Abstract
Let p be a prime integer, 1≤s≤r be integers and F be a field of characteristic different from p. We find upper and lower bounds for the essential p-dimension edp($ Al{{g}_{{{{p}^r},{{p}^s}}}} $) of the class $ Al{{g}_{{{{p}^r},{{p}^s}}}} $ of central simple algebras of degree pr and exponent dividing ps. In particular, we show that ed(Alg8,2)=ed2(Alg8,2)=8 and edp($ Al{{g}_{{{{p}^2},p}}} $)=p2+p for p odd.
Citation
Sanghoon Baek. Alexander S. Merkurjev. "Essential dimension of central simple algebras." Acta Math. 209 (1) 1 - 27, 2012. https://doi.org/10.1007/s11511-012-0080-8
Information