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COVER TOPOLOGIES, SUBSPACES, AND QUOTIENTS FOR
SOME SPACES OF VECTOR-VALUED FUNCTIONS

TERJE HÕIM1 AND D. A. ROBBINS2∗

Communicated by M. S. Moslehian

Abstract. Let X be a completely regular Hausdorff space, and let D be a
cover of X by Cb-embedded sets. Let π : E → X be a bundle of Banach
spaces (algebras), and let Γ(π) be the section space of the bundle π. Denote
by Γb(π,D) the subspace of Γ(π) consisting of sections which are bounded
on each D ∈ D. We construct a bundle ρ′ : F ′ → βX such that Γb(π,D) is
topologically and algebraically isomorphic to Γ(ρ′), and use this to study the
subspaces (ideals) and quotients resulting from endowing Γb(π,D) with the
cover topology determined by D.

1. Introduction

The present paper investigates the subspace and quotient structures of certain
spaces and algebras of vector-valued functions. By using the theory of bundles
of topological vector spaces, our work extends to more general spaces of vector-
valued functions many of the results to be found in [1] and [2] regarding the
structure of some subspaces (ideals) and quotients of C(X), where X is a com-
pletely regular Hausdorff space.

Unless otherwise noted, X will denote a completely regular Hausdorff space,
with Stone-Čech compactification βX. The scalar space, either R or C, will be
denoted by K. As usual, Cb(X) will denote the space of bounded, K-valued func-
tions on X. If Y is a topological space, and if Z ⊂ W ⊂ Y, it is clear what we
mean if we say “W -closure of Z” or “Z is Y -closed”. If α = αX : X → βX is the
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canonical homeomorphism of X onto a dense subspace of βX, we will write, again
as suits the context, α(X) = X ⊂ βX. A set D ⊂ X is said to be Cb-embedded
if D = α(D) ⊂ βD = D ⊂ βX; equivalently, D ⊂ X is Cb-embedded if each
f ∈ Cb(D) has an extension in Cb(X). It is well-known that if X is completely
regular, and if K ⊂ X is compact, then K is Cb-embedded; if X is normal, then
any closed set C ⊂ X is Cb-embedded. If A is a commutative Banach algebra,
∆(A) will be the space of non-trivial K-valued algebra homomorphisms on A; as
usual, we can also identify ∆(A) as the space of closed maximal ideals in A. If
g : X → Y is a function and C ⊂ X, then gC is the restriction of g to C; if G is
a set of functions g : X → Y, then GC = {gC : g ∈ G}.

We will be concerned with certain subspaces and quotients of Γ(π), the space
of sections of the bundle of Banach spaces (= Banach bundle) π : E → X, and
in particular, we will investigate such structures when π : E → X is a bundle of
Banach algebras (= Banach algebra bundle). For details of the development of
such bundles, and of bundles of topological vector spaces in general, we refer the
reader to [3]; further elaboration can be found in e.g. [8], [9], [4] and [5]. The
essentials are the following; they can be found e.g. in [3], [5] or [6], but we repeat
them here for convenience.

Consider the following situation: Let {Ex : x ∈ X} be a collection of locally
convex topological vector spaces over K, indexed by X, and let the total space

E =
•⋃
{Ex : x ∈ X} be their disjoint union, with π : E → X the natural

projection. We let S be a vector space of choice functions σ : X → E (i.e.
σ(x) ∈ Ex for each x ∈ X) such that the following conditions hold:

C1) for each x ∈ X, φx(S) = {σ(x) : σ ∈ S} = Ex (in this case, S is said to be
full; φx is the evaluation map at x);

C2) S is a Cb(X)-module;
C3) there is a collection {px

j : j ∈ J } of seminorms on each Ex such that for
each σ ∈ S the numerical function x 7→ px

j (σ(x)) is upper semicontinuous and
bounded on X for each j ∈ J ;

C4) S is closed in the locally convex topology generated by

pj(σ) = sup
x∈X

px
j (σ(x)) <∞;

C5) for each x ∈ X, the relative topology on Ex ⊂ E is its original locally
convex topology.

Under these conditions, there is a topology on E (the bundle topology) which
makes S a subspace of the space Γ(π) of all sections (section = continuous choice
function) τ : X → E . In this bundle topology, a neighborhood of z ∈ Ex ⊂ E is
given by tubes of the form

T = T (U, z, ε) = {z′ ∈ E : π(z′) ∈ U and p
π(z′)
j (σ(π(z′))− z′) < ε},

where U ⊂ X is a neighborhood of x, σ ∈ Γ(π) with σ(π(z)) = z, j ∈ J , and
ε > 0. Especially, if S satisfies conditions C1) –C5), it is a subspace of Γb(π),
the space of bounded sections of the bundle π : E → X (π, if there can be no
confusion). Then the addition map from E ∨ E to E , (z, z′) 7→ z+z′ is continuous,
where E ∨ E = {(z, z′) ∈ E × E : π(z) = π(z′)} is the fibered product of E with
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itself, and the multiplication map Cb(X)× Γb(π)→ Γ(π), (f, σ) 7→ fσ is jointly
continuous when both Cb(X) and Γb(π) are given their sup-norms.

If each fiber Ex is a locally convex topological algebra and if S is an algebra,
then π is a bundle of locally convex algebras. In this case, multiplication from
E ∨ E to E , (z, z′) 7→ zz′ is also continuous, and Γ(π) is an algebra (evidently,

commutative if and only if each fiber Ex is commutative).
If it happens that J is the singleton J = {‖•‖}, with px

‖•‖(σ(x)) = ‖σ(x)‖
for σ ∈ S, we call π : E → X a bundle of Banach spaces (algebras) (= Banach
[algebra] bundle); in particular, Γb(π) is a Banach space (Banach algebra) in the
sup norm.

The intuitive notion is that, if π : E → X is a bundle of topological vector
spaces, and if σ ∈ Γ(π), then we can think of σ(x) as moving continuously
through the various spaces Ex as x moves continuously through X.

In the current paper, as we did in [6], we will restrict ourselves to starting with
the case of Banach bundles. However, as in the papers [4] and [5], it is possible
that some of the following results have analogues that hold in the context of
bundles of locally convex vector spaces (resp. locally convex algebras).

The reader may wish to consult e.g. [3], [4] and [5] for various examples of
Banach (algebra) bundles.

2. Stone-Čech bundles and restriction bundles

Consider now a Banach bundle π : E → X. We know that Γ(π), the space of
sections of π, is a Cb(X)-module under the pointwise operations, and that Γb(π),
the space of bounded sections of the bundle, is a Banach Cb(X)-module, when
both spaces are given their sup norms. Note that Γb(π) can also be considered
as a C(βX)-module, in the following easy fashion: There is an isometric algebra
isomorphism ̂ : Cb(X)→ C(βX) such that for each f ∈ Cb(X) and x ∈ X we

have f̂(α(x)) = f(x), where, again, α : X → βX is the canonical map. We think

of f̂ as the unique continuous extension of f from X to βX. We then use the
mapping ̂ to determine the action of C(βX) on Γb(π); namely for f ∈ Cb(x)

and σ ∈ Γb(π) we define f̂ ∗ σ by(
f̂ ∗ σ

)
(x) = f̂(α(x))σ(x) = (fσ)(x),

i.e. f̂ ∗ σ = fσ. We note further that Γb(π) is in this fashion a C(βX)-locally

convex module: that is, if σ ∈ Γb(π), and if f, g ∈ Cb(X), with f̂ · ĝ = f̂g = 0 (if
and only if fg = 0), then∥∥∥f̂ ∗ σ + ĝ ∗ σ

∥∥∥ = ‖fσ + gσ‖ = max{‖fσ‖ , ‖gσ‖} = max{
∥∥∥f̂ ∗ σ∥∥∥ , ‖ĝ ∗ σ‖}.

Thus, from [8], there exists a “canonical bundle” ρ : F =
•⋃
{Fy : y ∈ βX} →

βX and an isometric C(βX)-isomorphism ˜ : Γb(π) → Γ(ρ) which satisfies
the equation (̃

f̂ ∗ σ
)

= f̃σ = f̂ · σ̃.
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For y ∈ βX we set Iy = {f̂ ∈ C(βX) : f̂(y) = 0}. In particular, for x ∈ X, we

have f ∈ Ix = {g ∈ Cb(X) : g(x) = 0} if and only if f̂ ∈ Iα(x). The fibers Fy

(y ∈ βX) of F then take the form Fy '
Γb(π)

Iy ∗ Γb(π)
, where Iy ∗Γb(π) is the closure

in Γb(π) of the span of sections of the form f̂ ∗ σ = fσ, over all f̂ ∈ C(βX) with

f̂ ∈ Iy and σ ∈ Γb(π). Then σ̃(y) = σ + Iy ∗ Γb(π). In particular, if x ∈ X, we

identify Ex '
Γb(π)

Iα(x) ∗ Γb(π)
=

Γb(π)

IxΓb(π)
, and as appropriate in context we will write

σ(x) either as an explicit value in Ex or as the corresponding coset σ + IxΓb(π).
Define a map η : E → F as follows: If z ∈ Ex ⊂ E (so that x ∈ X), choose

σ ∈ Γb(π) such that σ(π(z)) = σ(x) = z. Set

η(z) = σ̃(π(z)) = σ̃(x) = σ̃ + Iα(x) ∗ Γb(π) = σ + IxΓb(π) = σ(x).

Then φ is well-defined on E , and η(Ex) = Fα(x).

Note, moreover, that for each σ, τ ∈ Γb(π) and f ∈ Cb(X) we have ‖σ + fτ‖ =∥∥∥∥ ˜
σ + f̂ ∗ τ

∥∥∥∥ ; this holds in particular for f ∈ Ix ⊂ Γb(π). Since for x ∈ X and

f ∈ Ix we have f(x) = 0 = f̂(α(x)), this yields

‖η(z)‖ = ‖σ + IxΓb(π)‖ =
∥∥σ̃ + Iα(x) ∗ Γb(π)

∥∥ = ‖σ(x)‖ = ‖z‖ .

Hence, η is an isometric isomorphism on fibers, and we have Ex ' Fα(x). With
this identification established, we write E ⊂ F , and transfer the topology of E
over into F . We claim that η is then a homeomorphism of E (with its bundle
topology) onto a dense subset of F (with its bundle topology).

To see the density claim, let y ∈ βX \ X, and let z ∈ Fy. Since the bundle
ρ : F → βX is full (because βX is compact; see [3, Cor. 2.10]), and recalling
that Γb(π) ' Γ(ρ), there exists σ ∈ Γb(π) such that σ̃(y) = z. Then for a βX-
neighborhood U of y, and ε > 0, the set

T = T (U, σ̃, ε) = {z′ ∈ F : ρ(z′) ∈ U and ‖z′ − σ̃(ρ(z′))‖ < ε}

is a basic open neighborhood of z in F . But X is dense in βX, so we can choose
x ∈ X with x ∈ U. We then have σ(x) = σ̃(x) = σ̃(ρ(σ̃(x))), so that z′ =
σ(x) ∈ T. That is, T contains an element of E , so that E is dense in F . We
call ρ : F → βX the Stone-Čech bundle associated with π : E → X. That η
is injective and continuous is clear. The density argument itself shows that the
topology of F relativized to E is the original bundle topology on E , in that the
tube T in F contains a tube in E around σ(x) = σ̃(x), where x ∈ U ∩X.

The following summarizes this discussion; it formalizes a remark stated without
proof after Corollary 3.2 in [8].

Theorem 2.1. Suppose that π : E → X and Γb(π) are as generally given, and let
α : X → βX be the homeomorphism which takes X onto a dense subset of βX.
Then there is a bundle of Banach spaces ρ : F → βX, and a homeomorphism η
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of E onto a dense subset of F which makes the following diagram commute:

E η→ F
π ↓ ↓ ρ
X

α→ βX

In particular, for each x ∈ X, the fiber Ex over x ∈ X in π is isometrically
isomorphic as a Banach space to Fα(x), the fiber over α(x) = x in ρ. Using this
identification of fibers, there is also a C(βX)-isometric isomorphism ˜: Γb(π)→
Γ(ρ) such that for each σ ∈ Γb(π), and x ∈ X, we have σ̃(α(x)) = σ(x). Thus
defined, σ̃ can be thought of as the unique continuous extension of σ from X to
βX.

Corollary 2.2. Suppose π : E → X is a bundle of commutative Banach algebras
Ex. Then the maximal ideal space ∆(Γb(π)) can be identified with the disjoint

union
•⋃
{∆(Fy) : y ∈ βX} of the maximal ideal spaces of the fibers Fy, where ρ :

F → βX is the Stone-Čech bundle associated with π : E → X. If H ∈ ∆(Γb(π)),
then the identification is given by H ←→ h◦φy for some y ∈ βX and h ∈ ∆(Fy);
we have H(σ) = h(σ̃(y)).

Proof. Note that Γb(π) and Γ(ρ) are isometrically isomorphic, where ρ : F → βX
is the Stone-Čech bundle for π, and apply [9, Corollary 5]. �

Remark 2.3. Note that if π : E → X is a bundle of Banach algebras, so also is
its Stone-Čech bundle ρ : F → βX. In particular, if σ, τ ∈ Γb(π) then σ̃ · τ̃ =
σ̃τ ∈ Γ(ρ); since multiplication is continuous from E ∨ E to E , a standard density
argument shows that it is also continuous from F ∨ F to F .

Some examples may serve to illustrate the point.

Example 2.4.

(2.4.1) Let X be infinite, and let π1 : E1 =
•⋃

x∈X K = X × K → X be the
trivial bundle, where X × K is given its product topology, and whose section
space Γ(π) can be identified with C(X); of course, Γb(π) can then be identified

with Cb(X). Then ρ : F =
•⋃

y∈βX K → βX is the trivial bundle, and Γ(ρ) can

be identified with C(βX); the unique extension property from Γb(π) to Γ(ρ) is
then just the usual Stone-Čech extension of bounded continuous functions on X
to continuous functions on βX.

(2.4.2) Let X = N, and let π0 : E0 =
•⋃

x∈X K→ X be the “spiky” line bundle
with fibers K (see [8, Section 3]), whose section space Γb(π0) can be identified
with c0, the closure in the sup-norm of the K-valued functions on X with finite
support. Then ρ : F → βX has fibers Fy = K if y ∈ X, and Fy = {0} if
y ∈ βX \ X; the unique extension of σ ∈ Γb(π0) is defined by σ̃(y) = σ(y) if
y ∈ X, and σ̃(y) = 0 otherwise. To see this, note that we can regard c0 as
a subspace of l∞, the space of bounded functions on X; and for σ ∈ Γb(π0), its
image σ̃ in Γ(ρ) is “in” C(βX). Since X is dense in βX, for y ∈ βX \X we choose
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a net (xλ) ⊂ X such that xλ → y in βX. Then σ̃(xλ)→ σ̃(y) in K, and since for
any neighborhood of y ∈ βX and each ε > 0 there are only finitely many xλ such
that |σ̃(xλ)| > ε, it follows that σ̃(y) = 0.

(2.4.3) We can actually do somewhat better than in Example 2.4.2: given
infinite X, let {Ex : x ∈ X} be a collection of non-trivial spaces indexed by X,

and consider the spiky bundle π′0 : E ′0 =
•⋃

x∈X Ex → X with fibers Ex whose
section space is the sup-norm closure of the choice functions σ : X → E ′0 with
finite support. Let x ∈ X and y ∈ βX \ X, choose z ∈ Ex. Let U and V be
disjoint closed neighborhoods in βX of x and y, respectively. Let σ ∈ Γb(π

′
0) be

defined by σ(x) = z and σ(x′) = 0 if x′ 6= x. Let â, b̂ ∈ C(βX) be supported on U

and V, respectively, with â(x) = b̂(y) = 1, where a, b ∈ Cb(X). Then α−1(U) = U ′

is a closed neighborhood of x in X, and α−1(V ) = V ′ is a closed set in X, disjoint

from U ′. We have σ = aσ = (a+ b)σ, so that σ̃ = ãσ = ãσ + b̃σ, forcing b̃σ = 0,

and thus b̃σ(y) = 0. Since b̂(y) = 1, we have σ̃(y) = 0; and so since y ∈ βX \X
was arbitrary, we have σ̃(y) = 0 everywhere on βX \X. But now, if τ ∈ Γb(π

′
0),

we can write τ =
∑

n σn for some collection (σn) ⊂ Γb(π
′
0) where each σn has

singleton support in X, so that we have τ̃(y) = 0 =
∑

n σ̃n(y) for all y ∈ βX \X.
Hence Ey = {0} for each y ∈ βX \X, and so the Stone-Čech bundle for the spiky
bundle π′0 has fibers Ex for x ∈ X ⊂ βX, and Ey = {0} on βX \X.

Note that the original bundles π0 and π1 of Examples 2.4.1 and 2.4.2 are both
continuously normed, that is x 7→ ‖σ(x)‖ is continuous for each section σ of the
respective bundle. It is also the case in both examples (in Example 2.4.2 because
each point of N is isolated in βN), that each section σ̃ is continuously normed in
its Stone-Čech bundle. Is it always the case that if π : E → X is continuously
normed, then so is its Stone-Čech bundle?

Now, let π : E → X be a Banach bundle, and let D ⊂ X be Cb-embedded. We

set ED =
•⋃
{Ex : x ∈ D}, and give ED its relative topology from E . Evidently,

if σ ∈ Γ(π), then σD : D → ED is a continuous choice function when both D
and ED have their relative topologies. Since π : E → X is a full bundle, then
{σD : σ ∈ Γ(π)} is a full set of sections for ED, and the map x 7→ ‖σD(x)‖ is
upper semicontinuous on D.

That there is a bundle πD : ED → D such that {σD : σ ∈ Γ(π)} = [Γ(π)]D ⊂
Γ(πD) follows from [3, Proposition 5. 11] and the following:

Lemma 2.5. Let D ⊂ X be Cb-embedded. Then [Γb(π)]D is a Cb(D)-module.

Proof. Let f ∈ Cb(D), and let f ∗ be a bounded extension of f to all of X. If
σ ∈ [Γb(π)]D, then there exists τ ∈ Γb(π) such that σ = τD. We then have
fσ = (f ∗)DτD = (f ∗τ)D ∈ [Γb(π)]D. �

Call πD the restriction bundle (to D) of π : E → X. In particular, if K ⊂ X
happens to be compact, we have [Γ(π)]K = Γ(πK) ([3, Theorem. 5.8]). A similar
situation obtains if D ⊂ X is Cb-embedded.
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Definition 2.6. Let π : E → X be a Banach bundle, and let D ⊂ X. Say that D
is Γb(π)-embedded if each bounded section of the restriction bundle πD : ED → D
can be extended to a section in Γb(π); that is, if σ ∈ Γb(πD) then there exists
τ ∈ Γb(π) such that σ = τD. Say that D ⊂ X is Γb-embedded if D is Γb(π)-
embedded for each Banach bundle π : E → X.

Theorem 2.7. Let π : E → X be a Banach bundle and let D ⊂ X. Then D is
Cb-embedded if and only if it is Γb-embedded.

Proof. Let D ⊂ X be Cb-embedded, and let π : E → X be a Banach bundle,
with Stone-Čech bundle ρ : F → βX. Let σ ∈ Γb(πD), and let σ̃ be its unique
extension in Γ(ρβD), where ρβD : FβD → βD is the Stone-Čech bundle for πD;
ρβD is also the restriction of ρ to βD, because βD is compact in βX. Now, by the
Tietze theorem for bundles (see [3, Corollary 4.5] or [7, Lemma 3.3]), each section
ρ ∈ Γ(ρβD) can be extended in a norm-preserving fashion to τ ∗ ∈ Γ(ρ). Thus, if
we start with σ ∈ Γb(πD), then σ can be extended uniquely to σ̃ ∈ Γ(ρβD), and
σ̃ itself can be extended to τ ∈ Γ(ρ). We then have

(τX)D = τD = (σ̃)D = σ,

so that τX extends σ to all of X.
For the reverse direction, simply note that to say D ⊂ X is Cb-embedded is

equivalent to saying that D is Γb(π1)-embedded with respect to the trivial bundle

π1 : E1 =
•⋃

x∈X K→ X, whose section space can be identified with C(X). �

Corollary 2.8. Let D ⊂ X be Cb-embedded. Then [Γb(π)]D = Γb(πD).

Proof. From the preceding discussion, we need only show that Γb(πD) ⊂ [Γb(π)]D.
But if σ ∈ Γb(πD), then σ has a bounded extension τ to all of X; i.e. σ = τD ∈
[Γb(π)]D. �

Remark 2.9. If D ⊂ X is Cb-embedded, and if σ ∈ Γb(πD), let τ and ω be exten-
sions in Γb(π) of σ. Both τ and ω have unique extensions τ ∗ and ω∗ in Γ(ρ), where
ρ : F → βD is the Stone-Čech bundle for π. Then τ ∗βD and ω∗βD are extensions
of τ and ω to βD, so that τ ∗βD = ω∗βD. Thus, if τ and ω are any two bounded
continuous extensions of σ to X, their continuous extensions τ ∗ and ω∗ to βX
must agree on βD.

3. The cover topology on Γb(π,D)

Now, let D be a cover of X, let π : E → X be a Banach bundle and set

Γb(π,D) = {σ ∈ Γ(π) : σ is bounded on each D ∈ D}.
Clearly we have

Γb(π) ⊂ Γb(π,D) ⊂ Γ(π).

For D ∈ D, define the seminorm pD on Γb(π,D) by pD(σ) = supx∈D ‖σ(x)‖ , and
let tD be the topology on Γb(π,D) generated by the seminorms pD. We call tD the
cover-topology on Γb(π,D) determined by D, or the D-cover topology, and note
that on Γb(π) we have tp ≺ tβ,D ≺ tD ≺ tu, where tp and tu are the topologies of
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pointwise and uniform convergence, respectively, t
β,D is the cover-strict topology

studied in [6], and where t1 ≺ t2 means that convergence with respect to t2 implies
convergence with respect to t1. In the D-cover topology, subbasic neighborhoods
of σ ∈ Γb(π,D) are of the form

N = N(D, σ, ε) = {τ ∈ Γb(π,D) : pD(σ − τ) = sup
x∈D
‖σ(x)− τ(x)‖ < ε}

as D ∈ D and ε > 0 vary. Briefly, tD is the topology of uniform convergence on
the elements of D.

Remark 3.1. If D is a compact cover, then tD = tβ,D on Γb(π,D).

Proof. A tβ,D-subbasic neighborhood around σ ∈ Γb(π,D) is of the form

N ′(D, σ, v, ε) = {τ ∈ Γb(π,D) : sup
x∈D

v(x) ‖σ(x)− τ(x)‖ < ε},

where D ∈ D, ε > 0, and v is a non-negative upper semicontinuous function (a
weight) on X which disappears at infinity. (See [6] for this definition.) Since
χD, the characteristic function of D, is such a weight, we have N(D, σ, ε) =

N ′(D, σ, χD, ε). On the other hand, it is easily checked that N(D, σ,
ε

‖v‖+ 1
) ⊂

N ′(D, σ, v, ε). �

We now prove some completeness and density results for Γb(π,D) in its tD-
topology under certain conditions on D. Again from [6] we have the following:

Definition 3.2. Let D be a cover of X. Say that D is sufficiently open if given
x ∈ X there exists D ∈ D and an X-neighborhood U of x such that x ∈ U ⊂ D.
Say that D is sufficiently locally compact if given x ∈ X there exists D ∈ D and
an X-neighborhood U of x such that U is D-compact (and hence X-compact)
and x ∈ U ⊂ D.

Noting that a sufficiently locally compact cover is sufficiently open, the follow-
ing is the tD-topology version of Propositions 2.4 and 2.5 of [6].

Theorem 3.3. Let D be a sufficiently open cover of X. Let π : E → X be a
Banach bundle. Then Γb(π,D) is tD-complete.

Proof. Let (σλ) be a tD-Cauchy net in Γb(π,D), and let D be a sufficiently open
cover of X. Given ε > 0 and D ∈ D, there exists λ0 such that if λ, λ′ ≥ λ0

then pD(σλ−σλ′) = supy∈D ‖σλ(y)− σλ′(y)‖ < ε. Thus, (σλ) is uniformly Cauchy
on D, and hence converges pointwise on D, and hence on all of X. Then this
pointwise limit τ of (σλ) is also bounded on each D because (σλ) is uniformly
Cauchy on D, and each σλ is itself bounded on D. We claim that τ is continuous
on all of X.

If not, suppose that τ is discontinuous at x ∈ X, and choose D ∈ D and an
X-open U such that x ∈ U ⊂ D. From the definition of continuity, and the
definition of the topology in E , there exist ε > 0, ξ ∈ Γ(π) with ξ(x) = τ(x) and
ξ bounded on a neighborhood V ⊂ U, and a net (xµ) ⊂ V such that xµ → x but
such that for no µ do we have τ(xµ) ∈ T = T (V, ξ(x), ε) = {z′ ∈ E : π(z′) ∈ V
and ‖τ(π(z′))− ξ(π(z′))‖ < ε}. That is, xµ → x, but ‖τ(xµ))− ξ(xµ)‖ ≥ ε.
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Since (σλ) is tD-Cauchy, there exists λ0 such that if λ, λ′ ≥ λ0 we have

sup
xµ∈U

‖σλ(xµ)− σλ′(xµ)‖ ≤ sup
y∈D
‖σλ(y)− σλ′(y)‖ = pD(σλ − σλ′) < ε/2.

Setting λ′ = λ0 and passing to the limit in λ, we thus have ‖τ(xµ)− σλ0(xµ)‖ ≤
ε/2 for all xµ ∈ V. But σλ0 ∈ Γb(π,D) ⊂ Γ(π) and xµ → x, so that for suffi-
ciently large µ we have σλ0(xµ) ∈ T (V, ξ(x), ε/2); this is a contradiction, since
‖τ(xµ)− σλ0(xµ)‖ ≤ ε/2 implies that ‖σλ0(xµ)− ξ(xµ)‖ > ε/2, and hence that
σλ0(xµ) 6∈ T (V, ξ(x), ε/2). �

Assume now that D is a cover of X by Cb-embedded sets.

Proposition 3.4. Let π : E → X be as usual, and let D be a cover of X by
Cb-embedded sets which is closed under finite unions. Then Γb(π) is tD-dense in
Γb(π,D). In particular, this holds if 1) D is a compact cover, or if 2) D is a closed
cover and X is normal.

Proof. If D1, . . . , Dn ∈ D, then D = D1 ∪ . . . ∪Dn is also Cb-embedded. Hence,
for σ ∈ Γ(π,D), σ is bounded on D, and thus σD, the restriction of σ to D,
has a bounded extension σ∗ ∈ Γb(π). For ε > 0, setting N = {τ ∈ Γb(π) :
‖σDk

(x)− τDk
(x)‖ < ε for each x ∈ Dk, k = 1, . . . n}, we see that N is a typical

tD-neighborhood of σ, and evidently σ∗ ∈ N. �

Corollary 3.5. Let D be a cover of X by Cb-embedded sets which is closed
under finite unions. Suppose also that M ⊂ Γb(π,D) is a Cb(X)-submodule of
Γb(π) such that MD is (sup-norm) dense in Γb(πD) for each D ∈ D. Then M is
tD-dense in Γb(π,D).

This naturally leads to the question of when MD might be dense in Γb(πD) for

each D ∈ D, or, equivalently, when M̃D is dense in Γ(ρβD) for each D. If D is a
compact cover, then of course for each D ∈ D we have D = βD.

Corollary 3.6. Suppose that D is a compact cover of X which is closed under
finite unions. Let M be a Cb(X)-submodule of Γb(π,D) such that Mx is dense in
Ex for each x ∈ X. Then M is tD-dense in Γb(π,D).

Proof. Let D ∈ D. Under the given circumstance, MD is a Cb(D)-submodule of
the (Banach space) Γb(πD). By the Stone-Weierstrass theorem for section spaces
of Banach bundles over compact bases ([3, Corollary 4.3]), MD is norm-dense in
Γb(πD). �

The following example shows that we cannot in the above Corollary replace
“compact cover closed under finite unions” with “Cb-embedded cover closed under
finite unions” and obtain our density result.

Example 3.7. Consider the trivial bundle π1 : E =
•⋃

x∈N K → N whose section
space Γ(π1) can be identified with the set of all K-valued sequences, and let D
= {N}. Then Γb(π1) = Cb(N) = `∞ ' C(βN). We have M = c0 = c0(N) is a
closed Cb(N)-submodule of Γb(π1), and Mx = K for each x ∈ N, but clearly M is
not dense in Γb(π1), even though N is Cb-embedded in itself.
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This then raises the following: Suppose that π : E → X is a Banach bundle
and that M ⊂ Γb(π) is a Cb(X)-submodule such that Mx is dense in Ex for each
x ∈ X. Are there conditions apart from compactness of X sufficient to imply that
M is dense in Γb(π)?

The following positive result is rather special, but we state it for the record.
We refer the reader to [3] for definitions.

Proposition 3.8. Suppose that π : E → X is a Banach bundle and that D is
a cover of X by locally paracompact and Cb-embedded sets. Let M ⊂ Γb(π) be a
subspace such that MD is fully additive and fiberwise dense in Γb(πD) for each
D ∈ D. Then M is tD-dense in Γb(π).

Proof. By [3, Theorem 4.2], MD is dense in Γb(πD) for each D, and the result
follows from above. �

4. A bundle construction, and its application to ideals and
quotients in Γb(π,D)

In the paper [6] we obtained ideal and quotient results about Γb(π,D) in its
tβ,D-topology directly from the definition of the topology, essentially because of
the presence of compact sets X in that definition. In our current situation, we
do not necessarily have compact sets, and it would be useful to have them. We
guarantee their existence (but lose some generality) by letting D be a cover of
X by Cb-embedded sets and then constructing a bundle ρ′ : F ′ → βX from the
restriction bundles ρβD : FβD → βD as D ranges over D.

Letting D be such a Cb-embedded cover, note first that if D ∈ D, then with our
construction of πD : ED → D, both D and ED have their relative topologies, which
we can transfer homeomorphically into βX and F , respectively. We can then
talk about the closures of D and ED in βX and F . In particular, if σ ∈ Γb(πD),
and ˜D is the isometric map from Γb(πD) to Γ(ρβD) (where again for D ∈ D,

ρβD : FβD =
•⋃
{Fy : y ∈ βD} → βD is the Stone-Čech bundle for π), then ED

is dense in FβD, and FβD carries its relative topology from F . If D1, D2 ∈ D,
and σ ∈ Γb(π,D), let σ̃D1 and σ̃D2 be the extensions of σD1 and σD2 to βD1 and
βD2, respectively. Since these extensions are unique, for y ∈ βD1∩βD2, we have
σ̃D1(y) = σ̃D2(y).

Given the above data, consider the set F ′ =
•⋃

D∈D {F ′
y : y ∈ βD}, where

F ′
y = Fy if y ∈ βD for some D ∈ D, and F ′

y = {0} if y ∈ βX \
⋃
{βD : D ∈ D}.

Let ρ′ : F ′ → βX be the natural projection. For σ ∈ Γb(π,D), define the selection
ψ(σ) : βX → F ′ by

[ψ(σ)] (y) =


0 ∈ F ′

y, if y ∈ βX \
⋃
{βD : D ∈ D}

r̃D(σ)
D

(y) ∈ F ′
y = Fy, if y ∈ βD.

,

where rD : Γb(π,D)→ Γb(π,D) is the restriction map. (The preceding paragraph
shows that F ′

y and [ψ(σ)] (y) are well-defined, should y ∈ βD1 ∩ βD2.)
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Then M = ψ(Γb(π,D)) is a collection of selections from βX to F ′; clearly, M
is a Cb(X) ' C(βX)-module. It is also evident that My = {[ψ(σ)] (y) : σ ∈
Γb(π,D)} = F ′

y for each y ∈ βX. For σ ∈ Γb(π,D) and y ∈ βX, define

p̃y
βD(ψ(σ)) = χβD(y) ‖[ψ(σ)] (y)‖ ,

where χβD is the characteristic function of βD ⊂ βX. Then y 7→ p̃y
βD([ψ(σ)] (y))

is upper semicontinuous on βX (because χβD is upper semicontinuous on βX,
and because ψ(σ)βD = σ̃βD so that y 7→ ‖[ψ(σ)] (y)‖ is upper semicontinuous on

βD). The p̃y
βD (D ∈ D) generate the norm topology on F ′

y. Now, for σ ∈ Γb(π,D)
and D ∈ D, define seminorms p̃βD on ψ(Γb(π,D)) by

p̃βD(ψ(σ)) = sup
y∈βX

χβD(y) ‖[ψ(σ)] (y)‖ = sup
y∈βD

‖[ψ(σ)] (y)‖

= sup
y∈βD

p̃y
βD(ψ(σ)) = sup

y∈βD
‖σ(y)‖

= pD(σ).

We now observe that the selections ψ(Γb(π,D)), together with the seminorms
{p̃βD : D ∈ D} satisfy conditions C1) - C5) on βX, and therefore determine a
bundle topology on ρ′ : F ′ → βX (so that ρ′ is a bundle of topological vector
spaces). The only condition which might be at issue for this assertion is C4),
and to show this we need only note that the equality pD(σ) = p̃βD(ψ(σ)) for each
D ∈ D establishes a topological and algebraic isomorphism between Γb(π,D) and
ψ(Γb(π,D)).

This combined with the compactness of βX and the fullness of the space of
selections ψ(Γb(π,D)) allow us to apply [3, Propositions 4.2 and 5.11] to obtain:

Theorem 4.1. Let π : E → X be a bundle of Banach spaces, and D a cover
of X by Cb-embedded sets. Then there is a bundle ρ′ : F ′ → βX of topological
vector spaces such that Γb(π,D) in its tD-topology is topologically and algebraically
isomorphic to Γ(ρ′). The topology on Γ(ρ′) generated by the seminorms ρ̃βD (D ∈
D) is the D′-cover topology defined by the compact cover

D′ = {βD : D ∈ D} ∪ {{y} : y ∈ βX \
⋃
{βD : D ∈ D}}

of βX.

We now use this bundle to study ideals and quotients in Γb(π,D) when π is a
bundle of commutative Banach algebras. Our first goal is to specify ∆(Γb(π,D)),
the space of continuous non-trivial K-valued multiplicative homomorphisms on
Γb(π,D) with its D-cover topology.

Remark 4.2. Suppose that π : E → X is a bundle of commutative Banach alge-
bras. If D ∈ D, y ∈ βD, φy : Γ(ρ′)→ F ′

y is the evaluation map, and h ∈ ∆(F ′
y),

then H = h ◦ φy ◦ ψ ∈ ∆(Γb(π,D)) when Γb(π,D) is given its D-cover topology.

Proof. Each of the maps making upH is a non-trivial algebra homomorphism. �

The next result then provides the converse to the above remark.
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Theorem 4.3. Let π : E → X be a bundle of commutative Banach algebras, with
Stone-Čech bundle ρ : F → βX, and let D be a cover of X by Cb-embedded sets.
Let ρ′ : F ′ → βX be the bundle constructed above. Let H ∈ ∆(Γb(π,D)), where
Γb(π,D) is given its D-cover topology. Then there exist D ∈ D, y ∈ βD, and
h ∈ ∆(F ′

y) such that H = h◦φy◦ψ. As a consequence, we may identify ∆(Γb(π,D))
as a point set with

⋃
{∆(Fy) : y ∈

⋃
D∈D βD}. Analogously to Corollary 2, if

H ∈ ∆(Γb(π,D)), then H ←→ h◦φy◦ψ, for some choice of D ∈ D, y ∈
⋃

D∈D βD,
and h ∈ ∆(Fy).

Proof. Give Γb(π,D) its D-cover topology, and let H ∈ ∆(Γb(π,D)). Then H ′ =
H ◦ ψ−1 ∈ ∆(Γ(ρ′)), where ψ is the topological isomorphism from Γb(π,D) to
Γ(ρ′). Because D′ is a compact cover of βX, from [9, Corolary 5], we have H ′ =
h ◦ φy for some y ∈ βX and h ∈ ∆(F ′

y); since ∆(F ′
y) = ∅ for y ∈ βX \

⋃
{βD :

D ∈ D}, we may thus write H ′ = h ◦ φy for some y ∈
⋃
{βD : D ∈ D} and

h ∈ ∆(F ′
y) = ∆(Fy). Hence

H ′ = h ◦ φy = H ◦ ψ−1,

or

H ′ ◦ ψ = H = h ◦ φy ◦ ψ.
�

As a consequence of the isomorphism ψ : Γb(π,D) → Γ(ρ′), we obtain a com-
plete description of the structure of the tD-closed ideals in Γb(π,D) in certain
situations. Namely,

Corollary 4.4. Given a bundle of Banach algebras π : E → X and a cover D
of X by Cb-embedded sets, the algebra Γb(π,D) satisfies spectral synthesis (i.e.
each tD-closed ideal in Γb(π,D) is the intersection of the tD-closed maximal ideals
which contain it) if and only if each fiber F ′

y ⊂ F ′ (where ρ′ : F ′ → βX is the
bundle constructed above) satisfies spectral synthesis.

Proof. Since βX is compact and D′ is a compact cover of βX, the D′-cover topol-
ogy tD′ on Γ(ρ′) is also the D′-strict cover topology tβ,D′ ; it follows that Γ(ρ′)
satisfies spectral synthesis if and only if each fiber F ′

y satisfies spectral synthesis;
see [6, Theorem 3.8]. Hence a tD′-closed ideal I ′ ⊂ Γ(ρ′) can be written as the
intersection of the closed maximal ideals (in Γ(ρ′)) which contain it. But then
our result follows by the topological isomorphism of Γb(π,D) and Γ(ρ′), and the
consequent correspondence of closed ideals. �

As in [6], however, it is too much to hope that tD-closed ideals in Γb(π,D)
correspond on a one-to-one basis with closed sets in X; see the example in the
cited paper. That such a result does hold in Cb(X,D) (see [1, Theorem 3.4]) is
a consequence of the fibers in the trivial bundle π1 : E1 = X × K → X being
one-dimensional over K.

We now investigate the quotients of Γb(π,D). Given our characterization above
of Γb(π,D) as the space of sections Γ(ρ′), where ρ′ : F ′ → βX is the bundle
constructed above, this is not difficult.
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We let I ⊂ Γb(π,D) be a tD-closed ideal. Then I ′ = ψ(I) ⊂ Γ(ρ′) is a tD′-
closed ideal. For y ∈ βX, let I ′y = {[ψ(σ)](y) : σ ∈ Γb(π,D)}. Then because

βX is compact and tD′ = tβ,D′ , we have I ′ = {ψ(σ) ∈ Γ(ρ′) : [ψ(σ)](y) ∈ I ′y
for all y ∈ βX, as σ ranges over Γb(π,D)}. For σ ∈ Γb(π,D) and y ∈ βX, set

[̂ψ(σ)](y) = [̂ψ(σ)] +
F ′

y

I ′y
. Translating the language of [6, Prop. 4.1] to the current

situation, we then have the following:

Theorem 4.5. Let π : E → X be a bundle of Banach algebras, D a Cb-embedded
cover of X, and I ⊂ Γb(π,D) a tD-closed ideal. Let ρ′ : F ′ → βX be the bundle
constructed earlier, and let I ′ ⊂ Γ(ρ′) be the t′D-closed ideal corresponding to I.

Then there is a bundle of Banach algebras ρI′ : G ′ → βX, with fibers G′
y =

F ′
y

I ′y

such that the map ̂ :
Γ(ρ′)

T ′
→ Γb(ρ

′
I′ ,D′) defined for σ ∈ Γb(π,D) by

[ψ(σ)] + I ′ 7→ [y 7→ [̂ψ(σ)](y) = [̂ψ(σ)] +
F ′

y

I ′y
]

is an injective and continuous C(βX)-homomorphism whose image is dense in
Γ(ρ′I′ ,D′).

Then, restricting to X, we have

Corollary 4.6. Let π : E → X be a bundle of Banach algebras, D a Cb-embedded
cover of X, and I ⊂ Γb(π,D) a tD-closed ideal. Then there is a bundle πI : G → X

of quotients Gx =
Ex

Ix
such that the map ̂ :

Γb(π,D)

T
→ Γb(πI ,D) defined

for each σ ∈ Γb(π,D) by

σ + I 7→ [x 7→ σ̂(x) = σ̂ +
Ex

Ix
]

is an injective and continuous Cb(X)-homomorphism whose image is dense in
Γ(πI ,D).
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