Open Access
May 2014 On the limiting velocity of random walks in mixing random environment
Xiaoqin Guo
Ann. Inst. H. Poincaré Probab. Statist. 50(2): 375-402 (May 2014). DOI: 10.1214/12-AIHP534

Abstract

We consider random walks in strong-mixing random Gibbsian environments in $\mathbb{Z}^{d}$, $d\ge2$. Based on regeneration arguments, we will first provide an alternative proof of Rassoul-Agha’s conditional law of large numbers (CLLN) for mixing environment (Electron. Commun. Probab. 10 (2005) 36–44). Then, using coupling techniques, we show that there is at most one nonzero limiting velocity in high dimensions ($d\ge5$).

Nous considérons des marches aléatoires dans un environnement Gibbsien fortement mélangeant dans $\mathbb{Z}^{d}$, $d\ge2$. A l’aide d’arguments de renouvellement, nous donnons d’abord une preuve alternative de la loi conditionnelle des grands nombres de Rassoul-Agha (Electron. Commun. Probab. 10 (2005) 36–44) pour des environnements mélangeants. Ensuite, par des méthodes de couplage, nous montrons qu’il existe au plus une vitesse limite non nulle en grande dimension ($d\ge5$).

Citation

Download Citation

Xiaoqin Guo. "On the limiting velocity of random walks in mixing random environment." Ann. Inst. H. Poincaré Probab. Statist. 50 (2) 375 - 402, May 2014. https://doi.org/10.1214/12-AIHP534

Information

Published: May 2014
First available in Project Euclid: 26 March 2014

zbMATH: 1291.60211
MathSciNet: MR3189076
Digital Object Identifier: 10.1214/12-AIHP534

Subjects:
Primary: 60K37

Keywords: Conditional law of large numbers , Limiting speed , Mixing , random environment , Random walks

Rights: Copyright © 2014 Institut Henri Poincaré

Vol.50 • No. 2 • May 2014
Back to Top