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Abstract. We present new M-estimators of the mean and variance of real valued random variables, based on PAC-Bayes bounds.
We analyze the non-asymptotic minimax properties of the deviations of those estimators for sample distributions having either a
bounded variance or a bounded variance and a bounded kurtosis. Under those weak hypotheses, allowing for heavy-tailed distribu-
tions, we show that the worst case deviations of the empirical mean are suboptimal. We prove indeed that for any confidence level,
there is some M-estimator whose deviations are of the same order as the deviations of the empirical mean of a Gaussian statistical
sample, even when the statistical sample is instead heavy-tailed. Experiments reveal that these new estimators perform even better
than predicted by our bounds, showing deviation quantile functions uniformly lower at all probability levels than the empirical
mean for non-Gaussian sample distributions as simple as the mixture of two Gaussian measures.

Résumé. Nous présentons de nouveaux M-estimateurs de la moyenne et de la variance d’une variable aléatoire réelle, fondés sur
des bornes PAC-Bayésiennes. Nous analysons les propriétés minimax non-asymptotiques des déviations de ces estimateurs pour
des distributions de l’échantillon soit de variance bornée, soit de variance et de kurtosis bornées. Sous ces hypothèses faibles,
permettant des distributions à queue lourde, nous montrons que les déviations de la moyenne empirique sont dans le pire des cas
sous-optimales. Nous prouvons en effet que pour tout niveau de confiance, il existe un M-estimateur dont les déviations sont du
même ordre que les déviations de la moyenne empirique d’un échantillon Gaussien, même dans le cas où la véritable distribution
de l’échantillon a une queue lourde. Le comportement expérimental de ces nouveaux estimateurs est du reste encore meilleur que
ce que les bornes théoriques laissent prévoir, montrant que la fonction quantile des déviations est constamment en dessous de celle
de la moyenne empirique pour des échantillons non Gaussiens aussi simples que des mélanges de deux distributions Gaussiennes.
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1. Introduction

This paper is devoted to the estimation of the mean and possibly also of the variance of a real random variable
from an independent identically distributed sample. While the most traditional way to deal with this question is to
focus on the mean square error of estimators, we will instead focus on their deviations. Deviations are related to
the estimation of confidence intervals which are of importance in many situations. While the empirical mean has an
optimal minimax mean square error among all mean estimators in all models including Gaussian distributions, its
deviations tell a different story. Indeed, as far as the mean square error is concerned, Gaussian distributions represent
already the worst case, so that in the framework of a minimax mean least square analysis, no need is felt to improve
estimators for non-Gaussian sample distributions. On the contrary, the deviations of estimators, and especially of the
empirical mean, are worse for non-Gaussian samples than for Gaussian ones. Thus a deviation analysis will point
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out possible improvements of the empirical mean estimator more successfully. It was nonetheless quite unexpected
for us, and will undoubtedly also be for some of our readers, that the empirical mean could be improved, under such
a weak hypothesis as the existence of a finite variance, and that this has remained unnoticed until now. One of the
reasons may be that the weaknesses of the empirical mean disappear if we let the sample distribution be fixed and the
sample size go to infinity. This does not mean however that a substantial improvement is not possible, nor that it is
only concerned with specific sample sizes or weird worst case distributions: in the end of this paper, we will present
experiments made on quite simple sample distributions, consisting in the mixture of two to three Gaussian measures,
showing that more than twenty five percent can be gained on the widths of confidence intervals, for realistic sample
sizes ranging from 100 to 2000. We think that, beyond the technicalities involved here, this exemplifies more broadly
the pitfalls of asymptotic studies in statistics and should be quite thought provoking about the notions of optimality
commonly used to assess the performance of estimators.

Our deviation study will use two kinds of tools: M-estimators to truncate observations and PAC-Bayesian theorems
to combine estimates on the same sample without using a split scheme [1,2,8,12–14].

Its general conclusion is that, whereas the deviations of the empirical mean estimate may increase a lot when the
sample distribution is far from being Gaussian, those of some new M-estimators will not. The improvement is the best
for heavy-tailed distributions, as the worst case analysis performed to prove lower bounds will show. The improvement
also increases as the confidence level at which deviations are computed increases.

Similar conclusions can be drawn in the case of least square regression with random design [3,4]. Discovering that
using truncated estimators permits to get rid of sub Gaussian tail assumptions was the spur to study the simpler case of
mean estimation for its own sake. Restricting the subject in this way (which is of course a huge restriction compared
with least square regression) makes it possible to propose simpler dedicated estimators and to push their analysis
further. It will indeed be possible here to obtain mathematical proofs for numerically significant non-asymptotic
bounds.

The weakest hypothesis we will consider is the existence of a finite but unknown variance. In our M-estimators,
adapting the truncation level depends on the value of the variance. However, this adaptation can be done without
actually knowing the variance, through Lepski’s approach.

Computing an observable confidence interval, on the other hand, requires more information. The simplest case is
when the variance is known, or at least lower than a known bound. If it is not so, another possibility is to assume that
the kurtosis is known, or lower than a known bound. Introducing the kurtosis is natural to our approach: in order to
calibrate the truncation level for the estimation of the mean, we need to know the variance, and in the same way, in
order to calibrate the truncation level for the estimation of the variance, we need to use the variance of the variance,
which is provided by the kurtosis as a function of the variance itself.

In order to assess the quality of the results, we prove corresponding lower bounds for the best estimator confronted
to the worst possible sample distribution, following the minimax approach. We also compute lower bounds for the
deviations of the empirical mean estimator when the sample distribution is the worst possible. These latter bounds
show the improvement that can be brought by M-estimators over the more traditional empirical mean. We plot the
numerical values of these upper and lower bounds against the confidence level for typical finite sample sizes to show
the gap between them.

The reader may wonder why we only consider the following extreme models, the narrow Gaussian model and the
broad models

Avmax = {
P ∈ M1+(R): VarP ≤ vmax

}
(1.1)

and

Bvmax,κmax = {P ∈ Avmax : κP ≤ κmax}, (1.2)

where VarP is the variance of P, κP its kurtosis, and M1+(R) is the set of probability measures (positive measures of
mass 1) on the real line equipped with the Borel sigma-algebra.

The reason is that, the minimax bounds obtained in these broad models being close to the ones obtained in the
Gaussian model, introducing intermediate models would not change the order of magnitude of the bounds.

Let us end this introduction by advocating the value of confidence bounds, stressing more particularly the case of
high confidence levels, since this is the situation where truncation brings the most decisive improvements.
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One situation of interest which we will not comment further is when the estimated parameter is critical and making
a big mistake on its value, even with a small probability, is unacceptable.

Another scenario to be encountered in statistical learning is the case when lots of estimates are to be computed
and compared in the course of some decision making. Let us imagine, for instance, that some parameter θ ∈ Θ is to
be tuned in order to optimize the expected loss E[fθ (X)] of some family of loss functions {fθ : θ ∈ Θ} computed

on some random input X. Let us consider a split sample scheme where two i.i.d. samples (X1, . . . ,Xs)
def= Xs

1 and

(Xs+1, . . . ,Xs+n)
def= Xs+n

s+1 are used, one to build some estimators θ̂k(X
s
1) of argminθ∈Θk

E[fθ (X)] in subsets Θk ,
k = 1, . . . ,K , of Θ , and the other to test those estimators and keep hopefully the best. This is a very common model
selection situation. One can think for instance of the choice of a basis to expand some regression function. If K is
large, estimates of E[fθ̂k(X

s
1)

(Xs+1)] will be required for a lot of values of k. In order to keep safe from over-fitting,

very high confidence levels will be required if the resulting confidence level is to be computed through a union
bound (because no special structure of the problem can be used to do better). Namely, a confidence level of 1 − ε

on the final result of the optimization on the test sample will require a confidence level of 1 − ε/K for each mean
estimate on the test sample. Even if ε is not very small (like, say, 5/100), ε/K may be very small. For instance, if
10 parameters are to be selected among a set of 100, this gives K = (100

10

) � 1.7 · 1013. In practice, except in some
special situations where fast algorithms exist, a heuristic scheme will be used to compute only a limited number of
estimators θ̂k . An example of heuristics is to add greedily parameters one at a time, choosing at each step the one
with the best estimated performance increase (in our example, this requires to compute 1000 estimators instead of(100

10

)
). Nonetheless, asserting the quality of the resulting choice requires a union bound on the whole set of possible

outcomes of the data driven heuristic, and therefore calls for very high confidence levels for each estimate of the mean
performance E[fθ̂k(X

s
1)

(Xs+1)] on the test set.
The question we are studying in this paper should not be confused with robust statistics [9,10]. The most fun-

damental difference is that we are interested in estimating the mean of the sample distribution. In robust statistics,
it is assumed that the sample distribution is in the neighbourhood of some known parametric model. This gives the
possibility to replace the mean by some other location parameter, which as a rule will not be equal to the mean when
the shape of the distribution is not constrained (and in particular is not assumed to be symmetric).

Other differences are that our point of view is non-asymptotic and that we study the deviations of estimators
whereas robust statistics is focussed on their asymptotic mean square error.

Although we end up defining M-estimators with the help of influence functions, like in robust statistics, we use a
truncation level depending on the sample size, whereas in robust statistics, the truncation level depends on the amount
of contamination. Also, we truncate at much higher levels (that is we eliminate less outliers) that what would be
advisable for instance in the case of a contaminated Gaussian statistical sample. Thus, although we have some tools
in common with robust statistics, we use them differently to achieve a different purpose.

Adaptive estimation of a location parameter [5,6,15] is another setting where the empirical mean can be replaced
by more efficient estimators. However, the setting studied by these authors is quite different from ours. The main
difference, here again, is that the location parameter is assumed to be the center of symmetry of the sample distribution,
a fact that is used to tailor location estimators based on a symmetrized density estimator. Another difference is that in
these papers, the estimators are built with asymptotic properties in view, such as asymptotic normality with optimal
variance and asymptotic robustness. These properties, although desirable, give no information on the non-asymptotic
deviations we are studying here, and therefore do not provide as we do non-asymptotic confidence intervals.

2. Some new M-estimators

Let (Yi)
n
i=1 be an i.i.d. sample drawn from some unknown probability distribution P on the real line R equipped with

the Borel σ -algebra B. Let Y be independent from (Yi)
n
i=1 with the same marginal distribution P. Assuming that

Y ∈ L2(P), let m be the mean of Y and let v be its variance:

E(Y ) = m and E
[
(Y − m)2]= v.
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Fig. 1. Two possible choices of influence functions.

Let us consider some non-decreasing1 influence function ψ : R → R such that

− log
(
1 − x + x2/2

)≤ ψ(x) ≤ log
(
1 + x + x2/2

)
. (2.1)

The widest possible choice of ψ (see Fig. 1) compatible with these inequalities is

ψ(x) =
{

log
(
1 + x + x2/2

)
, x ≥ 0,

− log
(
1 − x + x2/2

)
, x ≤ 0,

(2.2)

whereas the narrowest possible choice is

ψ(x) =

⎧⎪⎪⎨⎪⎪⎩
log(2), x ≥ 1,
− log

(
1 − x + x2/2

)
, 0 ≤ x ≤ 1,

log
(
1 + x + x2/2

)
, −1 ≤ x ≤ 0,

− log(2), x ≤ −1.

(2.3)

Although ψ is not the derivative of some explicit error function, we will use it in the same way, so that it can be
considered as an influence function.

Indeed, α being some positive real parameter to be chosen later, we will build our estimator θ̂α of the mean m as
the solution of the equation

n∑
i=1

ψ
[
α(Yi − θ̂α)

]= 0.

1We would like to thank one of the anonymous referees of an early version of this paper for pointing out the benefits that could be drawn from the
use of a non-decreasing influence function in this section.
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(When the narrow choice of ψ defined by equation (2.3) is made, the above equation may have more than one solution,
in which case any of them can be used to define θ̂α .)

The widest choice of ψ is the one making θ̂α the closest to the empirical mean. For this reason it may be preferred
if our aim is to stabilize the empirical mean by making the smallest possible change, which could be justified by the
fact that the empirical mean is optimal in the case when the sample (Yi)

n
i=1 is Gaussian.

Our analysis of θ̂α will rely on the following exponential moment inequalities, from which deviation bounds will
follow. Let us introduce the quantity

r(θ) = 1

αn

n∑
i=1

ψ
[
α(Yi − θ)

]
, θ ∈ R.

Proposition 2.1.

E
{
exp

[
αnr(θ)

]} ≤
{

1 + α(m − θ) + α2

2

[
v + (m − θ)2]}n

≤ exp

{
nα(m − θ) + nα2

2

[
v + (m − θ)2]}.

In the same way

E
{
exp

[−αnr(θ)
]} ≤

{
1 − α(m − θ) + α2

2

[
v + (m − θ)2]}n

≤ exp

{
−nα(m − θ) + nα2

2

[
v + (m − θ)2]}.

The proof of this proposition is an obvious consequence of inequalities (2.1) and of the fact that the sample is
assumed to be i.i.d. It justifies the special choice of influence function we made. If we had taken for ψ the identity
function, and thus for θ̂α the empirical mean, the exponential moments of r(θ) would have existed only in the case
when the random variable Y itself has exponential moments. In order to bound θ̂α , we will find two non-random values
θ− and θ+ of the parameter such that with large probability r(θ−) > 0 > r(θ+), which will imply that θ− < θ̂α < θ+,
since r(θ̂α) = 0 by construction and θ �→ r(θ) is non-increasing.

Proposition 2.2. The values of the parameters α ∈ R+ and ε ∈ )0,1( being set, let us define for any θ ∈ R the bounds

B+(θ) = m − θ + α

2

[
v + (m − θ)2]+ log(ε−1)

nα
,

B−(θ) = m − θ − α

2

[
v + (m − θ)2]− log(ε−1)

nα
.

They satisfy

P
[
r(θ) < B+(θ)

]≥ 1 − ε, P
[
r(θ) > B−(θ)

]≥ 1 − ε.

The proof of this proposition is also straightforward: it is a mere consequence of Chebyshev’s inequality and of the
previous proposition. Let us assume that

α2v + 2 log(ε−1)

n
≤ 1.

Let θ+ be the smallest solution of the quadratic equation B+(θ+) = 0 and let θ− be the largest solution of the equation
B−(θ−) = 0.
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Lemma 2.3.

θ+ = m +
(

αv

2
+ log(ε−1)

αn

)(
1

2
+ 1

2

√
1 − α2v − 2 log(ε−1)

n

)−1

≤ m +
(

αv

2
+ log(ε−1)

αn

)(
1 − α2v

2
− log(ε−1)

n

)−1

,

θ− = m −
(

αv

2
+ log(ε−1)

αn

)(
1

2
+ 1

2

√
1 − α2v − 2 log(ε−1)

n

)−1

≥ m −
(

αv

2
+ log(ε−1)

αn

)(
1 − α2v

2
− log(ε−1)

n

)−1

.

Moreover, since the map θ �→ r(θ) is non-increasing, with probability at least 1 − 2ε,

θ− < θ̂α < θ+.

The proof of this lemma is also an obvious consequence of the previous proposition and of the definitions of θ+
and θ−. Optimizing the choice of α provides

Proposition 2.4. Let us assume that n > 2 log(ε−1) and let us consider

η =
√

2v log(ε−1)

n(1 − 2 log(ε−1)/n)
and α =

√
2 log(ε−1)

n(v + η2)
.

In this case θ+ = m + η and θ− = m − η, so that with probability at least 1 − 2ε,

|m − θ̂α| ≤ η =
√

2v log(ε−1)

n(1 − 2 log(ε−1)/n)
.

In the same way, if we want to make a choice of α independent from ε, we can choose

α =
√

2

nv
,

and assume that

n > 2
[
1 + log

(
ε−1)].

In this latter case, with probability at least 1 − 2ε,

|θ̂α − m| ≤ 1 + log(ε−1)

1/2 + (1/2)
√

1 − 2[1 + log(ε−1)]/n

√
v

2n
≤ 1 + log(ε−1)

1 − (1 + log(ε−1))/n

√
v

2n
.

In Figs 2–4, we compare the bounds on the deviations of our M-estimator θ̂α with the deviations of the empirical
mean M = 1

n

∑n
i=1 Yi when the sample distribution is Gaussian and when it belongs to the model A1 defined in

the introduction by equation (1.1), page 1149. (The bounds for the empirical mean will be explained and proved in
subsequent sections.)

More precisely, the deviation upper bounds for our estimator θ̂α for the worst sample distribution in A1, the model
defined by (1.1), page 1149, are compared with the exact deviations of the empirical mean M of a Gaussian sample.
This is the minimax bound at all confidence levels in the Gaussian model, as will be proved later on. Consequently,
the deviations of our estimator cannot be smaller for the worst sample distribution in A1, which contains Gaussian
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Fig. 2. Deviations of θ̂α from the sample mean, compared with those of the empirical mean.

Fig. 3. Same as Fig. 2, but showing a larger range of confidence levels.

distributions. We see on the plots that starting from ε = 0.1 (corresponding to a 80% confidence level), our upper
bound is close to being minimax, not only in A1, but also in the small Gaussian sub-model. This shows that the
deviations of our estimator are close to reach the minimax bound in any intermediate model containing Gaussian
distributions and contained in A1.

Our estimator is also compared with the deviations of the empirical mean for the worst distribution in A1 (to
be established later). In particular the lower bound proves that there are sample distributions in A1 for which the
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Fig. 4. Deviations of θ̂α for a larger sample size.

deviations of the empirical mean are far from being optimal, showing the need to introduce a new estimator to correct
this.

In Fig. 2, we chose a sample size n = 100 and plotted the deviations against the confidence level (or rather against ε,
the confidence level being 1 − 2ε). As shown in Fig. 3, showing a wider range of ε values, our bound stays close to
the Gaussian bound up to very high confidence levels (up to ε = 10−9 and more). On the other hand, it already
outperforms the empirical mean by a factor larger than two at confidence level 98% (that is for ε = 10−2).

When we increase the sample size to n = 500, as in Fig. 4, the performance of our M-estimator is even closer to
optimal.

3. Adapting to an unknown variance

In this section, we will use Lepski’s renowned adaptation method [11] when nothing is known, except that the variance
is finite. Under so uncertain (but unfortunately so frequent) circumstances, it is impossible to provide any observable
confidence intervals, but it is still possible to define an adaptive estimator and to bound its deviations by unobserv-
able bounds (depending on the unknown variance). To understand the subject of this section, one should keep in
mind that adapting to the variance is a weaker requirement than estimating the variance: estimating the variance at
any predictable rate would require more prior information (bearing for instance on higher moments of the sample
distribution).

The idea of Lepski’s method is powerful and simple: consider a sequence of confidence intervals obtained by
assuming that the variance is bounded by a sequence of bounds vk and pick up as an estimator the middle of the
smallest interval intersecting all the larger ones. For this to be legitimate, we need all the confidence regions for which
the variance bound is valid to hold together, which is performed using a union bound.

Let us describe this idea more precisely. Let θ̂ (vmax) be some estimator of the mean depending on some assumed
variance bound vmax, as the ones described in the beginning of this paper. Let δ(vmax, ε) ∈ R+ ∪ {+∞} be some
deviation bound2 proved in Avmax : namely let us assume that for any sample distribution in Avmax , with probability at

2 Avmax is defined by (1.1), page 1149.
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least 1 − 2ε,∣∣m − θ̂ (vmax)
∣∣≤ δ(vmax, ε).

Let us also decide by convention that δ(vmax,0) = +∞.
Let ν ∈ M1+(R+) be some coding atomic probability measure on the positive real line, which will serve to take a

union bound on a (countable) set of possible values of vmax.
We can choose for instance for ν the following coding distribution: expressing vmax by comparison with some

reference value V ,

vmax = V 2s
d∑

k=0

ck2−k, s ∈ Z, d ∈ N, (ck)
d
k=0 ∈ {0,1}d+1, c0 = cd = 1,

we set

ν(vmax) = 2−2(d−1)

5(|s| + 2)(|s| + 3)

and otherwise we set ν(vmax) = 0. It is easy to see that this defines a probability distribution on R+ (supported by
dyadic numbers scaled by the factor V ). It is clear that, as far as possible, the reference value V should be chosen as
close as possible to the true variance v.

Another possibility is to set for some parameters V ∈ R, ρ > 1 and s ∈ N,

ν
(
Vρ2k

)= 1

2s + 1
, k ∈ Z, |k| ≤ s. (3.1)

Let us consider for any vmax such that δ(vmax, εν(vmax)) < +∞ the confidence interval

I (vmax) = θ̂ (vmax) + δ
[
vmax, εν(vmax)

]× (−1,1).

Let us put I (vmax) = R when δ(vmax, εν(vmax)) = +∞.
Let us consider the non-decreasing family of closed intervals

J (v1) =
⋂{

I (vmax): vmax ≥ v1
}
, v1 ∈ R+.

(In this definition, we can restrict the intersection to the support of ν, since otherwise I (vmax) = R.) A union bound
shows immediately that with probability at least 1 − 2ε, m ∈ J (v), implying as a consequence that J (v) 
= ∅.

Proposition 3.1. Since v1 �→ J (v1) is a non-decreasing family of closed intervals, the intersection⋂{
J (v1) :v1 ∈ R+, J (v1) 
= ∅

}
is a non-empty closed interval, and we can therefore pick up an adaptive estimator θ̃ belonging to it, choosing for
instance the middle of this interval.

With probability at least 1 − 2ε, m ∈ J (v), which implies that J (v) 
= ∅, and therefore that θ̃ ∈ J (v).
Thus with probability at least 1 − 2ε

|m − θ̃ | ≤ ∣∣J (v)
∣∣≤ 2 inf

vmax>v
δ
(
vmax, εν(vmax)

)
.

If the confidence bound δ(vmax, ε) is homogeneous, in the sense that

δ(vmax, ε) = B(ε)
√

vmax,
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Fig. 5. Deviations of θ̃ , the adaptive mean estimator for a sample with unknown variance, compared with other estimators.

as it is the case in Proposition 2.4 (page 1153) with

B(ε) =
√

2 log(ε−1)

n(1 − 2 log(ε−1)/n)

then with probability at least 1 − 2ε,

|m − θ̃ | ≤ 2 inf
vmax>v

B
[
εν(vmax)

]√
vmax.

Thus in the case when ν is defined by equation (3.1), page 1156, and | log(v/V )| ≤ 2s log(ρ), with probability at least
1 − 2ε

|m − θ̃ | ≤ 2ρB

(
ε

2s + 1

)√
v.

Let us see what happens for a sample size of n = 500, when we assume that | log(v/V )| ≤ 2 log(100) and we take
ρ = 1.05.

Figure 5 shows that, for a sample of size n = 500, there are sample distributions with a finite variance for which
the deviations of the empirical mean blow up for confidence levels higher than 99%, where as the deviations of our
adaptive estimator remain under control, even at confidence levels as high as 1 − 10−9.

The conclusion is that if our aim is to minimize the worst estimation error over 100 statistical experiments or more
and we have no information on the standard deviation except that it is in some range of the kind (1/100,100) (which
is pretty huge and could be increased even more if desired), then the performance of the empirical mean estimator for
the worst sample distribution breaks down but thresholding very large outliers as θ̃ does can cure this problem.

4. Mean and variance estimates depending on the kurtosis

Situations where the variance is unknown are likely to happen. We have seen in the previous section how to adapt to
an unknown variance. The price to pay is a loss of a factor two in the deviation bound, and the fact that it is no longer
observable.
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Here we will make hypotheses under which it is possible to estimate both the variance and the mean, and to obtain
an observable confidence interval, without loosing a factor two as in the previous section. Making use of the kurtosis
parameter is the most natural way to achieve these goals in the framework of our approach. This is what we are going
to do here.

4.1. Some variance estimate depending on the kurtosis

In this section, we are going to consider an alternative to the unbiased usual variance estimate

V̂ = 1

n − 1

n∑
i=1

(
Yi − 1

n

n∑
j=1

Yj

)2

= 1

n(n − 1)

∑
1≤i<j≤n

(Yi − Yj )
2. (4.1)

We will assume that the fourth moment E(Y 4) is finite and that some upper bound is known for the kurtosis

κ = E[(Y − m)4]
v2

.

Our aim will be, as before with the mean, to define an estimate with better deviations than V̂ . We will use κ in the
following computations, but when only an upper bound is known, κ can be replaced with this upper bound in the
definition of the estimator and the estimates of its performance.

Let us write n = pq + r , with 0 ≤ r < p, and let {1, . . . , n} =⊔q


=1 I
 be the partition of the n first integers defined
by

I
 =
{{

i ∈ N;p(
 − 1) < i ≤ p

}
, 1 ≤ 
 < q,{

i ∈ N;p(
 − 1) < i ≤ n
}
, 
 = q.

We will develop some kind of block threshold scheme, introducing

Qδ(β) = 1

q

q∑

=1

ψ

(
1

|I
|(|I
| − 1)

∑
i,j∈I

i<j

[
β(Yi − Yj )

2 − 2δ
])

= 1

q

q∑

=1

ψ

[
β

|I
| − 1

∑
i∈I


(
Yi − 1

|I
|
∑
j∈I


Yj

)2

− δ

]
,

where ψ is a non-decreasing influence function satisfying (2.1), page 1151.
If ψ were replaced with the identity, we would have E[Qδ(β)] = βv − δ. The idea is to solve Qδ(β̂) = 0 in β̂ and

to estimate v by δ/β̂ . Anyhow, for technical reasons, we will adopt a slightly different definition for β̂ as well as for
the estimate of v, as we will show now. Let us first get some deviation inequalities for Qδ(β), derived as usual from
exponential bounds. It is straightforward to see that

E
{
exp

[
qQ(β)

]} ≤
q∏


=1

{
1 + (βv − δ)

+ 1

2

[
(βv − δ)2 + β2

|I
|2(|I
| − 1)2

∑
i<j∈I


s<t∈I


E
{[

(Yi − Yj )
2 − 2v

][
(Ys − Yt )

2 − 2v
]}]}

.
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We can now compute for any i 
= j

E
{[

(Yi − Yj )
2 − 2v

]2} = E
[
(Yi − Yj )

4]− 4v2

= 2κv2 + 6v2 − 4v2 = 2(κ + 1)v2,

and for any distinct values of i, j and s,

E
{[

(Yi − Ys)
2 − 2v

][
(Yj − Ys)

2 − 2v
]}

= E
[
(Yi − Ys)

2(Yj − Ys)
2]− 4v2

= E
{[

(Yi − m)2 + 2(Yi − m)(Ys − m) + (Ys − m)2]
× [

(Yj − m)2 + 2(Yj − m)(Ys − m) + (Ys − m)2]}− 4v2

= E
[
(Ys − m)4]+ E

{
(Ys − m)2[(Yi − m)2 + (Yj − m)2]}+ E

[
(Yi − m)2(Yj − m)2]− 4v2

= (κ − 1)v2.

Thus∑
i<j∈I


s<t∈I


E
{[

(Yi − Yj )
2 − 2v

][
(Ys − Yt )

2 − 2v
]}

= |I
|
(|I
| − 1

)
(κ + 1)v2 + |I
|

(|I
| − 1
)(|I
| − 2

)
(κ − 1)v2

= |I
|
(|I
| − 1

)2
[
(κ − 1) + 2

|I
| − 1

]
v2.

It shows that

E
{
exp

[
qQ(β)

]}≤
{

1 + (βv − δ) + 1

2
(βv − δ)2 + β2v2

2p

[
κ − 1 + 2

p − 1

]}q

.

In the same way

E
{
exp

[−qQ(β)
]}≤

{
1 − (βv − δ) + 1

2
(βv − δ)2 + β2v2

2p

[
κ − 1 + 2

p − 1

]}q

.

Let χ = κ − 1 + 2
p−1

p→∞� κ − 1. For any given β1, β2 ∈ R+, with probability at least 1 − 2ε1,

Q(β1) < β1v − δ + 1

2
(β1v − δ)2 + χβ2

1v2

2p
+ log(ε−1

1 )

q
,

Q(β2) > β2v − δ − 1

2
(β2v − δ)2 − χβ2

2v2

2p
− log(ε−1

1 )

q
.

Let us define, for some parameter y ∈ R, β̂ as

Q(β̂) = −y,

and let us choose

y = χδ2

2p
+ log(ε−1

1 )

q
and β2 = δ

v
,



1160 O. Catoni

so that Q(β2) > −y. Let us put ξ = δ −β1v and let us choose ξ such that Q(β1) < −y. This implies that ξ is solution
of

1 + ζ

2
ξ2 − (1 + ζ δ)ξ + 2y ≤ 0, where ζ = χ

p
.

Provided that (1 + ζ δ)2 ≥ 4(1 + ζ )y, the smallest solution of this equation is

ξ = 4y

1 + ζ δ +√
(1 + ζ δ)2 − 4(1 + ζ )y

.

With these parameters, with probability at least 1 − 2ε1, Q[(δ − ξ)/v] < −y < Q(δ/v), implying that

δ − ξ

v
≤ β̂ ≤ δ

v
.

Thus putting

v̂ =
√

δ(δ − ξ)

β̂
,

we get(
1 − ξ

δ

)1/2

≤ v

v̂
≤
(

1 − ξ

δ

)−1/2

.

In order to minimize ξ
δ

� 2y
δ

, we are led to take δ =
√

2p log(ε−1
1 )

χq
. We get

y = 2 log(ε−1
1 )

q
,

y

δ
=
√

2χ log(ε−1
1 )

n − r
,

ζ δ = y

δ
and (1 + ζ )y = 2 log(ε−1

1 )

q
+ 2χ log(ε−1

1 )

n − r
.

Thus the condition becomes

q ≥ 8 log
(
ε−1

1

)(
1 + χ

p

)(
1 +

√
2χ log(ε−1

1 )

n − r

)−2

. (4.2)

Proposition 4.1. Under condition (4.2), with probability at least 1 − 2ε1,

∣∣log(v) − log(̂v)
∣∣≤ −1

2
log

(
1 − ξ

δ

)
.

A simpler result is obtained by choosing ξ = 2y(1 + 2y) (the values of y and δ being kept the same, so that we
modify only the choice of β1 through a different choice of ξ ). In this case, Q(β1) < −y as soon as

(1 + 2y)2 ≤ 2 + 2ζ δ + ζ δ/y

1 + ζ
= 2 + 2ζ δ + ζ δ/y − 2ζ

1 + ζ
,

which is true as soon as (1 + 2y)2 ≤ 2 and δ
y

≥ 2, yielding the simplified condition

log
(
ε−1

1

)≤ min

{
q

4(1 + √
2)

,
n − r

8χ

}
. (4.3)
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In this case, we get with probability at least 1 − 2ε1 that

∣∣log(v) − log(̂v)
∣∣≤ −1

2
log

(
1 − 2y(1 + 2y)

δ

)
� y

δ
.

Proposition 4.2. Under condition (4.3), with probability at least 1 − 2ε1,

∣∣log(v) − log(̂v)
∣∣ ≤ −1

2
log

[
1 − 2

√
2χ log(ε−1

1 )

n − r

(
1 + 4 log(ε−1

1 )

q

)]

�
√

2χ log(ε−1
1 )

n
.

Recalling that χ = κ − 1 + 2
p−1 , we can choose in the previous proposition the approximately optimal block size

p =
⌊√

n

(κ − 1)[4 log(ε−1
1 ) + 1/2]

⌋
.

Corollary 4.3. For this choice of parameter, as soon as the kurtosis (or its upper bound) κ ≥ 3, under the condition

log
(
ε−1

1

)≤ n

36(κ − 1)
− 1

8
(4.4)

with probability at least 1 − 2ε−1
1 ,∣∣log(v) − log(̂v)

∣∣
≤ −1

2
log

[
1 − 2

√
2(κ − 1) log(ε−1

1 )

n
exp

(
4

√
4 log(ε−1

1 ) + 1/2

(κ − 1)n

)]
n→∞�

√
2(κ − 1) log(ε−1

1 )

n
.

This is the asymptotics we hoped for, since the variance of (Yi − m)2 is equal to (κ − 1)v2. The proof starts on
page 1172.

Let us plot some curves, showing the tighter bounds of Proposition 4.1 (page 1160), with optimal choice of p (Figs
6–8). We compare our deviation bounds with the exact deviation quantiles of the variance estimate of equation (4.1),
page 1158, applied to a Gaussian sample (given by a χ2 distribution). This demonstrates that we can stay of the same
order under much weaker assumptions.

4.2. Mean estimate under a kurtosis assumption

Here, we are going to plug a variance estimate v̂ into a mean estimate. Let us therefore assume that v̂ is a variance
estimate such that with probability at least 1 − 2ε1,∣∣log(v) − log(̂v)

∣∣≤ ζ.

This estimate may for example be the one defined in the previous section. Let α̂ be some estimate of the desired value
of the parameter α, to be defined later as a function of v̂. Let us define θ̂ = θ̂α̂ by

r(θ̂ ) = 1

nα̂

n∑
i=1

ψ
[̂
α(Yi − θ̂ )

]= 0, (4.5)
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Fig. 6. Comparison of variance estimates.

Fig. 7. Variance estimates for a larger sample size.
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Fig. 8. Variance estimates for a larger kurtosis.

where ψ is the narrow influence function defined by equation (2.3), page 1151. As usual, we are looking for non-
random values θ− and θ+ such that with large probability r(θ+) < 0 < r(θ−), implying that θ− < θ̂ < θ+. But there
is a new difficulty, caused by the fact that α̂ will be an estimate depending on the value of the sample. This problem
will be solved with the help of PAC-Bayes inequalities.

To take advantage of PAC-Bayes theorems, we are going to compare α̂ with a perturbation α̃ built with the help of
some supplementary random variable. Let indeed U be some uniform real random variable on the interval (−1,+1),
independent from everything else. Let us consider

α̃ = α̂ + xα sinh(ζ/2)U.

Let ρ be the distribution of α̃ given the sample value. We are going to compare this posterior distribution (meaning
that it depends on the sample), with a prior distribution that is independent from the sample. Let π be the uniform
probability distribution on the interval (α[exp(−ζ/2) − x sinh(ζ/2)], α[exp(ζ/2) + x sinh(ζ/2)]). Let us assume that

α̂ and α are defined with the help of some positive constant c as α̂ =
√

c
v̂

and α =
√

c
v

. In this case, with probability

at least 1 − 2ε1∣∣log(α) − log(̂α)
∣∣≤ ζ

2
. (4.6)

As a result, with probability at least 1 − 2ε1,

K(ρ,π) = log
(
1 + x−1).

Indeed, whenever equation (4.6) holds, the (random) support of ρ is included in the (fixed) support of π , so that the
relative entropy of ρ with respect to π is given by the logarithm of the ratio of the lengths of their supports.

Let us now upper-bound ψ [̂α(Yi − θ)] as a suitable function of ρ.
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Lemma 4.4. For any posterior distribution ρ and any f ∈ L2(ρ),

ψ

[∫
ρ(dβ)f (β)

]
≤
∫

ρ(dβ) log

[
1 + f (β) + 1

2
f (β)2 + a

2
Varρ(f )

]
,

where a ≤ 4.43 is the numerical constant of equation (7.1), page 1174.

Applying this inequality to f (β) = β(Yi − θ) in the first place and f (β) = β(θ −Yi) to get the reversed inequality,
we obtain

ψ
[̂
α(Yi − θ)

]≤
∫

ρ(dβ) log

{
1 + β(Yi − θ) + 1

2

[
β2 + a

3
x2α2 sinh(ζ/2)2

]
(Yi − θ)2

}
, (4.7)

ψ
[̂
α(θ − Yi)

]≤
∫

ρ(dβ) log

{
1 + β(θ − Yi) + 1

2

[
β2 + a

3
x2α2 sinh(ζ/2)2

]
(Yi − θ)2

}
. (4.8)

Let us now recall the fundamental PAC-Bayes inequality, concerned with any function (β, y) �→ f (β, y) ∈ L1(π ⊗
P), where P is the distribution of Y , such that inff > −1.

E

{
exp

(∫
ρ(dβ)

n∑
i=1

log
[
1 + f (β,Yi)

]− n log
[
1 + E

(
f (β,Y )

)]− K(ρ,π)

)}

≤ E

{∫
π(dβ) exp

(
n∑

i=1

log
[
1 + f (β,Yi)

]− n log
[
1 + E

(
f (β,Y )

)])}= 1,

according to [7], p. 159, and Fubini’s lemma for the last equality. Thus, from Chebyshev’s inequality, with probability
at least 1 − ε2,

∫
ρ(dβ)

n∑
i=1

log
[
1 + f (β,Yi)

]
< n

∫
ρ(dβ) log

[
1 + E

(
f (β,Y )

)]+ K(ρ,π) + log
(
ε−1

2

)
≤ n

∫
ρ(dβ)E

(
f (β,Y )

)+ K(ρ,π) + log
(
ε−1

2

)
.

Applying this inequality to the case we are interested in, that is to equations (4.7) and (4.8), we obtain with
probability at least 1 − 2ε1 − 2ε2 that

α̂r(θ+) < α̂(m − θ+) + 1

2

[
α̂2 + (a + 1)

3
x2α2 sinh(ζ/2)2

][
v + (m − θ+)2]

+ log(1 + x−1) + log(ε−1
2 )

n

and

α̂r(θ−) > α̂(m − θ−) − 1

2

[
α̂2 + (a + 1)

3
x2α2 sinh(ζ/2)2

][
v + (m − θ−)2]

− log(1 + x−1) + log(ε−1
2 )

n
.
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Let us put θ+ − m = m − θ− = √
γ v and let us look for some value of γ ensuring that r(θ+) < 0 < r(θ−), implying

that θ− ≤ θ̂ ≤ θ+. Let us choose

α =
√

2[log(1 + x−1) + log(ε−1
2 )]

n[1 − ((a + 1)/3)x2 sinh(ζ/2)2](1 + γ )v
,

(4.9)

α̂ =
√

2[log(1 + x−1) + log(ε−1
2 )]

n[1 − ((a + 1)/3)x2 sinh(ζ/2)2](1 + γ )̂v
= α

√
v

v̂
,

assuming that x will be chosen later on such that

(a + 1)

3
x2 sinh(ζ/2)2 < 1.

Since

log(1 + x−1) + log(ε−1
2 )

n
= α2

2

(
1 − (a + 1)

3
x2 sinh(ζ/2)2

)
(1 + γ )v,

we obtain with probability at least 1 − 2ε1 − 2ε2

r(θ+) < −√
γ v + αv(1 + γ )

2

(
α̂

α
+ α

α̂

)
≤ −√

γ v + αv(1 + γ ) cosh(ζ/2)

and

r(θ−) >
√

γ v − αv(1 + γ )

2

(
α̂

α
+ α

α̂

)
≥ √

γ v − αv(1 + γ ) cosh(ζ/2).

Therefore, if we choose γ such that
√

γ v = αv(1 + γ ) cosh(ζ/2), we obtain with probability at least 1 − 2ε1 − 2ε2
that r(θ+) < 0 < r(θ−), and therefore that θ− < θ̂ < θ+. The corresponding value of γ is γ = η/(1 − η), where

η = 2 cosh(ζ/2)2[log(1 + x−1) + log(ε−1
2 )]

n[1 − ((a + 1)/3)x2 sinh(ζ/2)2] .

Proposition 4.5. With probability at least 1−2ε1 −2ε2, the estimator θ̂α̂ defined by equation (4.5), page 1161, where
α̂ is set as in (4.9), page 1165, satisfies

|θ̂α̂ − m| ≤
√

ηv

1 − η
≤
√

ηv̂

1 − η
exp(ζ/2) ≤

√
ηv

1 − η
exp(ζ ).

The optimal value of x is the one minimizing

log(1 + x−1) + log(ε−1
2 )

1 − ((a + 1)/3)x2 sinh(ζ/2)2
.

Assuming ζ to be small, the optimal x will be large, so that log(1+x−1) � x−1, and we can choose the approximately
optimal value

x =
[

2(a + 1)

3
log

(
ε−1

2

)]−1/3

sinh(ζ/2)−2/3.

Let us discuss now the question of balancing ε1 and ε2. Let us put ε = ε1 + ε2 and let y = ε1/ε. Optimizing y for
a fixed value of ε could be done numerically, although it seems difficult to obtain a closed formula. However, the
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Fig. 9. Comparison of mean estimates, for a sample with bounded kurtosis and unknown variance.

entropy term in η can be written as log(1 + x−1)+ log(ε−1)− log(1 − y). Since ζ decreases, and therefore the almost
optimal x above increases, when y increases, we will get an optimal order of magnitude (up to some constant less
than 2) for the bound if we balance − log(1 − y) and log(1 + x−1), resulting in the choice y = (1 + x)−1, where x is
approximately optimized as stated above (this choice of x depends on y, so we end up with an equation for x, which
can be solved using an iterative approach). This results, with probability at least 1 − 2ε, in an upper bound for |̂θ −m|
equivalent for large values of the sample size n to√

2 log(ε−1)v

n
.

Thus we recover, as desired, the same asymptotics as when the variance is known.
Let us illustrate what we get when n = 500 or n = 1000 and it is known that κ ≤ 3 (Figs 9 and 10).
On these figures, we have plotted upper and lower bounds for the deviations of the empirical mean when the sample

distribution3 is the least favourable one in B1,κ . (These bounds will be proved later on. The upper bound is computed
by taking the minimum of three bounds, explaining the discontinuities of its derivative.) What we see on the n = 500
example is that our bound remains of the same order as the Gaussian bound up to confidence levels of order 1 − 10−8,
whereas this is not the case with the empirical mean.

In the case when n = 1000, we see that our estimator possibly improves on the empirical mean in the range of
confidence levels going from 1 − 10−2 to 1 − 10−6 and is a proved winner in the range going from 1 − 10−6 to
1 − 10−14.

Let us see now the influence of κ and plot the curves corresponding to increasing values of n and κ (Figs 11–13).
When we double the kurtosis letting n = 1000, we follow the Gaussian curve up to confidence levels of 1 − 10−10

instead of 1−10−14. This is somehow the maximum kurtosis for which the bounds are satisfactory for this sample size.
Looking at Proposition 4.2 (page 1161), we see that the bound in first approximation depends on the ratio χ/n = κ/n

3 B1,κ is defined by (1.2), page 1149.
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Fig. 10. Comparison of mean estimates, for a larger sample size.

Fig. 11. Comparison of mean estimates, for a sample distribution with larger kurtosis.
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Fig. 12. Comparison of mean estimates, when the kurtosis is even larger.

Fig. 13. Comparison of mean estimates, for a very large kurtosis and accordingly large sample size.
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(when p = 3), suggesting that to obtain similar performances, we have to take n proportional to κ , which gives a
minimum sample size of n = 1000κ/6, if we want to follow the Gaussian curve up to confidence levels of order at
least 1 − 10−10.

These curves suggest another approach to choose the kurtosis parameter κ . It is to use the largest value of the
kurtosis with a low impact on the bound of Proposition 4.5 (page 1165), given the sample size. This leads, when in
doubt about the true kurtosis value, for sample sizes n ≥ 1000, to set, according to the previous rule of thumb, the
kurtosis in the definition of the estimator to the value κmax = 6n/1000. Doing so, we get almost the same deviations
as if the sample distribution were Gaussian, at levels of confidence up to 1 − 10−10, for the largest range of (possibly
non-Gaussian) sample distributions.

5. Upper bounds for the deviations of the empirical mean

In the previous sections, we compared new mean estimators with the empirical mean. We will devote the end of this
paper to prove the bounds on the empirical mean used in these comparisons.

This section deals with upper bounds, whereas the next one will study corresponding lower bounds.
Let us start with the case when the sample distribution may be any probability measure with a finite variance. It is

natural in this situation to bound the deviations of the empirical mean

M = 1

n

n∑
i=1

Yi

applying Chebyshev’s inequality to its second moment, to conclude that

P

(
|M − m| ≥

√
v

2εn

)
≤ 2ε. (5.1)

This is in general close to optimal, as will be shown later when we will compute corresponding lower bounds.
When the sample distribution has a finite kurtosis, it is possible to take this into account to refine the bound. The

analysis becomes less straightforward, and will be carried out in this section. The following bound uses a truncation
argument, allowing to study separately the behaviour of small and large values. It is to our knowledge a new result.
We will show later in this paper that its leading term is essentially tight – up to a factor ( κ

κ−1 )1/4 – when the proper
asymptotic is considered.

Proposition 5.1. For any probability distribution whose kurtosis is not greater than κ , the empirical mean M is such
that with probability at least 1 − 2ε,

|M − m|√
v

≤ inf
λ∈(0,1)

√
2 log(λ−1ε−1)

n
+

√
κ log(λ−1ε−1)

3n

+
(

κ

2(1 − λ)n3ε

)1/4[
1 + 3(n − 1)κ log(λ−1ε−1)2

43(1 + √
2)4n2

]1/4

�
nε→0

ε1/n→1

(
κ

2n3ε

)1/4

.

Instead of minimizing the bound in λ, one can also take for simplicity

λ = min

{
1

2
,27/4

(
nε

κ

)1/4
√

log

(
κ

2nε5

)}
.

We see that there are two regimes in the behaviour of the deviations of M . A Gaussian regime for levels of
confidence less than 1−1/n and long tail regime for higher confidence levels, depending on the value of the kurtosis κ .
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In addition to this, let us also put forward the fact that, even in the simple case when the mean m is known,
estimating the variance under a kurtosis hypothesis at high confidence levels cannot be done using the empirical
estimator

M2 = 1

n

n∑
i=1

(Yi − m)2.

Indeed, assuming without loss of generality that m = 0 and computing the quadratic mean

E
{[

M2 − E
(
Y 2)]2}= E(Y 4) − E

(
Y 2
)2

n
= (κ − 1)

n
E
(
Y 2)2

,

we can only conclude, using Chebyshev’s inequality, that with probability at least 1 − 2ε

E
(
Y 2)≤ M2

1 − √
(κ − 1)/(2nε)

,

a bound which blows up at level of confidence ε = κ−1
2n

, and which we do not suspect to be substantially improvable
in the worst case. In contrast to this, Propositions 4.1 and 4.2 (page 1161) provide variance estimators with high
confidence levels.

6. Lower bounds

6.1. Lower bound for Gaussian sample distributions

This lower bound is well known. We recall it here for the sake of completeness.
The empirical mean has optimal deviations when the sample distribution is Gaussian in the following precise sense.

Proposition 6.1. For any estimator of the mean θ̂ : Rn → R, any variance value v > 0, and any deviation level η > 0,
there is some Gaussian measure N (m,v) (with variance v and mean m) such that the i.i.d. sample of length n drawn
from this distribution is such that

P(θ̂ ≥ m + η) ≥ P(M ≥ m + η) or P(θ̂ ≤ m − η) ≥ P(M ≤ m − η),

where M = 1
n

∑n
i=1 Yi is the empirical mean.

This means that any distribution free symmetric confidence interval based on the (supposedly known) value of the
variance has to include the confidence interval for the empirical mean of a Gaussian distribution, whose length is
exactly known and equal to the properly scaled quantile of the Gaussian measure.

Let us state this more precisely. With the notations of the previous proposition

P(M ≥ m + η) = P(M ≤ m − η) = G

[(√
n

v
η,+∞

(]
= 1 − F

(√
n

v
η

)
,

where G is the standard normal measure and F its distribution function.
The upper bounds proved in this paper can be decomposed into

P(θ̂ ≥ m + η) ≤ ε and P(θ̂ ≤ m − η) ≤ ε,

although we preferred for simplicity to state them in the slightly weaker form P(|θ − m| ≥ η) ≤ 2ε.
As the Gaussian shift model made of Gaussian sample distributions with a given variance and varying means, is

included in all the models we are considering in this paper, we necessarily should have according to the previous
proposition

ε ≥ 1 − F

(√
n

v
η

)
,
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which can be also written as

η ≥
√

v

n
F−1(1 − ε).

Therefore some visualization of the quality of our bounds can be obtained by plotting ε �→ η against ε �→√
v
n
F−1(1 − ε), as we did in the previous sections.

Let us remark eventually that the assumed symmetry of the confidence region is not a real limitation. Indeed, if we
can prove for any given estimator θ̂ that for any Gaussian sample distribution with a given variance v,

P
[
m ≥ θ̂ + η+(ε)

]≤ ε and P
[
m ≤ θ̂ − η−(ε)

]≤ ε,

then we may consider for any value of ε the estimator with symmetric confidence levels defined as

θ̂s = θ̂ + η+(ε) − η−(ε)

2
.

This symmetric estimator is such that for any Gaussian sample distribution with variance v,

P

[
m ≥ θ̂s + η−(ε) + η+(ε)

2

]
≤ ε,

P

[
m ≤ θ̂s − η−(ε) + η+(ε)

2

]
≤ ε.

Thus, applying the previous proposition, we obtain that

η+(ε) + η−(ε)

2
≥
√

v

n
F−1(1 − ε).

6.2. Lower bound for the deviations of the empirical mean depending on the variance

In the following proposition, we state a lower bound for the deviations of the empirical mean when the sample
distribution4 is the least favourable in Avmax (meaning the distribution for which the deviations of the empirical mean
are the largest).

Proposition 6.2. For any value of the variance v, any deviation level η > 0, there is some distribution with variance
v and mean 0 such that the i.i.d. sample of size n drawn from it satisfies

P(M ≥ η) = P(M ≤ −η) ≥ v(1 − v/(η2n2))n−1

2nη2
.

Thus, as soon as ε ≤ (2e)−1, with probability at least 2ε,

|M − m| ≥
√

v

2nε

(
1 − 2eε

n

)(n−1)/2

.

Let us remark that this bound is pretty tight, since, according to equation (5.1), page 1169, with probability at least
1 − 2ε,

|M − m| ≤
√

v

2nε
.

This can also be observed on the plots following Proposition 2.4 (page 1153).

4 Avmax is defined by (1.1), page 1149.
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6.3. Lower bound for the deviations of empirical mean depending on the variance and the kurtosis

Let us now refine the previous lower bound by taking into account the kurtosis κ of the sample distribution, assuming
of course that it is finite.

Proposition 6.3. As soon as ε−1 ≥ n ≥ 16, there exists a sample distribution with mean m, finite variance v and finite
kurtosis κ , such that with probability at least 2ε,

|M − m| ≥ max

{[
(κ − 1)(1 − 8ε)

4nε

]1/4

,

[
(κ − 1)

2nε

[
1 −

(
nε

16

)1/4

− 4ε

]]1/4

−
√

log[16/(nε)]v
2n

}√
v

n
.

Let us remark that the asymptotic behaviour of this lower bound when nε and log(ε−1)/n both tend to zero matches
the upper bound of Proposition 5.1 (page 1169) up to a multiplicative factor ( κ

κ−1 )1/4 ≤ 1.11 when the kurtosis is
κ ≥ 3, which is the kurtosis of the Gaussian distribution.

The plots following Proposition 4.5 (page 1165) show that this lower bound is not too far from the upper bound
obtained by combining Propositions 5.1 (page 1169) and Proposition 7.3 (page 1176) and equation (5.1), page 1169.

7. Proofs

7.1. Proof of Corollary 4.3 (page 1161)

Let us remark first that condition (4.4), page 1161, implies condition (4.3), page 1160, as can be easily checked.
Putting

x =
√

n

(κ − 1)[4 log(ε−1
1 ) + 1/2] ,

so that p = 
x�, we can also check that p − 1 ≥ x/2 and n − p + 1 ≥ n/2. We can then write√
2χ log(ε−1

1 )

n − r

(
1 + 4 log(ε−1

1 )

q

)

≤
√

2(κ − 1) log(ε−1
1 )

n
exp

(
1

(κ − 1)(p − 1)
+ p − 1

2(n − p + 1)
+ 4 log(ε−1

1 )p

n − p + 1

)

≤
√

2(κ − 1) log(ε−1
1 )

n
exp

(
2

(κ − 1)x
+ 2x[4 log(ε−1

1 ) + 1/2]
n

)

=
√

2(κ − 1) log(ε−1
1 )

n
exp

(
4

√
4 log(ε−1

1 ) + 1/2

(κ − 1)n

)
.

7.2. Proof of Lemma 4.4 (page 1164)

Let us introduce some modification of ψ in order to improve the compromise between infψ ′′ and supψ . Let us
put ψ(x) = log(1 + x + x2/2). We would like to squeeze some function χ between ψ and ψ , in such a way that
infχ ′′ = infψ ′′. This will be better than using ψ itself since

infψ ′′ = −1/4, whereas infψ ′′ = −2.

Indeed these two values can be computed in the following way. Let us put ϕ(x) = exp[ψ(x)] = 1 + x + x2/2. It is
easy to check that

ψ ′′(x) = −ϕ(x)−1[1 − ϕ(x)−1], ψ ′′(x) = ϕ(−x)−1[1 − ϕ(−x)−1],
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implying that ψ ′′(x) ≥ −1/4. This inequality becomes an equality when ϕ(x) = 2, that is when x = √
3 − 1 � 0.73.

In the same way ψ ′′(x) ≥ −2 and equality is reached when ϕ(−x) = 1/2, that is when x = 1. We are going to build a
function χ which follows ψ when x ≤ x1, where x1 satisfies ψ ′′(x1) = −1/4. The value of x1 is computed from the
equation ϕ(−x1)

−1 = (1 + √
2)/2. Let y1 = ψ(x1) and p1 = ψ ′(x1). They have the following values

x1 = 1 −
√

4
√

2 − 5 � 0.1895,

y1 = − log
[
2
(√

2 − 1
)]� 0.1882,

p1 =
√

4
√

2 − 5

2(
√

2 − 1)
� 0.978.

After x1, we continue χ with a quadratic function, until its derivatives cancels. Thus, the second derivative of χ being
less than the second derivative of ψ at each point of the positive real line, we are sure that χ(x) ≤ ψ(x) for any x ∈ R.
The function χ built in this way satisfies the equation

χ(x) =
⎧⎨⎩

ψ(x), x ≤ x1,
y1 + p1(x − x1) − 1

8 (x − x1)
2, x1 ≤ x ≤ x1 + 4p1,

y1 + 2p2
1 ≤ 2.103, x ≥ x1 + 4p1.

As we have proved, and as can be seen in Fig. 14, the function χ is such that

ψ(x) ≤ χ(x) ≤ ψ(x), x ∈ R.

Let us now compare χ with a suitable convex function (in order to apply Jensen’s inequality). Let us introduce to
this purpose the function χx∗ = χ(x) + 1

8 (x − x∗)2, which is convex for any choice of the parameter x∗ ∈ R.

Fig. 14. Plot of the modified influence functions used in the proof.
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Let us consider as in the lemma we have to prove some function f ∈ L2(ρ) and let us choose x∗ = ∫
ρ(dβ)f (β)

and put
∫

ρ(dβ)[f (β) − ∫
ρf ]2 = Varρ(f ). We obtain by Jensen’s inequality

ψ(x∗) ≤ χ(x∗) = χx∗(x∗) = χx∗

[∫
ρ(dβ)f (β)

]
≤
∫

ρ(dβ)χx∗
[
f (β)

]=
∫

ρ(dβ)χ
[
f (β)

]+ 1

8
Varρ(f ).

On the other hand, it is clear that

ψ(x∗) ≤
∫

ρ(dβ)χ
[
f (β)

]− infχ + supψ =
∫

ρ(dβ)χ
[
f (β)

]+ log(4).

We have proved

Lemma 7.1. For any posterior distribution ρ and any f ∈ L2(ρ),

ψ

[∫
ρ(dβ)f (β)

]
≤
∫

ρ(dβ)χ
[
f (β)

]+ min

{
log(4),

1

8
Varρ(f )

}
.

To end the proof of Lemma 4.4 (page 1164), it remains to establish that for any x ∈ R and y ∈ R+,

χ(x) + min

{
log(4),

y

8

}
≤ log

[
1 + x + x2/2 + ay

2

]
,

where

a = 3 exp[sup(χ)]
4 log(4)

= 3 exp(y1 + 2p2
1)

4 log(4)
≤ 4.43. (7.1)

Indeed a should satisfy

a ≥ 2

y

[
exp

[
χ(x)

]
min

{
4, exp

(
y

8

)}
−
(

1 + x + x2

2

)]
, x ∈ R, y ∈ R+.

Since exp[χ(x)] ≤ 1 + x + x2

2 , the right-hand side of this inequality is less than

2 exp[χ(x)]
y

(
min

{
4, exp

(
y

8

)}
− 1

)
.

As y �→ y−1[exp(
y
8 ) − 1] is increasing on R+, this last expression reaches its maximum when x ∈ arg maxχ and

exp(
y
8 ) = 4, and is then equal to 3 exp[sup(χ)]

4 log(4)
, which is the value stated for a in equation (7.1) above.

7.3. Proof of Proposition 5.1 (page 1169)

Consider the function

g(x) =
{

x − log
(
1 + x + x2/2

)
, x ≥ 0,

x + log
(
1 − x + x2/2

)
, x ≤ 0.

This function could also be defined as g(x) = x −ψ(x), where ψ is the wide version of the influence function defined
by equation (2.2), page 1151. It is such that

g′(x) = x2

2(1 + x + x2/2)
≤ x2

2
, x ≥ 0.
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Therefore

0 ≤ g(x) ≤ x3

6
, x ≥ 0,

implying by symmetry that

∣∣g(x)
∣∣≤ |x|3

6
, x ∈ R.

We can also remark that

g′(x) ≤ x

2(1 + √
2)

, x ≥ 0,

implying that

∣∣g(x)
∣∣≤ x2

4(1 + √
2)

, x ∈ R.

As it is also obvious that |g(x)| ≤ |x|, we get

Lemma 7.2.∣∣g(x)
∣∣≤ min

{
|x|, x2

4(1 + √
2)

,
|x|3

6

}
.

Now let us write

M = m + 1

αn

n∑
i=1

ψ
[
α(Yi − m)

]+ 1

αn

n∑
i=1

Gi,

where Gi = g[α(Yi −m)] and ψ is the wide influence function of equation (2.2), page 1151. As we have already seen
in Proposition 2.2 (page 1152), with probability at least 1 − 2ε1,∣∣∣∣∣ 1

nα

n∑
i=1

ψ
[
α(Yi − m)

]∣∣∣∣∣≤ αv

2
+ log(ε−1

1 )

nα
.

On the other hand with probability at least 1 − ε2∣∣∣∣∣ 1

nα

n∑
i=1

Gi

∣∣∣∣∣≤ 1

nα

n∑
i=1

|Gi | ≤ E(|G|)
α

+ E[(∑n
i=1 |Gi | − E(|G|))4]1/4

nαε
1/4
2

.

Let us put Hi = |Gi | and let us compute

1

n
E

[(
n∑

i=1

Hi − E(H)

)4]
= E

{[
H − E(H)

]4}+ 3(n − 1)E
{[

H − E(H)
]2}2

= E
(
H 4)− 4E

(
H 3)

E(H) + 6E
(
H 2)

E(H)2 − 3E(H)4

+ 3(n − 1)
[
E
(
H 2)2 − 2E

(
H 2)

E(H)2 + E(H)4]
≤ E

(
H 4)+ 2E

(
H 2)

E(H)2 − 3E(H)4

+ 3(n − 1)
[
E
(
H 2)2 − 2E

(
H 2)

E(H)2 + E(H)4]
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≤ E
(
H 4)+ 3(n − 1)E

(
H 2)2 − (3n − 2)E(H)4

≤ α4κv2 + 3(n − 1)
κ2α8v4

[4(1 + √
2)]4

− (3n − 2)E(H)4.

Moreover

E(H) ≤ α3

6
E
(|Y − m|3)≤ α3

6

√
κv3.

Thus with probability at least 1 − 2ε1 − ε2,

|M − m| ≤ αv

2
+ log(ε−1

1 )

nα

+ sup
x∈(0,

√
κα6v3/6)

x

α
+ n−3/4α−1ε

−1/4
2

[
κα4v2 + 3(n − 1)κ2α8v4

[4(1 + √
2)]4

− (3n − 2)x4
]1/4

≤ αv

2
+ log(ε−1

1 )

nα
+

√
κv3α2

6
+

√
v

n3/4

(
κ

ε2

)1/4[
1 + 3(n − 1)κα4v2

[4(1 + √
2)]4

]1/4

.

Let us take

α =
√

2 log(ε−1
1 )

nv

and let us put ε1 = λε and ε2 = (1 − λ)2ε.
The bound can either be optimized in λ or we can for simplicity choose λ to balance the following factors√

2v log(λ−1ε−1)

n
�

√
v

n3/4

(
κ

2ε

)1/4
λ

4
.

This leads to consider the value

λ = min

{
1

2
,2

√
2 log

(
κ

2nε5

)(
2nε

κ

)1/4}
.

As stated in Proposition 5.1 (page 1169), with probability at least 1 − 2ε,

|M − m| ≤
√

2v log(λ−1ε−1)

n
+

√
κv log(λ−1ε−1)

3n

+
√

v

n

(
κ

2(1 − λ)nε

)1/4[
1 + 3(n − 1)κ log(λ−1ε−1)2

43(1 + √
2)4n2

]1/4

�
ε→0

√
v

n

(
κ

2nε

)1/4

.

Another bound can be obtained applying Chebyshev’s inequality directly to the fourth moment of the empirical
mean, which however does not reach the right speed when ε is small and n large.

Proposition 7.3. For any probability distribution whose kurtosis is not greater than κ , the empirical mean M is such
that with probability at least 1 − 2ε,

|M − m| ≤
(

3(n − 1) + κ

2nε

)1/4√
v

n
.
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Proof. Let us assume to simplify notations and without loss of generality that E(Y ) = 0.

E
(
M4)= 1

n4

n∑
i=1

E
(
Y 4

i

)+ 1

n4

∑
i<j

6E
(
Y 2

i

)
E
(
Y 2

j

)= E(Y 4)

n3
+ 3(n − 1)E(Y 2)2

n3
.

It implies that

P
(|M − m| ≥ η

)≤ E(M4)

η4
≤ [3(n − 1) + κ]v2

n3η4
,

and the result is proved by considering

2ε = [3(n − 1) + κ]v2

n3η4
. �

In our comparisons with new estimators, we took the minimum over the three bounds given by Propositions 5.1
(page 1169) and 7.3 (page 1176) and equation (5.1), page 1169.

7.4. Proof of Proposition 6.1 (page 1170)

Let us consider the distributions P1 and P2 of the sample (Yi)
n
i=1 obtained when the marginal distributions are respec-

tively the Gaussian measure with variance v and mean m1 = −η and the Gaussian measure with variance v and mean
m2 = η. We see that, whatever the estimator θ̂ ,

P1(θ̂ ≥ m1 + η) + P2(θ̂ ≤ m2 − η) = P1(θ̂ ≥ 0) + P2(θ̂ ≤ 0)

≥ (P1 ∧ P2)(θ̂ ≥ 0) + (P1 ∧ P2)(θ̂ ≤ 0) ≥ |P1 ∧ P2|,

where P1 ∧ P2 is the measure whose density with respect to the Lebesgue measure (or equivalently with respect to
any dominating measure, such as P1 + P2) is the minimum of the densities of P1 and P2 and whose total variation is
|P1 ∧ P2|.

Now, using the fact that the empirical mean is a sufficient statistics of the Gaussian shift model, it is easy to realize
that

|P1 ∧ P2| = P1(M ≥ m1 + η) + P2(M ≤ m2 − η),

which obviously proves the proposition.

7.5. Proof of Proposition 6.2 (page 1171)

Let us consider the distribution with support {−nη,0, nη} defined by

P
({nη})= P

({−nη})= [
1 − P

({0})]/2 = v

2n2η2
.

It satisfies E(Y ) = 0, E(Y 2) = v and

P(M ≥ η) = P(M ≤ −η) ≥ P(M = η) = v

2nη2

(
1 − v

n2η2

)n−1

.
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7.6. Proof of Proposition 6.3 (page 1172)

Let us consider for Y the following distribution, with support {−nη,−ξ, ξ, nη}, where ξ and η are two positive real
parameters, to be adjusted to obtain the desired variance and kurtosis.

P(Y = −nη) = P(Y = nη) = q,

P(Y = −ξ) = P(Y = ξ) = 1

2
− q.

In this case

m = 0,

v = (1 − 2q)ξ2 + 2qn2η2,

κv2 = (1 − 2q)ξ4 + 2qn4η4.

Thus

κ = fq(nη/ξ),

where

fq(x) = 1 − 2q + 2qx4

(1 − 2q + 2qx2)2
, x ≥ 1.

It is easy to see that fq is an increasing one to one mapping of (1,+∞( into itself. We obtain

ξ =
√

v

1 − 2q + 2q[f −1
q (κ)]2

≤ √
v and η = ξf −1

q (κ)

n
.

Consequently(
κ

2q

)1/4 √
v

n
≥ η ≥

(
κ − 1 + 2q

2q

)1/4 √
v

n
.

On the other hand,

P(M ≥ η − γ ) ≥
n∑

i=1

P

(
Yi = nη,

1

n

∑
j,j 
=i

Yj ≥ −γ,Yj ∈ {−ξ, ξ}, j 
= i

)
= nP(Y1 = nη)(1 − 2q)n−1

×
[

1 − P

(
1

n

n∑
i=2

Yi ≥ γ

∣∣∣Yj ∈ {−ξ, ξ},2 ≤ j ≤ n

)]
.

Let us remark that

P

(
1

n

n∑
i=2

Yi ≥ γ

∣∣∣Yj ∈ {−ξ, ξ},2 ≤ j ≤ n

)

≤ inf
λ≥0

cosh(λξ/n)n−1 exp(−λγ ) ≤ inf
λ≥0

exp

(
λ2ξ2

2n
− λγ

)
= exp

(
−nγ 2

2ξ2

)
≤ exp

(
−nγ 2

2v

)
.
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Also, by symmetry

P

(
1

n

n∑
i=2

Yi ≥ γ

∣∣∣Yj ∈ {−ξ, ξ},2 ≤ j ≤ n

)
≤ 1

2
.

Thus, as m = 0,

P
(|M − m| ≥ η − γ

)≥ 2nq(1 − 2q)n−1 max

{
1

2
,1 − exp

(
−nγ 2

2v

)}
.

Let us put

χ = min

{
1

2
, exp

(
−nγ 2

2v

)}
and let us assume that ε ≤ 1

16 . Let us put

q = ε

n(1 − χ)

(
1 − 4ε

n(1 − χ)

)−(n−1)

≤ 2ε

n(1 − χ)
,

the last inequality being a consequence of the convexity of x �→ (1 − x)n−1 ≥ 1 − (n − 1)x ≥ 1 − nx,0 ≤ x ≤ 1. Let
us remark then that

P
(|M − m| ≥ η − γ

)≥ 2ε(1 − 2q)n−1

(1 − 4ε/(n(1 − χ)))n−1
≥ 2ε.

Thus, with probability at least 2ε,

|M − m| ≥
[
(κ − 1 + 2ε/n)(1 − χ)

2nε

]1/4(
1 − 4ε

n(1 − χ)

)(n−1)/4√
v

n
−
√

2 log(χ−1)v

n

≥ sup
0<χ≤1/2

[
(κ − 1 + 2ε/n)(1 − χ − 4ε)

2nε

]1/4√
v

n
−
√

2 log(χ−1)1(χ < 1/2)v

n
.

In order to obtain Proposition 6.3 (page 1172), it is enough to restrict optimization with respect to χ to the two values

χ = (nε)1/4

2
and χ = 1

2
.

8. Generalization to non-identically distributed samples

The assumption that the sample is identically distributed can be dropped in Proposition 2.4 (page 1153). Indeed,
assuming only that the random variables (Yi)

n
i=1 are independent, meaning that their joint distribution is of the product

form
⊗n

i=1 Pi , we can still write, for Wi = ±α(Yi − θ),

E

{
exp

[
n∑

i=1

log

(
1 + Wi + W 2

i

2

)]}

= exp

{
n∑

i=1

log

[
1 + E(Wi) + E(W 2

i )

2

]}

≤ exp

{
n log

[
1 + 1

n

n∑
i=1

E(Wi) + 1

2n

n∑
i=1

E
(
W 2

i

)]}
.
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Starting from these exponential inequalities, we can reach the same conclusions as in Proposition 2.4 (page 1153),
as long as we set

m = 1

n

n∑
i=1

E(Yi) and v = 1

n

n∑
i=1

E
[
(Yi − m)2].

We see that the mean marginal sample distribution 1
n

∑n
i=1 Pi is playing here the same role as the marginal sample

distribution in the i.i.d. case.

9. Experiments

9.1. Mean estimators

Theoretical bounds can explore high confidence levels better than experiments, and have also the advantage to hold
true in the worst case. They have led us to introduce new M-estimators, and in particular the one described in Proposi-
tion 4.5 (page 1165). Nonetheless, they may be expected to be rather pessimistic and are clearly insufficient to explore
the moderate deviations of the proposed estimators. In particular it would be interesting to know whether the improve-
ment in high confidence deviations has been obtained as a trade-off between large and moderate deviations (by which
we mean a trade-off between the left part and the tail of the quantile function of |θ̂ − m|).

This is a good reason to launch into some experiments. We are going to test sample distributions of the form

d∑
i=1

pi N
(
mi,σ

2
i

)
,

where d ∈ {1,2,3}, (pi)i=1,...,d is a vector of probabilities and N (m,σ 2) is as usual the Gaussian measure with mean
m and variance σ 2. To visualize results, we have chosen to plot the quantile function of the deviations from the true
parameter, that is the quantile function of |θ̂ − m|, where θ̂ is one of the mean estimators studied in this paper.

Let us start with an asymmetric distribution with a so to speak intermittent high variance component. Let us take
accordingly

p1 = 0.7, m1 = 2, σ1 = 1,

p2 = 0.2, m2 = −2, σ2 = 1,

p3 = 0.1, m3 = 0, σ3 = 30.

In this case, m = 1, κ = 27.86 and v = 93.5, so that, when the sample size n is in the range 100 ≤ n ≤ 1000, the
variance estimates we are proposing in this paper are not proved to be valid. For this reason we will challenge the
empirical mean with the two following estimates: the estimate θ̂α of Proposition 2.4 (page 1153) (where α is chosen
using the true value of v) and a naive plug-in estimate, θ̂α̂ , where α̂ is set as was α, replacing the true variance v with
its unbiased estimate V̂ given by equation (4.1), page 1158. The parameter ε is set to ε = 0.05 for both estimators,
targeting the probability level 1 − 2ε = 0.9.

We will plot also the sample median estimator, in this case where the distribution median is different from its mean,
to show that robust location estimators for symmetric distributions do not apply here.

When the sample size is n = 100, we obtain the following results (computed from 1000 experiments); see Fig. 15.
In this first example, the new M-estimators have uniformly better quantiles than the empirical mean, at any probability
level. Moreover the variance can be harmlessly estimated from the data when it is unknown. Thus, in this case, the
empirical mean is outperformed from any conceivable point of view.

Let us now increase the sample size to n = 1000 (Fig. 16). As should be expected, the values of the three estima-
tors get close for this larger sample size (whereas it becomes more obvious that the empirical median is estimating
something different from the mean).
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Fig. 15. Some experimental comparison of mean estimators, for a small sample size with a high kurtosis.

Fig. 16. Experimental study of mean estimators for a larger sample size.
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Fig. 17. For each sample size, there are sample distributions for which the empirical mean can be improved.

The empirical mean can still be challenged for this larger sample size (Fig. 17), but for a different sample distri-
bution. To illustrate this, let us consider a situation as simple as the mixture of two centered Gaussian measures. Let
d = 2 and

p1 = 0.99, m1 = 0, σ1 = 1,

p2 = 0.01, m2 = 0, σ2 = 30.

Here κ = 243.5, v = 9.99 and m = 0. We take ε = 0.005, targeting the probability level 1 − 2ε = 1 − 10/n = 0.99.
Let us show some heavily asymmetric situation where the left-hand side of the quantile function of the new esti-

mators does not improve on the empirical mean. In what follows κ = 33.4, v = 72.25, m = −1.3, and the mixture
parameters are

p1 = 0.94, m1 = 0, σ1 = 1,

p2 = 0.01, m2 = 20, s2 = 20,

p3 = 0.05, m3 = −30, s3 = 20.

In Fig. 18 we plot two estimators using the value of the variance, optimized for the confidence level 1 − 2ε with
ε = 0.05 and ε = 0.0005 respectively (the estimators with unknown variance show the same behaviour).

Here, choosing a moderate value of the estimator parameter ε is required to improve uniformly on the empirical
mean performance, whereas higher values of ε produce a trade-off between low and high probability levels. Whether
this remains true in general would require to be confirmed by more extensive experiments.

Let us end this section with a Gaussian sample.
When the sample is Gaussian, as could be expected, our new M-estimators coincide with the empirical mean

(Fig. 19). What we obtained for a sample size n = 1000 could also be observed for other sample sizes. The deviations
of the empirical median are higher in the Gaussian case, as proved in Proposition 6.1 (page 1170) (stating that the
deviations of the empirical mean of a Gaussian sample are optimal).
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Fig. 18. The trade-off between high and low confidence levels appears when one is targeting very high confidence levels.

Fig. 19. When the sample distribution is Gaussian, our modified estimator is the same as the empirical mean, which is known to have optimal
deviations.
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9.2. Variance estimators

Let us now test some variance estimates. This is an example where the usual unbiased estimate V̂ defined by equation
(4.1), page 1158, shows its weakness. To demonstrate things on simple sample distributions, we choose again a
mixture of two Gaussian measures

p1 = 0.995, m1 = 0, σ1 = 1,

p2 = 0.005, m2 = 1, σ2 = 5.

Here κ = 10.357, v = 1.125 and m = 0.005. To be in a situation where the variance estimates of Proposition 4.1 (page
1160) work at high confidence levels, we choose a sample size n = 2000, and use in the estimator the parameters
κmax = 6 ∗ n/1000 = 12, p = 2 and ε = 0.0025 (targeting the probability level 1 − 2ε = 1 − 10/n = 0.0995); see
Fig. 20. So, for the variance as well as for the mean, there are simple situations in which our new estimators perform
better in practice than the more traditional ones.

9.3. Computation details

To compute the estimators in these experiments, we used the two following iterative schemes (performing two itera-
tions was enough for all the examples shown).

θ0 = M, θk+1 = r(θk) + θk,

β0 = δ − y

V̂
, βk+1 = δ − y

Q(βk) + δ
βk.

They are based on two principles: they have the desired fixed point and their right-hand side would be independent
respectively of θk and βk if ψ was replaced with the identity. The fact that ψ is close to the identity explains why the
convergence is fast and only a few iterations are required.

Fig. 20. Experimental study of an improved variance estimate.
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These numerical schemes involve only a reasonable amount of computations, opening the possibility to use the
new estimators in improved filtering algorithms in signal and image processing (a subject for future research that will
not be pushed further in this paper).

10. Conclusion

Theoretical results show that, for some sample distributions, the deviations of the empirical mean at confidence levels
higher than 90% are larger than the deviations of some well chosen M-estimator. Moreover, in our experiments, based
on non-Gaussian sample distributions, the deviation quantile function of this M-estimator is uniformly below the
quantile function of the empirical mean. The improvement of the confidence interval at level 90% can be more than
25%.

Using Lepski’s adapting approach offers a response with proved properties to the case when the variance is un-
known. For sample sizes starting from 1000, an alternative is to use an M-estimator of the variance depending on
some assumption on the value of the kurtosis. However, it seems that the variance can in practice be estimated by
the usual unbiased estimator V̂ , defined by equation (4.1), page 1158, and plugged in the estimator of Proposition
2.4 (page 1153), although there is no mathematical warrant for this simplified scheme.

References

[1] P. Alquier. PAC-Bayesian bounds for randomized empirical risk minimizers. Math. Methods Statist. 17 (2008) 279–304. MR2483458
[2] J.-Y. Audibert. A better variance control for PAC-Bayesian classification. Preprint n.905bis, Laboratoire de Probabilités et Modèles Aléatoires,

Universités Paris 6 and Paris 7, 2004. Available at http://www.proba.jussieu.fr/mathdoc/textes/PMA-905Bis.pdf.
[3] J.-Y. Audibert and O. Catoni. Robust linear least squares regression. Ann. Statist. 39 (2011) 2766–2794. MR2906886
[4] J.-Y. Audibert and O. Catoni. Robust linear regression through PAC-Bayesian truncation. Unpublished manuscript, 2010. Available at http:

//hal.inria.fr/hal-00522536.
[5] R. Beran. An efficient and robust adaptive estimator of location. Ann. Statist. 6 (1978) 292–313. MR0518885
[6] P. J. Bickel. On adaptive estimation. Ann. Statist. 10 (1982) 647–671. MR0663424
[7] O. Catoni. Statistical Learning Theory and Stochastic Optimization: École d’Été de Probabilités de Saint-Flour XXXI – 2001. Lecture Notes

in Math. 1851. Springer, Berlin, 2004. MR2163920
[8] O. Catoni. PAC-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning. IMS Lecture Notes Monogr. Ser. 56. Insti-

tute of Mathematical Statistics, Beachwood, OH, 2007. MR2483528
[9] P. J. Huber. Robust estimation of a location parameter. Ann. Math. Statist. 35 (1964) 73–101. MR0161415

[10] P. J. Huber. Robust Statistics. Wiley Series in Probability and Mathematical Statistics. Wiley-Interscience, New York, 1981. MR0606374
[11] O. Lepski. Asymptotically minimax adaptive estimation I: Upper bounds. Optimally adaptive estimates. Theory Probab. Appl. 36 (1991)

682–697. MR1147167
[12] D. A. McAllester. PAC-Bayesian model averaging. In Proceedings of the 12th Annual Conference on Computational Learning Theory.

Morgan Kaufmann, New York, 1999. MR1811612
[13] D. A. McAllester. Some PAC-Bayesian theorems. Mach. Learn. 37 (1999) 355–363.
[14] D. A. McAllester. PAC-Bayesian stochastic model selection. Mach. Learn. 51 (2003) 5–21.
[15] C. J. Stone. Adaptive maximum likelihood estimators of a location parameter. Ann. Statist. 3 (1975) 267–284. MR0362669

http://www.ams.org/mathscinet-getitem?mr=2483458
http://www.proba.jussieu.fr/mathdoc/textes/PMA-905Bis.pdf
http://www.ams.org/mathscinet-getitem?mr=2906886
http://hal.inria.fr/hal-00522536
http://www.ams.org/mathscinet-getitem?mr=0518885
http://www.ams.org/mathscinet-getitem?mr=0663424
http://www.ams.org/mathscinet-getitem?mr=2163920
http://www.ams.org/mathscinet-getitem?mr=2483528
http://www.ams.org/mathscinet-getitem?mr=0161415
http://www.ams.org/mathscinet-getitem?mr=0606374
http://www.ams.org/mathscinet-getitem?mr=1147167
http://www.ams.org/mathscinet-getitem?mr=1811612
http://www.ams.org/mathscinet-getitem?mr=0362669
http://hal.inria.fr/hal-00522536

	Introduction
	Some new M-estimators
	Adapting to an unknown variance
	Mean and variance estimates depending on the kurtosis
	Some variance estimate depending on the kurtosis
	Mean estimate under a kurtosis assumption

	Upper bounds for the deviations of the empirical mean
	Lower bounds
	Lower bound for Gaussian sample distributions
	Lower bound for the deviations of the empirical mean depending on the variance
	Lower bound for the deviations of empirical mean depending on the variance and the kurtosis

	Proofs
	Proof of Corollary 4.3 (page 1161)
	Proof of Lemma 4.4 (page 1164)
	Proof of Proposition 5.1 (page 1169)
	Proof of Proposition 6.1 (page 1170)
	Proof of Proposition 6.2 (page 1171)
	Proof of Proposition 6.3 (page 1172)

	Generalization to non-identically distributed samples
	Experiments
	Mean estimators
	Variance estimators
	Computation details

	Conclusion
	References

