Translator Disclaimer
August 2015 Effective resistances for supercritical percolation clusters in boxes
Yoshihiro Abe
Ann. Inst. H. Poincaré Probab. Statist. 51(3): 935-946 (August 2015). DOI: 10.1214/14-AIHP604

Abstract

Let $\mathcal{C}^{n}$ be the largest open cluster for supercritical Bernoulli bond percolation in $[-n,n]^{d}\cap\mathbb{Z}^{d}$ with $d\ge2$. We obtain a sharp estimate for the effective resistance on $\mathcal{C}^{n}$. As an application we show that the cover time for the simple random walk on $\mathcal{C}^{n}$ is comparable to $n^{d}(\log n)^{2}$. Noting that the cover time for the simple random walk on $[-n,n]^{d}\cap\mathbb{Z}^{d}$ is of order $n^{d}\log n$ for $d\ge3$ (and of order $n^{2}(\log n)^{2}$ for $d=2$), this gives a quantitative difference between the two random walks for $d\ge3$.

On considère la percolation de Bernoulli par arêtes dans le régime surcritique. Soit $\mathcal{C}^{n}$ le plus grand amas de percolation dans $[-n,n]^{d}\cap\mathbb{Z}^{d}$ avec $d\ge2$. Nous obtenons une estimation précise de la résistance effective sur $\mathcal{C}^{n}$. Comme application, nous montrons que le temps de recouvrement d’une marche simple sur $\mathcal{C}^{n}$ est de l’ordre de $n^{d}(\log n)^{2}$. En remarquant que le temps de recouvrement d’une marche simple sur $[-n,n]^{d}\cap\mathbb{Z}^{d}$ est de l’ordre de $n^{d}\log n$ quand $d\ge3$ (et de $n^{2}(\log n)^{2}$ quand $d=2$), ceci montre une différence quantitative entre les deux marches si $d\ge3$.

Citation

Download Citation

Yoshihiro Abe. "Effective resistances for supercritical percolation clusters in boxes." Ann. Inst. H. Poincaré Probab. Statist. 51 (3) 935 - 946, August 2015. https://doi.org/10.1214/14-AIHP604

Information

Received: 24 June 2013; Revised: 12 December 2013; Accepted: 22 January 2014; Published: August 2015
First available in Project Euclid: 1 July 2015

zbMATH: 1323.60122
MathSciNet: MR3365968
Digital Object Identifier: 10.1214/14-AIHP604

Subjects:
Primary: 60J45
Secondary: 60K37

Rights: Copyright © 2015 Institut Henri Poincaré

JOURNAL ARTICLE
12 PAGES


SHARE
Vol.51 • No. 3 • August 2015
Back to Top