Abstract
We provide a new exponential concentration inequality for first passage percolation valid for a wide class of edge times distributions. This improves and extends a result by Benjamini, Kalai and Schramm (Ann. Probab. 31 (2003)) which gave a variance bound for Bernoulli edge times. Our approach is based on some functional inequalities extending the work of Rossignol (Ann. Probab. 35 (2006)), Falik and Samorodnitsky (Combin. Probab. Comput. 16 (2007)).
On obtient une nouvelle inégalité de concentration exponentielle pour la percolation de premier passage, valable pour une large classe de distributions des temps d’arêtes. Ceci améliore et étend un résultat de Benjamini, Kalai et Schramm (Ann. Probab. 31 (2003)) qui donnait une borne sur la variance pour des temps d’arêtes suivant une loi de Bernoulli. Notre approche se fonde sur des inégalités fonctionnelles étendant les travaux de Rossignol (Ann. Probab. 35 (2006)), Falik et Samorodnitsky (Combin. Probab. Comput. 16 (2007)).
Citation
Michel Benaïm. Raphaël Rossignol. "Exponential concentration for first passage percolation through modified Poincaré inequalities." Ann. Inst. H. Poincaré Probab. Statist. 44 (3) 544 - 573, June 2008. https://doi.org/10.1214/07-AIHP124
Information