Open Access
November 2012 Challenging the empirical mean and empirical variance: A deviation study
Olivier Catoni
Ann. Inst. H. Poincaré Probab. Statist. 48(4): 1148-1185 (November 2012). DOI: 10.1214/11-AIHP454

Abstract

We present new M-estimators of the mean and variance of real valued random variables, based on PAC-Bayes bounds. We analyze the non-asymptotic minimax properties of the deviations of those estimators for sample distributions having either a bounded variance or a bounded variance and a bounded kurtosis. Under those weak hypotheses, allowing for heavy-tailed distributions, we show that the worst case deviations of the empirical mean are suboptimal. We prove indeed that for any confidence level, there is some M-estimator whose deviations are of the same order as the deviations of the empirical mean of a Gaussian statistical sample, even when the statistical sample is instead heavy-tailed. Experiments reveal that these new estimators perform even better than predicted by our bounds, showing deviation quantile functions uniformly lower at all probability levels than the empirical mean for non-Gaussian sample distributions as simple as the mixture of two Gaussian measures.

Nous présentons de nouveaux M-estimateurs de la moyenne et de la variance d’une variable aléatoire réelle, fondés sur des bornes PAC-Bayésiennes. Nous analysons les propriétés minimax non-asymptotiques des déviations de ces estimateurs pour des distributions de l’échantillon soit de variance bornée, soit de variance et de kurtosis bornées. Sous ces hypothèses faibles, permettant des distributions à queue lourde, nous montrons que les déviations de la moyenne empirique sont dans le pire des cas sous-optimales. Nous prouvons en effet que pour tout niveau de confiance, il existe un M-estimateur dont les déviations sont du même ordre que les déviations de la moyenne empirique d’un échantillon Gaussien, même dans le cas où la véritable distribution de l’échantillon a une queue lourde. Le comportement expérimental de ces nouveaux estimateurs est du reste encore meilleur que ce que les bornes théoriques laissent prévoir, montrant que la fonction quantile des déviations est constamment en dessous de celle de la moyenne empirique pour des échantillons non Gaussiens aussi simples que des mélanges de deux distributions Gaussiennes.

Citation

Download Citation

Olivier Catoni. "Challenging the empirical mean and empirical variance: A deviation study." Ann. Inst. H. Poincaré Probab. Statist. 48 (4) 1148 - 1185, November 2012. https://doi.org/10.1214/11-AIHP454

Information

Published: November 2012
First available in Project Euclid: 16 November 2012

zbMATH: 1282.62070
MathSciNet: MR3052407
Digital Object Identifier: 10.1214/11-AIHP454

Subjects:
Primary: 62G05 , 62G35

Keywords: M-estimators , Non-parametric estimation , PAC-Bayes bounds

Rights: Copyright © 2012 Institut Henri Poincaré

Vol.48 • No. 4 • November 2012
Back to Top