Abstract
Let $X$ be a completely regular Hausdorff space, and let $\mathcal{D}$ be a cover of $X$ by $C_{b}$-embedded sets. Let $\pi: \mathcal{E} \rightarrow X$ be a bundle of Banach spaces (algebras), and let $\Gamma(\pi)$ be the section space of the bundle $\pi.$ Denote by $\Gamma _{b}(\pi,\mathcal{D})$ the subspace of $\Gamma (\pi )$ consisting of sections which are bounded on each $D \in \mathcal{D}$. We construct a bundle $\rho ^{\prime }: \mathcal{F}^{\prime}\rightarrow \beta X$ such that $\Gamma _{b}(\pi , \mathcal{D}) $ is topologically and algebraically isomorphic to $\Gamma(\rho^\prime)$, and use this to study the subspaces (ideals) and quotients resulting from endowing $\Gamma _{b}(\pi,\mathcal{D})$ with the cover topology determined by $\mathcal{D}$.
Citation
Terje Hõim. D. A. Robbins. "Cover topologies, subspaces, and quotients for some spaces of vector-valued functions." Adv. Oper. Theory 3 (2) 351 - 364, Spring 2018. https://doi.org/10.15352/AOT.1706-1177
Information