Citation

Download Citation

Céline Abraham. "Rescaled bipartite planar maps converge to the Brownian map." Ann. Inst. H. Poincaré Probab. Statist. 52 (2) 575 - 595, May 2016. https://doi.org/10.1214/14-AIHP657

Information

Received: 13 January 2014; Revised: 20 July 2014; Accepted: 13 October 2014; Published: May 2016
First available in Project Euclid: 4 May 2016

zbMATH: 1375.60034
MathSciNet: MR3498001
Digital Object Identifier: 10.1214/14-AIHP657

Subjects:
Primary: 60D05 , 60F17
Secondary: 05C80

Keywords: Bipartite map , Brownian map , graph distance , Gromov–Hausdorff convergence , Planar map , Scaling limit , Two-type Galton–Watson tree

Rights: Copyright © 2016 Institut Henri Poincaré

Vol.52 • No. 2 • May 2016
Back to Top