Processing math: 100%
Open Access
Spring 2019 Eigenvalue problems involving the fractional p(x)-Laplacian operator
E. ‎Azroul‎, A. ‎Benkirane‎, M. ‎Shimi‎
Adv. Oper. Theory 4(2): 539-555 (Spring 2019). DOI: 10.15352/aot.1809-1420

Abstract

‎ ‎‎In this paper‎, ‎we study a nonlocal eigenvalue problem involving variable exponent growth conditions‎, ‎on a bounded domain ΩRn‎. ‎Using adequate variational techniques‎, ‎mainly based on Ekeland's variational principle‎, ‎we establish the existence of a continuous family of eigenvalues lying in a neighborhood at the right of the origin‎.

Citation

Download Citation

E. ‎Azroul‎. A. ‎Benkirane‎. M. ‎Shimi‎. "Eigenvalue problems involving the fractional p(x)-Laplacian operator." Adv. Oper. Theory 4 (2) 539 - 555, Spring 2019. https://doi.org/10.15352/aot.1809-1420

Information

Received: 14 September 2018; Accepted: 18 November 2018; Published: Spring 2019
First available in Project Euclid: 1 December 2018

MathSciNet: MR3883152
Digital Object Identifier: 10.15352/aot.1809-1420

Subjects:
Primary: 35R11
Secondary: 35J20 , 35P30

Keywords: ‎ ‎‎eigenvalues problem , Ekeland's variational principle , ‎‎fractional p(x)-Laplacian operator , ‎fractional Sobolev spaces with variable exponent

Rights: Copyright © 2019 Tusi Mathematical Research Group

Vol.4 • No. 2 • Spring 2019
Back to Top