Translator Disclaimer
February 2016 Talagrand’s inequality for interacting particle systems satisfying a log-Sobolev inequality
Florian Völlering
Ann. Inst. H. Poincaré Probab. Statist. 52(1): 173-195 (February 2016). DOI: 10.1214/14-AIHP630

Abstract

Talagrand’s inequality for independent Bernoulli random variables is extended to many interacting particle systems (IPS). The main assumption is that the IPS satisfies a log-Sobolev inequality. In this context it is also shown that a slightly stronger version of Talagrand’s inequality is equivalent to a log-Sobolev inequality.

Additionally we also look at a common application, the relation between the probability of increasing events and the influences on that event by changing a single spin.

Nous étendons l’inégalité de Talagrand pour des variables aléatoires de Bernoulli à une grande classe de systèmes de particules. L’hypothèse principale est que les systèmes de particules satisfont l’inégalité de log-Sobolev. Dans ce contexte nous démontrons également qu’une version plus forte de l’inégalité de Talagrand est équivalente à l’inégalité de log-Sobolev.

Nous considérons aussi comme application la relation entre la probablité d’un évènement croissant et les “influences” sur cet évènement du changement d’un seul spin.

Citation

Download Citation

Florian Völlering. "Talagrand’s inequality for interacting particle systems satisfying a log-Sobolev inequality." Ann. Inst. H. Poincaré Probab. Statist. 52 (1) 173 - 195, February 2016. https://doi.org/10.1214/14-AIHP630

Information

Received: 4 December 2013; Revised: 15 May 2014; Accepted: 29 June 2014; Published: February 2016
First available in Project Euclid: 6 January 2016

zbMATH: 1333.60210
MathSciNet: MR3449300
Digital Object Identifier: 10.1214/14-AIHP630

Subjects:
Primary: 60K35
Secondary: 60C05

Rights: Copyright © 2016 Institut Henri Poincaré

JOURNAL ARTICLE
23 PAGES


SHARE
Vol.52 • No. 1 • February 2016
Back to Top