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1. Introduction

Let F :Fields/F!Sets be a functor from the category Fields/F of field extensions over F

to the category Sets of sets. Let E∈Fields/F and K⊂E be a subfield over F . An element
α∈F(E) is said to be defined over K (and K is called a field of definition of α) if there
exists an element β∈F(K) such that α is the image of β under the map F(K)!F(E).
The essential dimension of α, denoted by edF (α), is the least transcendence degree
tr degF (K) over all fields of definition K of α. The essential dimension of F is

ed(F) = sup{edF (α)},

where the supremum is taken over all fields E∈Fields/F and all α∈F(E) (see [3, Defi-
nition 1.2] or [7, §1]). Informally, the essential dimension of F is the smallest number of
algebraically independent parameters required to define F and may be thought of as a
measure of complexity of F .

Let p be a prime integer. The essential p-dimension of α, denoted by edFp (α), is
defined as the minimum of edF (αE′), where E′ ranges over all field extensions of E of
degree prime to p. The essential p-dimension of F is

edp(F) = sup{edFp (α)},

where the supremum ranges over all fields E∈Fields/F and all α∈F(E). By definition,
ed(F)>edp(F) for all p.

For every integer n>1, a divisor m of n and any field extension E/F , let Algn,m(E)
denote the set of isomorphism classes of central simple E -algebras of degree n and ex-
ponent dividing m. Equivalently, Algn,m(E) is the subset of the m-torsion part Brm(E)
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of the Brauer group of E consisting of all elements a such that ind(a) divides n. In par-
ticular, if n=m, then Algn(E):=Algn,n(E) is the set of isomorphism classes of central
simple E -algebras of degree n. We view Algn,m and Algn as functors Fields/F!Sets.

In the present paper we give upper and lower bounds for edp(Algn,m) for a prime
integer p different from char(F ). Let pr (resp. ps) be the largest power of p dividing n

(resp. m). Then edp(Algn,m)=edp(Algpr,ps) and edp(Algn)=edp(Algpr ) (see §6). Thus,
we may assume that n and m are the p-powers pr and ps, respectively.

Using structure theorems on central simple algebras, we can compute the essential
(p-)dimension of Algpr,ps for certain small values of r, s and p as follows. Since every
central simple algebra A of degree p is cyclic over a finite extension of fields of degree
prime to p, A can be given by two parameters (see §2.1). In fact, edp(Algp)=2 by [11,
Lemma 8.5.7].

By Albert’s theorem, every algebra in Alg4 ,2 is biquaternion and hence can be given
by four parameters. In fact, ed(Alg4 ,2 )=ed2(Alg4 ,2 )=4 (see Remark 8.2).

Upper and lower bounds for edp(Algpr ) can be found in [14] and [9], respectively.
In this paper (see §6 and §7), we establish the following upper and lower bounds for
edp(Algpr ,ps ) that match the bounds in the case r=s given in [14] and [9].

Theorem 1.1. Let F be a field and p be a prime integer different from char(F ).
Then, for any integers r>2 and s with 16s6r,

p2r−2+pr−s > edp(Algpr,ps) >

{
(r−1)2r−1, if p =2 and s=1,
(r−1)pr+pr−s, otherwise.

Corollary 1.2. (Cf. [8]) Let p be a prime integer and F be a field of characteristic
different from p. Then

edp(Algp2 ) = p2+1.

Corollary 1.3. Let p be an odd prime integer and F be a field of characteristic
different from p. Then

edp(Algp2 ,p) = p2+p.

The corollary recovers a result in [20] that, for p odd, there exists a central simple
algebra of degree p2 and exponent p over a field F which is not decomposable as a tensor
product of two algebras of degree p over any finite extension of F of degree prime to p.
Indeed, if every central simple algebra of degree p2 and exponent p were decomposable,
then the essential p-dimension of Algp2 ,p would be at most 4.

Corollary 1.4. Let F be a field of characteristic different from 2. Then

ed2(Alg8,2) = ed(Alg8,2) = 8.
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The proof is given in §8. The corollary recovers a result in [1] that there is a central
simple algebra of degree 8 and exponent 2 over a field F which is not decomposable as
a tensor product of three quaternion algebras over any finite extension of F of degree
prime to p. Indeed, if every central simple algebra of degree 8 and exponent 2 were
decomposable, then the essential 2-dimension of Alg8 ,2 would be at most 6.

The proof of the main theorem splits into two steps. In the first step we relate
the essential p-dimensions of Algpr ,ps and of a certain torus SΦ by means of the iterated
degeneration. In the second step, we apply [6, Theorem 1.1] to compute the essential
p-dimension of SΦ.

2. Character, Brauer group and algebraic tori

2.1. Character and Brauer group

Let F be a field, Fsep be a separable closure of F and ΓF =Gal(Fsep/F ). For a (discrete)
ΓF -module M , we write Hn(F,M) for the Galois cohomology group Hn(ΓF ,M).

If S is an algebraic group over F , we let H1(F, S) denote the set H1(ΓF , S(Fsep))
(see [17]).

The character group of F is defined by

Ch(F ) := Homcont(ΓF , Q/Z) =H1(F, Q/Z)'H2(F, Z).

The n-torsion character group Chn(F ) is identified with H1(F, Z/nZ). For a character
χ∈Ch(F ), set F (χ)=(Fsep)Ker(χ). The field extension F (χ)/F is cyclic of degree ord(χ).
If Ψ⊂Ch(F ) is a finite subgroup, we set

F (Ψ) := (Fsep)
⋂

χ∈Ψ Ker(χ).

The Galois group G=Gal(F (Ψ)/F ) is abelian and Ψ is canonically isomorphic to the
character group Hom(G, Q/Z) of G. Note that a character η∈Ch(F ) is trivial over F (Ψ)
if and only if η∈Ψ.

If K/F is a field extension, we write K(Ψ) for K(ΨK), where ΨK is the image of Ψ
under the natural homomorphism Ch(F )!Ch(K).

We write Br(F ) for the Brauer group H2(F, F×
sep) of F . If L/F is a field extension

and α∈Br(F ), we let αL denote the image of α under the natural map Br(F )!Br(L).
We say that L is a splitting field of α if αL=0. The index ind(α) of α is the smallest
degree of a splitting field of α. The exponent exp(α) is the order of α in Br(F ). The
integer exp(α) divides ind(α).
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Let A be a central simple F -algebra. The degree of A is the square root of dim(A).
We write [A] for the class of A in Br(F ). The index of [A] divides deg(A). If α∈Br(F )
and n is a positive multiple of ind(α), then there is a central simple F -algebra A of
degree n with [A]=α.

The cup-product

Ch(F )⊗F×=H2(F, Z)⊗H0(F, F×
sep)−!H2(F, F×

sep) =Br(F )

takes χ⊗b to the class χ∪(b) in Br(F ) that is split by F (χ). A class α∈Br(F ) is called
n-cyclic if α=χ∪(b) for a character χ with nχ=0. Such classes belong to Brn(F ). If n is
prime to char(F ), then Brn(F )'H2(F, µn), where µn is the ΓF -module of all nth roots
of unity in Fsep.

Let n be prime to char(F ) and suppose that F contains a primitive nth root of
unity ξ. For any a∈F×, let χa∈Ch(F ) be the unique character with values in

(1/n)Z
Z

⊂ Q
Z

such that
γ(a1/n) = ξnχa(γ)a1/n

for all γ∈Gal(Fsep/F ). We write (a, b)n for χa∪(b). The symbol (a, b)n satisfies the
following properties (see [16, Chapter XIV, Proposition 4]):

• (a, b)n+(a′, b)n=(aa′, b)n;
• (a, b)n=−(b, a)n;
• (a,−a)n=0.
For a finite subgroup Φ⊂Ch(F ) write Br(F (Φ)/F )dec for the subgroup of decompos-

able elements in Br(F (Φ)/F ) generated by the elements χ∪(a) for all χ∈Φ and a∈F×.
The indecomposable relative Brauer group Br(F (Φ)/F ) ind is the factor group

Br(F (Φ)/F )
Br(F (Φ)/F )dec

.

Similarly, if Φ⊂Chn(F ) for some n, then Brn(F (Φ)/F ) ind is the indecomposable n-torsion
relative Brauer group defined as the factor group

Brn(F (Φ)/F )
Br(F (Φ)/F )dec

.

Let E be a complete field with respect to a discrete valuation v and K be its residue
field. Let p be a prime integer different from char(K). There is a natural injective
homomorphism Ch(K){p}!Ch(E){p} of the p-primary components of the character
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groups that identifies Ch(K){p} with the character group of an unramified field extension
of E. For a character χ∈Ch(K){p}, we write χ̂ for the corresponding character in
Ch(E){p}.

If in addition E is an extension of a field F such that v is trivial on F , then K is a
field extension of F and the composition

Ch(F ){p}−!Ch(K){p}−!Ch(E){p}

coincides with the canonical homomorphism for the field extension E/F .
By [4, §7.9], there is an exact sequence

0−!Br(K){p} i−−!Br(E){p} ∂v−−−!Ch(K){p}−! 0.

If α∈Br(K){p}, then we write α̂ for the element i(α) in Br(E){p}. For example,
if α=χ∪(ū) for some χ∈Ch(K){p} and a unit u∈E, then α̂=χ̂∪(u). In the case F

contains a primitive nth root of unity, where n is a power of p, if α=(ā, b̄)n with a and
b units in E, then α̂=(a, b)n.

If β=α̂+(χ̂∪(x)) for an element α∈Br(K){p}, χ∈Ch(K){p} and x∈E× such that
v(x) is not divisible by p, we have (cf. [18, Proposition 2.4])

ind(β) = ind(αK(χ)) ord(χ). (2.1)

2.2. Representations of algebraic tori

Let T be an algebraic torus over a field F and L/F be a finite Galois splitting field
for T with Galois group G. The group G is called a decomposition group of T . The
character group T ∗ :=HomL(TL, Gm,L) has the structure of a G-module. The torus T

can be reconstructed from T ∗ by

T =Spec(L[T ∗]G).

A torus P over F split by L is called quasi-split if P ∗ is a permutation G-module, i.e.,
if there exists a G-invariant Z-basis X for P ∗. The torus P is canonically isomorphic
to the group of invertible elements of the étale F -algebra A=MapG(X, L). The torus P

acts linearly by multiplication on the vector space A over F making A a faithful P -space
(a linear representation of P ) of dimension dim(P ). It follows that a homomorphism of
algebraic tori ν:T!P , with P being a quasi-split torus, yields a linear representation
of T of dimension dim(P ) that is faithful if ν is injective.

Let P be a split torus over F , and P ∗ be its character group. As above, the choice
of a Z-basis X for P ∗ allows us to identify P with the group of invertible elements of a
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split étale F -algebra A and makes A into a faithful P -space over F . Let ν:T!P be a
homomorphism of split tori over F . Suppose a finite group G acts on T and P by tori
automorphisms so that ν is a G-equivariant homomorphism. Then the map ν∗:P ∗!T ∗

is a G-module homomorphism. Suppose that there is a G-invariant Z-basis X for P ∗,
i.e., P ∗ is a permutation. Then G acts on the algebra A by F -algebra automorphisms.
The torus T acts linearly on A via ν. It follows that the semidirect product T oG acts
linearly on A making A into a (T oG)-space.

Let L be a Galois G-algebra over F (for example, L/F is a Galois field extension
with Galois group G). Then γ: Spec L!Spec F is a G-torsor. Twisting the split torus T

by the torsor γ, we get the torus

Tγ =
T×Spec L

G
=Spec(L[T ∗]G),

which is split by L, and T ∗γ is isomorphic to T ∗ as G-modules.
By [5, Proposition 28.11], the fiber of H1(F, T oG)!H1(F,G) over the class of γ is

naturally bijective to the orbit set of the group Gγ(F ) in H1(F, Tγ), i.e.,

H1(F, T oG)'
∐ H1(F, Tγ)

Gγ(F )
, (2.2)

where the coproduct is taken over all [γ]∈H1(F,G).

2.3. Generic torsors

Let T be an algebraic torus split by a finite Galois field extension L/F with G=Gal(L/F ).
Let P be a quasi-split torus split by L and containing T as a subgroup. Set S=P/T .
Then the canonical homomorphism γ:P!S is a T -torsor.

Proposition 2.1. The T -torsor γ is generic, i.e., for every field extension K/F

with K infinite, every T -torsor γ′:E!Spec K and every non-empty open subset W⊂S,
there is a morphism s: Spec K!S over F with Im(s)⊂W such that the T -torsors γ′ and
s∗(γ)=γ×S Spec K over K are isomorphic.

Proof. As P is quasi-split, the last term in the exact sequence

P (K)
γK−−!S(K) δ−−!H1(K, T )−!H1(K, P )

is trivial. Then there is s∈S(K) with δ(s)=[γ′]. As K is infinite, the K-points of P are
dense in P and we can modify s by an element in the image of γK so that s∈W (K),
i.e., Im(s)⊂W . Then the T -torsor γ′ over K with the class δ(s) satisfies the required
property.
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2.4. The algebraic tori P Φ, SΦ, T Φ, UΦ and V Φ

Let 16s6r be integers, p be a prime integer, F be a field with char(F ) 6=p, Φ be a
subgroup of Chp(F ) of rank r and G=Gal(F (Φ)/F ). Choose a basis χ1, χ2, ..., χr for Φ.
Each χi can be viewed as a character of G, i.e., as a homomorphism χi:G!Q/Z. Let
σ1, σ2, ..., σr be the dual basis for G, i.e.,

χi(σj) =
{

1/p+Z, if i= j,
0, otherwise.

Let R be the group ring Z[G]. Consider the surjective G-module homomorphism
ε̄:R!Z/psZ, defined by ε̄(x)=ε(x)+psZ, where ε:R!Z is the augmentation homomor-
phism given by ε(%)=1 for all %∈G. Set J :=Ker(ε̄). Thus, we have an exact sequence

0−! J −!R
ε̄−−!Z/psZ−! 0.

Moreover, the G-module J is generated by I and ps, where I :=Ker(ε) is the augmentation
ideal in R.

Consider the G-module homomorphism h:Rr+1!R taking the ith canonical basis
element ei to σi−1 for 16i6r and er+1 to ps. The image of h coincides with J .

Set N :=Ker(h) and write wi=1+σi+σ2
i +...+σp−1

i ∈R for 16i6r. Consider the
following elements in N :

eij =(σi−1)ej−(σj−1)ei, fi =wiei and gi =−psei+(σi−1)er+1

for all 16i, j6r.

Lemma 2.2. The G-module N is generated by eij , fi and gi.

Proof. Consider the surjective morphism k:Rr!I taking ei to σi−1 for 16i6r and
set N ′ :=Ker(k). Then we have the commutative diagram

N ′
� _

��

� � // Rr
� _

��

k // I � _

����

N

����

� � // Rr+1

����

h // // J

ε′

����

I
� � // R

ε // // Z,

where Rr+1!R is the projection morphism to the last coordinate and ε′:J!Z is given
by ε′(j)=ε(j)/ps.

By the exactness of the first column of the diagram, N is generated by N ′ and the
liftings gi of σi−1 in N . The module N ′ is generated by eij and fi, by [9, Lemma 3.4].
This completes the proof.
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Let εi:Rr+1!Z be the ith projection followed by the augmentation map ε. It follows
from Lemma 2.2 that εi(N)=pZ for every 16i6r. Moreover, the G-homomorphism

q:N −!Zr,

x 7−!
(

ε1(x)
p

, ...,
εr(x)

p

)
,

is surjective. Set M :=Ker(q) and Q:=Rr+1/M .
Let PΦ, SΦ, TΦ, UΦ and V Φ be the algebraic tori over F split by the field extension

F (Φ)/F such that

(PΦ)∗=Rr+1, (SΦ)∗=Q, (TΦ)∗=M, (UΦ)∗=J and (V Φ)∗=N.

The diagram of homomorphisms of G-modules with exact columns and rows

M� _

��

M� _

��

N

q

����

� � // Rr+1

����

h // // J

Zr � � // Q // // J

(2.3)

yields the following diagram of homomorphisms of the tori

TΦ TΦ

V Φ

OOOO

PΦ

OOOO

γ
oooo UΦ_?

oo

Gr
m

?�

�

OO

SΦ
?�

OO

oooo UΦ._?
oo

(2.4)

The commutative diagram

0 // I //

��

R // Z //

��

0

0 // J // R // Z/p2Z // 0

induces the commutative diagram of homomorphisms of algebraic groups

1 // µps //

��

RF (Φ)/F (Gm,F (Φ)) // UΦ //

��

1

1 // Gm
// RF (Φ)/F (Gm,F (Φ)) // (U ′)Φ // 1

(2.5)



essential dimension of central simple algebras 9

and then the commutative diagram

0 // H1(K, UΦ) //

��

H2(K, µps) //

��

H2(K⊗F (Φ), Gm)

0 // H1(K, (U ′)Φ) // H2(K, Gm) // H2(K⊗F (Φ), Gm)

(2.6)

for a field extension K/F . Note that the K-algebra K(Φ) is a direct factor of K⊗F (Φ).
Hence

Ker(H2(K, Gm)!H2(K⊗F (Φ), Gm))= Ker(H2(K, Gm)!H2(K(Φ), Gm)).

It follows that

H1(K, (U ′)Φ)'Br(K(Φ)/K) and H1(K, UΦ)'Brps(K(Φ)/K). (2.7)

Lemma 2.3. The map H1(K, UΦ)!H1(K, SΦ) induces an isomorphism

H1(K, SΦ)'Brps(K(Φ)/K) ind.

Proof. Consider the commutative diagram

1 // UΦ //

��

SΦ //

��

Gr
m

// 1

1 // (U ′)Φ // (S′)Φ // Gr
m

// 1,

where the bottom row is induced by the bottom row of diagram (4) in [9]. This yields a
commutative diagram

(K×)r // H1(K, UΦ) //

��

H1(K, SΦ) //

��

0

(K×)r λ // H1(K, (U ′)Φ) // H1(K, (S′)Φ) // 0

with exact rows. The homomorphism λ takes (x1, ..., xr) to

r∑
i=1

((χi)K∪(xi))

by [9, Lemma 3.6], whence the result.
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3. Essential dimension of algebraic tori

Let S be an algebraic group over F and p be a prime integer different from char(F ).
The essential dimension ed(S) (resp. essential p-dimension edp(S)) of S is defined to
be the essential (p-)dimension of the functor taking a field extension K/F to the set of
isomorphism classes S-torsors(K) of S-torsors over K. Note that the functor S-torsors is
isomorphic to the functor taking K to the set H1(K, S).

Let S be an algebraic torus over F split by L with G=Gal(L/F ). We assume that
G is a group of order pr, where r>2. Let X be the G-module of characters of S. Define
the group �X :=X/(pX+IX), where I is the augmentation ideal in R=Z[G]. For any
subgroup H⊂G, consider the composition XH ↪!X!�X. For every k, let Vk denote the
subgroup generated by images of the homomorphisms XH!�X over all subgroups H with
[G:H]6pk. We have the sequence of subgroups

0 =V−1⊂V0⊂ ...⊂Vr = �X. (3.1)

A p-presentation of X is a G-homomorphism P!X, with P being a permutation G-
module, having a finite cokernel of order prime to p. A p-presentation with the smallest
rank(P ) is called minimal. The essential p-dimension of algebraic tori was determined
in [6, Theorem 1.1] in terms of a minimal p-presentation P!X:

edp(S) = rank(P )−dim(S). (3.2)

We have the following explicit formula for the essential (p-)dimension of S (cf. [9,
Theorem 4.3]).

Theorem 3.1. Let S be a torus over a field F and p be a prime integer different
from char(F ). If the decomposition group G of S is a p-group, then

ed(S) = edp(S) =
r∑

k=0

(rank Vk−rank Vk−1)pk−dim(S).

Proof. The second equality was proven in [9, Theorem 4.3]. Let ν:P!X be a
minimal p-presentation. By definition, the index m:=[X :Im(ν)] is prime to p. Let T be
the torus split by L with the character G-module Im(ν). The inclusion of Im(ν) into
X yields a homomorphism α:S!T . As mX⊂Im(ν), there is a homomorphism β:T!S

such that the compositions α�β and β�α are the mth power endomorphisms of T and S,
respectively. It follows that for any field extension K/F , the kernel and cokernel of the
induced homomorphism

α∗:H1(K, S)−!H1(K, T )
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are m-periodic. But both groups are p-groups, since S and T are split by a p-extension.
Therefore, α∗ is an isomorphism.

Thus, the homomorphism α:S!T induces an isomorphism of functors

S-torsors ∼−−!T -torsors.

It follows that ed(S)=ed(T ). The surjection P!Im(ν) yields a generically free repre-
sentation of T by [10, Lemma 3.3]. Hence, by [3, Proposition 4.11] and (3.2), we have

edp(S) 6 ed(S) = ed(T ) 6 rank(P )−dim(T ) = rank(P )−dim(S) = edp(S),

and therefore ed(S)=edp(S).

Let F be a field, Φ be a subgroup of Chp(F ) of rank r>2, L=F (Φ) and G=
Gal(L/F ). In this section we compute the essential (p-)dimension of the algebraic tori
UΦ and SΦ defined by (2.4). For any subgroup H of G, we write nH :=

∑
τ∈H τ in

R=Z[G]. An element x∈R is decomposable if x=yz with y, z∈R, and ε(y), ε(z)∈pZ.

Lemma 3.2. Let H⊂G be a non-trivial subgroup and x∈R be such that

ε(nHx)∈ p2Z.

Then nHx is decomposable.

Proof. If |H|=p, then ε(x)∈pZ and hence nHx is decomposable. Otherwise we have
H=H ′×H ′′ for non-trivial subgroups H ′ and H ′′. As nH =nH′nH′′ , the element nH ,
and therefore nHx, is decomposable.

Lemma 3.3. If x∈R is decomposable, then x≡ε(x) modulo pI+I2.

Proof. Let y=ε(y)+u and z=ε(z)+v for some u, v∈I. Then we have

yz−ε(yz) = (ε(y)v+ε(z)u)+uv ∈ pI+I2.

Consider the sequence of subgroups Vk⊂J̄ as in (3.1) with respect to the algebraic
torus UΦ. If x∈J , we write x̄ for the class of x in J̄ . The classes σi−1 and ps form a
basis for J̄ . Hence, rank(J̄)=r+1.

Lemma 3.4. The group Vk is generated by
(1) the elements nHx such that |H|>pr−k and ε(nHx)∈psZ if r−k<s;
(2) the elements n̄H such that |H|>pr−k if r−k>s.

Proof. The statement follows from the equality JH =RH∩J=nHR∩J .
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Lemma 3.5. If k<r−s, then Vk=0.

Proof. By Lemma 3.4 (2), Vk is generated by n̄H with |H|>pr−k. Since nH is decom-
posable and |H|>ps, in view of Lemma 3.3, we have n̄H =ε(nH)=|H|=0, as |H|∈pJ .

Lemma 3.6. If s>2 and r−s6k6r−1, then dim(Vk)=1.

Proof. By Lemma 3.4, Vk is generated by nHx with H non-trivial and ε(nHx)∈psZ.
As s>2, the element nHx is decomposable by Lemma 3.2. In view of Lemma 3.3,
nHx=ε(nHx). Hence, Vk is generated by ps.

Lemma 3.7. If s=1 and p is odd, then dim(Vr−1)=1.

Proof. We claim that Vr−1 is generated by p̄. By Lemma 3.4 (2), Vr−1 is generated
by n̄H with |H|>p. If |H|>p2 then, by Lemma 3.2, nH is decomposable and, in view of
Lemma 3.3, n̄H =ε(nH)=0.

Suppose that |H|=p and let σ∈H be a generator. We have nH−p=(σ−1)m, where
m=

∑p−2
i=0 (p−1−i)σi, so ε(m)= 1

2p(p−1). As p is odd, ε(m)∈pZ. Hence, m∈pR+I, and
therefore nH−p∈pI+I2 and n̄H =p̄ in J̄ .

Lemma 3.8. If s=1 and p=2, then Vr−1=J̄ .

Proof. By Lemma 3.4 (2), Vr−1 is generated by n̄H with |H|>2. Take non-trivial
elements σ 6=τ in G. Then 2̄=1+στ−σ(1+τ)+1+σ∈Vr−1. Also, for any σ∈G, we have
σ−1=1+σ−2̄∈Vr−1. The group J̄ is generated by 2̄ and σ−1 over all σ∈G.

Proposition 3.9. We have

ed(UΦ) = edp(UΦ) =
{

(r−1)2r−1, if p =2 and s=1,
(r−1)pr+pr−s, otherwise.

Proof. Note that Vr=J̄ , rank(Vr)=rank(J̄)=r+1 and dim(UΦ)=pr.

Case 1. p is odd, or p=2 and s>2. By Lemmas 3.5–3.7, we have

rank Vk =


r+1, if k = r,
1, if r−s6 k < r,
0, if 0 6 k < r−s.

Since the decomposition group G of UΦ is a p-group, by Theorem 3.1 we have

ed(UΦ) = edp(UΦ) = rpr+pr−s−dim(UΦ) = rpr+pr−s−pr =(r−1)pr+pr−s.

Case 2. p=2 and s=1. By Lemmas 3.5 and 3.8, we have

rank Vk =
{

r+1, if k = r−1 or k = r,
0, if 0 6 k 6 r−2.
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Again by Theorem 3.1,

ed(UΦ) = ed2(UΦ) = (r+1)2r−1−dim(UΦ) = (r−1)2r−1.

Remark 3.10. One can construct a surjective minimal p-presentation %:P ′!J as
follows.

Case 1. p is odd, or p=2 and s>2. Let H be a subgroup of G of order ps and
P ′ :=Rr⊕Z[G/H]. We define % by

ν(x1, ..., xr, ȳ) =
r∑

i=1

(σi−1)xi+nHy.

Note that the element nHy is independent of the choice of the representative y∈Z[G]
of ȳ. The image of % contains I and nH . Since nH≡ps modulo I, we have ps∈Im(%),
and hence % is surjective. Note that eij =(σi−1)ej−(σj−1)ei∈Ker(%). As σeij 6=eij for
j 6=i and every σ∈G\{1}, the group G acts faithfully on Ker(%).

Case 2. p=2 and s=1. Let Hi be the subgroup of G generated by σi and let
H=〈σ1σ2〉. Set

P ′=
r∐

i=1

Z[G/Hi]⊕Z[G/H].

We define % by

%(x̄1, ..., x̄r, ȳ) =
r∑

i=1

(σi+1)xi+(σ1σ2+1)y.

The image of % contains σi+1 and 2=(σ1σ2+1)−σ1(σ2+1)+(σ1+1). Hence, % is sur-
jective. Note that we have hij :=(σi+1)ej−(σj +1)ei∈Ker(%). Since σhij 6=hij for i 6=j

and σ∈G\〈σi, σj〉, the group G acts faithfully on Ker(%) if r>3. In fact, G acts trivially
on Ker(%) if r=2.

Corollary 3.11. We have

ed(SΦ) = edp(SΦ) =
{

(r−1)2r−1−r, if p =2 and s=1,
(r−1)pr+pr−s−r, otherwise.

Proof. By (3.2) and Proposition 3.9, there is a minimal p-presentation ν:P!J such
that

rank(P ) =
{

(r+1)2r−1, if p =2 and s=1,
rpr+pr−s, otherwise.

(3.3)

The exact sequence
0−!Zr −!Q−! J −! 0
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in the bottom row of (2.3) yields an exact sequence

HomG(P,Q)−!HomG(P, J)−!Ext1G(P, Zr).

As P and Zr are permutation G-modules, Ext1G(P, Zr)=0. Hence, the homomorphism
ν factors through a morphism ν′:P!Q.

Recall that we write �X=X/(pX+IX) for a G-module X. Since Zr'(Z/pZ)r!
Q

is the zero map, the natural homomorphism 
Q!J̄ is an isomorphism, and hence ν′ is
a minimal p-presentation of Q. Note that G is a decomposition group of SΦ and we
have dim(SΦ)=pr+r. By Theorem 3.1, ed(SΦ)=edp(SΦ)=rank(P )−dim(SΦ). Hence,
the result follows by (3.3).

4. Degeneration

In this section we relate the essential p-dimensions of Algpr ,ps and of the torus SΦ by
means of the iterated degeneration (Proposition 4.1). The latter is a method of compar-
ison of the essential p-dimension of an object (a central simple algebra in our case) over
a complete discrete-valued field and of its specialization over the residue field.

4.1. A simple degeneration

Let F be a field, p be a prime integer different from char(F ) and Φ⊂Chp(F ) be a finite
subgroup. For integers k>0, s>1 and a field extension K/F , let

BΦ
k,s(K) = {α∈Br(K){p} : ind(αK(Φ)) 6 pk and exp(α) 6 ps}. (4.1)

We say that two elements α and α′ in BΦ
k,s(K) are equivalent if α−α′∈Br(K(Φ)/K)dec.

Write B̃Φ
k,s(K) for the set of equivalence classes in BΦ

k,s(K). To simplify notation, we
shall write α for the equivalence class of an element α∈BΦ

k,s(K) in B̃Φ
k,s(K). We view

BΦ
k,s and B̃Φ

k,s as functors from Fields/F to Sets.
In particular, if k=0, then BΦ

0,s(K) and B̃Φ
0,s(K) are bijective to Brps(K(Φ)/K) and

Brps(K(Φ)/K) ind, respectively. Hence, by (2.7) and Lemma 2.3,

BΦ
0,s 'UΦ-torsors and B̃Φ

0,s 'SΦ-torsors. (4.2)

Moreover, if Φ=0, then
BΦ

k,s = B̃Φ
k,s 'Algpk ,ps . (4.3)

Let Φ′⊂Φ be a subgroup of index p and η∈Φ\Φ′. Hence, Φ=〈Φ′, η〉. Let E/F

be a field extension such that ηE /∈Φ′E in Ch(E). Choose an element α∈BΦ
k,s(E), i.e.,

α∈Br(E){p} such that ind(αE(Φ))6pk and exp(α)6ps.
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Let E′ be a field extension of F which is complete with respect to a discrete valuation
v′ over F with residue field E and set

α′ := α̂+(η̂E∪(x))∈Br(E′){p}, (4.4)

for some x∈(E′)× such that v′(x) is prime to p. Since ηE(Φ′) 6=0, it follows from (2.1)
applied to the element α′E′(Φ′) over the complete field E′(Φ′) with residue field E(Φ′)
that

ind(α′E′(Φ′)) = p ind(αE(Φ)) 6 pk+1 and exp(α′) 6 lcm(exp(α), p) 6 ps.

Hence, α′∈BΦ′

k+1,s(E
′).

In the case the condition exp(α)6ps in (4.1) is dropped, the following result was
proved in [9, Proposition 5.2].

Proposition 4.1. Suppose that for any finite extension of fields N/E of degree
prime to p and any character %∈Ch(N) of order p2 such that p%∈ΦN \Φ′N we have
ind(αN(Φ′,%))>pk. Then

ed
B̃Φ′

k+1,s
p (α′) > ed

B̃Φ
k,s

p (α)+1.

Proof. The proof of [9, Proposition 5.2] still works with the following modification.
Let M/E′ be a finite extension of fields of degree prime to p, M0⊂M be a subfield

over F and α′0∈BΦ′

k+1,s(M0) be such that (α′0)M =α′M in B̃Φ′

k+1,s and

tr degF (M0) = ed
B̃Φ′

k+1,s
p (α′).

We extend the discrete valuation v′ on E′ to a (unique) discrete valuation v on M , and
let N be its residue field. Let N0 be the residue field of the restriction of v to M0.
It was shown in the proof of [9, Proposition 5.2] that there exist α0∈Br(N0){p} with
ind(α0)N0(Φ)6pk, a prime element π0 in M0 and η0∈Chp(N0) such that

(α′0)M̂0
= α̂0+(η̂0∪(π0)) in Br(M̂0), (4.5)

where M̂0 is the completion of the field M0 with respect to the restriction of v on M0,
and

αN−(α0)N ∈Br(N(Φ)/N)dec. (4.6)

By (4.5), we have

exp(α0) = exp(α̂0) 6 lcm(exp(α′0)M̂0
, p) 6 lcm(exp(α′0), p) 6 ps,

and hence α0∈BΦ
k,s(N0). Therefore, the class of αN in B̃Φ

k,s(N) is defined over N0 by
(4.6). It follows that

ed
B̃Φ′

k+1,s
p (α′) = tr degF (M0) > tr degF (N0)+1> ed

B̃Φ
k,s

p (α)+1.
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4.2. A technical lemma

In this subsection we prove Lemma 4.2, which will allow us to apply Proposition 4.1.
Until the end of this subsection we assume that the base field F contains a primitive

p2-th root of unity.
Let χ1, χ2, ..., χr, with r>2, be linearly independent characters in Chp(F ) and let

Φ=〈χ1, χ2, ..., χr〉. Let E/F be a field extension such that rank(ΦE)=r and α∈Br(E){p}
be an element that is split by E(Φ) and is such that exp(α)6ps.

Let E=E0, E1, ..., Er be field extensions of F such that, for any k=1, 2, ..., r, the
field Ek is complete with respect to a discrete valuation vk over F and Ek−1 is its residue
field. For any k=1, 2, ..., r, choose elements xk∈E×

k such that vk(xk) is prime to p and
define the elements αk∈Br(Ek){p} inductively by α0 :=α and

αk := α̂k−1+((χ̂k)Ek−1∪(xk)).

Let Φk be the subgroup of Φ generated by χk+1, ..., χr. Thus, Φ0=Φ, Φr=0 and
rank(Φk)=r−k. Note that the character (χk)Ek−1(Φk) is not trivial. It follows from
(2.1) applied to the element (αk)Ek(Φk) over the complete field Ek(Φk) with residue field
Ek−1(Φk) that

ind(αk)Ek(Φk) = p ind(αk−1)Ek−1(Φk−1)

for any k=1, ..., r. As ind(α)E(Φ)=1, we have ind(αk)Ek(Φk)=pk for all k=0, 1, ..., r.
Moreover, as exp(α)6ps, we have exp(αk)6lcm(exp(αk−1), p)6ps. Thus, αk∈BΦk

k,s(Ek).
The following lemma assures that under a certain restriction on the element α, the

conditions of Proposition 4.1 are satisfied for the fields Ek, the groups of characters Φk

and the elements αk. This lemma is similar to [9, Lemma 5.3].

Lemma 4.2. Suppose that for any subgroup Ψ⊂Φ with [Φ:Ψ]=p2 and any field ex-
tension L/E(Ψ) of degree prime to p, the element αL is not p2-cyclic. Then, for every
k=0, 1, ..., r−1, any finite extension of fields N/Ek of degree prime to p and any char-
acter %∈Ch(N) of order p2 such that p%∈(Φk)N \(Φk+1)N , we have

ind(αk)N(Φk+1,%) > pk. (4.7)

Proof. Let k, N and % satisfy the conditions of the lemma. We construct a new
sequence of fields Ẽ0, Ẽ1, ..., Ẽr such that each Ẽi is a finite extension of Ei of degree
prime to p as follows. We set Ẽk=N . The fields Ẽj with j<k are constructed by
descending induction on j. If we have constructed Ẽj as a finite extension of Ej of
degree prime to p, then we extend the valuation vj to Ẽj and let Ẽj−1 be its residue
field. The fields Ẽm with m>k are constructed by ascending induction on m. If we have
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constructed Ẽm as a finite extension of Em of degree prime to p, then let Ẽm+1 be an
extension of Em+1 of degree [Ẽm :Em] with residue field Ẽm. Replacing Ei by Ẽi and αi

by (αi)Ẽi
, we may assume that N=Ek.

We proceed by induction on r. The case r=1 is obvious.

r−1⇒ r: First suppose that k<r−1. Consider the fields F ′=F (χr), E′=E(χr)
and E′

i=Ei(χr), the sequence of characters χ′i=(χi)F ′ and the sequence of elements
α′i :=(αi)E′

i
∈Br(E′

i) for 06i6r−1. Let Φ′=〈χ′1, χ′2, ..., χ′r−1〉⊂Ch(F ′), let Φ′i be the
subgroup of Φ′ generated by χ′i+1, ..., χ

′
r−1 and let %′=%E′

k
.

We check the conditions of the lemma for the new datum. Let Ψ′ be a subgroup
of Φ′ of index p2. Then the preimage Ψ of Ψ′ under the map Ch(F )!Ch(F ′) is a
subgroup of Φ of index p2 and E′(Ψ′)=E(Ψ). Let L′/E′(Ψ′) be a field extension of degree
prime to p. By assumption, the element α′L′=αL′ is not p2-cyclic. We also have that
p%′=p%E′

k
∈(Φk)E′

k
=(Φ′k)E′

k
. Suppose that p%′∈(Φ′k+1)E′

k
, i.e., p%E′

k
=p%′=ηE′

k
for some

η∈(Φk+1)Ek
. It follows that p%−η∈Ker(Ch(Ek)!Ch(E′

k))=〈(χr)Ek
〉, and therefore,

p%∈(Φk+1)Ek
, which is a contradiction. Hence p%′∈(Φ′k)E′

k
\(Φ′k+1)E′

k
.

By the induction hypothesis, the inequality (4.7) holds for α′k, i.e,

ind(α′k)E′
k(Φ′

k+1,%′) > pk.

Since (α′k)E′
k(Φ′

k+1,%′)=(αk)Ek(Φk+1,%), inequality (4.7) holds for αk. Therefore, it remains
to show that inequality (4.7) holds in the case k=r−1. Note that in this case p% is a
non-zero multiple of (χr)Er−1 and Φk+1=Φr=0.

Case 1. The character % is unramified with respect to vr−1, i.e., %=µ̂ for a character
µ∈Ch(Er−2) of order p2. Note that pµ is a non-zero multiple of (χr)Er−2 .

By (2.1), we have

ind(αr−2)Er−2(χr−1,µ) =
ind(αr−1)Er−1(%)

p
. (4.8)

Consider the fields F ′=F (χr−1), E′=E(χr−1) and E′
i=Ei(χr−1), the new sequence

of characters χ′1=(χ1)F ′ , ..., χ′r−2=(χr−2)F ′ , χ′r−1=(χr)F ′ , the group of characters

Φ′= 〈χ′1, χ′2, ..., χ′r−1〉,

the elements α′i∈Br(E′
i), 06i6r−1, defined by α′i=(αi)E′

i
for i6r−2 and

α′r−1 = α̂r−2+(χ̂r∪(xr−1))

over E′
r−1, and the character µ. The new datum satisfies the conditions of the lemma.

By the induction hypothesis, the inequality (4.7) holds for α′r−2, i.e,

ind(α′r−2)E′
r−2(µ) > pr−2.
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Since (α′r−2)E′
r−2(µ)=(αr−2)Er−2(χr−1,µ), inequality (4.7) holds for αr−1 in view of equal-

ity (4.8).

Case 2. The character % is ramified. Assume that inequality (4.7) does not hold for
αr−1, i.e., we have

ind(αr−1)Er−1(%) 6 pr−2.

By [9, Lemma 2.3 (2)], there exists a unit u∈Er−1 such that Er−2(χr)=Er−2(ū1/p) and

ind(αr−2−(χr−1∪(ū1/p)))Er−2(χr) = ind(αr−1)Er−1(%) 6 pr−2.

By descending induction on 06j6r−2, we show that there exist an element uj in E×
j

and a subgroup Ψj⊂Φ of rank r−j−2 such that

〈χ1, ..., χj , χr−1, χr〉∩Ψj =0,

Ej(χr)=Ej(u
1/p
j ) and

ind(αj−(χr−1∪(u1/p
j )))Ej(Θj) 6 pj , (4.9)

where Θj :=〈Ψj , χr〉. We set Ψr−2=0 and ur−2=ū.
j ⇒ j−1: The field Ej(u

1/p
j )=Ej(χr) is unramified over Ej , and hence vj(uj) is

divisible by p. Modifying uj by a p2-th power, we may assume that uj =vxmp
j for a unit

v∈Ej and an integer m. Then

(αj−(χr−1∪(u1/p
j )))Ej(Θj) = β̂+(η̂∪(xj))Ej(Θj),

where η=χj−mχr−1 and β=(αj−1−(χr−1∪(u1/p
j−1)))Ej−1(Θj), with uj−1=v̄. As η is not

contained in Θj , the character ηEj−1(Θj) is not trivial. Set Ψj−1=〈Ψj , η〉. It follows from
(2.1) and the induction hypothesis that

ind(βEj−1(Θj−1)) =
ind(αj−(χr−1∪(u1/p

j )))Ej(Θj)

p
6 pj−1.

This completes the induction step.
Applying inequality (4.9) in the case j=0, we have

αE(Θ0) =(χr−1∪(w1/p))E(Θ0)

for an element w∈E× such that E(w1/p)=E(χr). Hence,

αE(Ψ0)(w1/p2 ) =(αE(Θ0))E(Θ0)(w1/p2 ) =0 in Br(E(Ψ0)(w1/p2
)).

As χr /∈Ψ0, the field E(Ψ0)(w1/p)=E(Ψ0)(χr) is a cyclic extension of E(Ψ0) of degree p.
Hence E(Ψ0)(w1/p2

)/E(Ψ0) is a cyclic extension of degree p2. Since αE(Ψ0) is split by
the extension E(Ψ0)(w1/p2

)/E(Ψ0), αE(Ψ0) is p2-cyclic. As [Φ:Ψ0]=p2, this contradicts
the assumption. Hence, the inequality (4.7) holds for αr−1.
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5. Non-cyclicity of the generic element

The aim of this section is the technical Lemma 5.4, which will allow us to later apply
Lemma 4.2 and Proposition 4.1.

In this section we assume that the base field F contains a primitive p3-th root of
unity. The choice of a primitive p2-th root of unity ξ allows us to define the symbol (a, b)p2

as in §2.1. As −1 is a p2-th power in F×, we have (a,−1)p2 =0. Hence, (a, a)p2 =0 for
all a∈F×. We shall write (a, b)p for p(a, b)p2 =(ap, b)p2 .

Lemma 5.1. Let E be a field extension of F that is complete with respect to a
discrete valuation v with residue field K and let α∈Br(K). Set β=α̂+(a, x)p for a unit
a∈E and x∈E× such that ā /∈(K×)p and v(x) is prime to p. If β is p2-cyclic, then
α=(ā, z)p2 in Br(K) for some z∈K×.

Proof. Suppose that β=(uπi, tπj)p2 and write x=wπk for a prime element π, inte-
gers i, j and k=v(x), and units u, t and w in E. Then we have

α̂+(ap, wπk)p2 =β =(uπi, tπj)p2 =(u, t)p2 +
(uj

ti
, π

)
p2

.

Applying the residue map ∂v, we get āpk=ūj/t̄i in K×/(K×)p2
and

α =(ū, t̄ )p2−(ā, 	wp)p2 .

Suppose that i/j is a p-integer (the other case is similar). As k is not divisible by
p and ā is not a pth power in K×, j is not divisible by p2. It follows that ū∈〈ā, t̄〉 in
K×/(K×)p2

, and then ū∈ār t̄s(K×)p2
for some r and s. Hence, α=(ā, t̄r/	wp)p2 .

Corollary 5.2. Let x and y be independent variables over F and a, b∈F×. If
(a, b)p 6=0 in Br(F ), then, for any field extension M/F (x, y) of degree prime to p, the
element (a, x)p+(b, y)p in Br(M) is not p2-cyclic.

Proof. Let M/F (x, y) be a field extension of degree prime to p and β=(a, x)p+(b, y)p

over M . As the degree of M/F (x, y) is prime to p, by [7, Lemma 6.1] there exists a field
extension E of the fields F ((y))((x)) and M over F such that the degree of E/F ((y))((x)) is
finite and prime to p. The discrete valuation vx on the complete field F ((y))((x)) extends
uniquely to a discrete valuation v of E. The ramification index of E/F ((y))((x)) is prime
to p, and hence v(x) is prime to p. The residue field K of v is an extension of F ((y)) of
degree prime to p.

Let v′ be the valuation on K extending the discrete valuation vy on F ((y)). The
ramification index e′ of K/F ((y)) is prime to p. The residue field N of v′ is a finite
extension of F of degree prime to p.
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Let α=(b, y)p over K, so βE =α̂+(a, x)p. Suppose that β is p2-cyclic over M . Then
βE is also p2-cyclic. By Lemma 5.1, applied to βE over E, we have α=(a, z)p2 for some
z∈K×, and hence (bp, y)p2 =(a, z)p2 . Taking the cup product with (a)p2∈K×/(K×)p2

,
we get

(a)p2∪(bp, y)p2 =(a)p2∪(a, z)p2 =(a, a)p2∪(z)p2 =0.

Applying the residue map

∂v′ :H3(K, µ⊗2
p2 )−!H2(N,µp2) =Brp2(N),

we find that e′(a, b)p=e′(a, bp)p2 =0 over N , and hence (a, b)p=0 in Br(N). Taking the
corestriction map Br(N)!Br(F ), we see that (a, b)p=0 in Br(F ), a contradiction.

Lemma 5.3. For any integer r>2, there exist a field extension F ′/F and a subgroup
Φ⊂Chp(F ′) of rank r such that, for any subgroup Ψ⊂Φ of index p2, there is an element
β∈Brp(F ′(Φ)/F ′) with the property that any field extension M/F ′(Ψ) of degree prime
to p, the element βM is not p2-cyclic.

Proof. Let a1, a2, ..., ar, x and y be independent variables over F and set

F ′ :=F (a1, a2, ..., ar, x, y).

For every 16i6r, let χi∈Chp(F ′) be a character such that F ′(χi)=F ′(a1/p
i ) and set

Φ:=〈χ1, χ2, ..., χr〉. Let Ψ be a subgroup of Φ of index p2. Choose a basis η1, η2, ..., ηr for
Φ such that Ψ=〈η1, η2, ..., ηr−2〉, and elements b1, b2, ..., br in F ′ such that F (ηi)=F (b1/p

i )
for all 16i6r and F (b1, b2, ..., br)=F (a1, a2, ..., ar). Clearly, b1, b2, ..., br are algebraically
independent over F and F ′(Ψ)=L(x, y), where L:=F (b1/p

1 , ..., b
1/p
r−2, br−1, br), with the

generators algebraically independent over F .
Let β=(br−1, x)p+(br, y)p in Brp(F ′(Φ)/F ′) and M/F ′(Ψ) be a field extension of

degree prime to p. Since ∂v((br−1, br)p)=b̄r−1 is non-trivial, where v is the discrete
valuation on L associated with br, we have (br−1, br)p 6=0 in Br(L). The result follows
from Corollary 5.2.

Let F ′/F be the field extension and Φ⊂Chp(F ′) be the subgroup of rank r as in
Lemma 5.3. Consider the algebraic tori PΦ, SΦ, TΦ, UΦ and V Φ over F ′ defined in §2.4.
The morphism γ:PΦ!V Φ in the diagram (2.4) is a UΦ-torsor. Denote by δ the image
of the class of γ under the composition

H1
ét(V

Φ, UΦ)−!H1
ét(V

Φ, (U ′)Φ)−!H2
ét(V

Φ, Gm)

induced by the diagram (2.5). We write δgen for the image of δ under the homomorphism

H2
ét(V

Φ, Gm)−!H2(F ′(V Φ), Gm) =Br(F ′(V Φ))
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induced by the generic point morphism Spec(F ′(V Φ))!V Φ. It follows from (2.6) that
δgen∈Brps(F ′(V Φ)).

Lemma 5.4. Let K=F ′(V Φ) and Ψ⊂Φ be a subgroup with [Φ:Ψ]=p2. Then, for
any field extension M/K(Ψ) of degree prime to p, the element (δgen)M is not p2-cyclic.

Proof. Suppose that there are a subgroup Ψ⊂Φ with [Φ:Ψ]=p2 and a field M/K(Ψ)
of degree prime to p such that (δgen)M =χ∪(a) for some χ∈H2(M, Z)=Ch(M) with
p2χ=0 and a∈H0(M, Gm)=M×. Now, choose an integral scheme X over F ′ such that
F ′(X)=M together with a dominant F ′-morphism

f :X −!V Φ(Ψ) := (V Φ)F ′(Ψ)

of degree prime to p that induces the embedding of the function field K(Ψ) into M . Let
h:X!V Φ be the composition of f with the natural morphism g:V Φ(Ψ)!V Φ. Replacing
X by a non-empty open set, we may assume that h∗(δ)=χ0∪(a0) for some χ0∈H2

ét(X, Z)
with p2χ0=0 and a0∈H0

ét(X, Gm).
By [7, Lemma 6.2], there is a non-empty open set W ′⊂V Φ(Ψ) such that for every

x′∈W ′ there exists a point x∈X with f(x)=x′ and degree [F ′(x):F ′(x′)] prime to p. Let
Z=V Φ(Ψ)\W ′. As g is finite, g(Z) 6=V Φ, and hence the open set W :=V Φ\g(Z) is not
empty. We have g−1(W )⊂W ′.

Consider the element β∈Brp(F ′(Φ)/F ′) defined in Lemma 5.3. Let γ′∈H1(F ′, UΦ)
be the corresponding class of UΦ-torsors over F ′ under the isomorphism

H1(F ′, UΦ)'Brps(F ′(Φ)/F ′)

by (2.7). As γ is a generic UΦ-torsor, there exists an F ′-morphism v: Spec F ′!V Φ such
that v∗(γ)=γ′ and Im(v)⊂W (see §2.3). From the commutativity of the diagram

H1
ét(V

Φ, UΦ) v∗ //

��

H1(F ′, UΦ)

��

H2
ét(V

Φ, Gm) v∗ // H2(F ′, Gm),

we find that v∗(δ)=β.
Let v′: Spec F ′(Ψ)!V Φ(Ψ) be the morphism vF ′(Ψ). Note that

Im(v′)⊂ g−1(W )⊂W ′.

By the definition of W ′, there is a point x∈X such that the degree of the field
extension F ′(x) over the residue field of (the only) point z in Im(v′) is prime to p. By
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[7, Lemma 6.1], there exist a field extension M ′/F ′(Ψ) of degree prime to p and a field
homomorphism F ′(x)!M ′ extending F ′(z)!F ′(Ψ). Therefore, there is a morphism
w: Spec(M ′)!X (with image {x}) such that the diagram

Spec(M ′) //

w

��

Spec(F ′(Ψ)) //

v′

��

Spec(F ′)

v

��

X
f

// V Φ(Ψ)
g

// V Φ

is commutative. It follows that

βM ′ = v∗(δ)M ′ =w∗h∗(δ) =w∗(χ0∪(a0))= w∗(χ0)∪w∗(a0),

i.e., βM ′ is p2-cyclic. This contradicts Lemma 5.3.

6. A lower bound for edp(Algpr,ps)

Let n>1 be an integer, m be a divisor of n and p be a prime integer. Let pr (resp. ps)
be the largest power of p dividing n (resp. m). If A∈Algn,m(K) for some field extension
K/F , then there is a finite extension of fields E/K of degree prime to p such that ind(AE)
is a p-power. Hence ind(AE) divides pr and exp(AE) divides ps, since it divides m and
ind(AE), i.e., AE∈Algpr,ps(E). It follows that the embedding functor Algpr,ps!Algn,m

is p-surjective, and thus edp(Algn,m)6edp(Algpr,ps) by [7, §1.3]. On the other hand, if
A∈Algn,m(K), then the p-primary component Ap of A satisfies Ap∈Algpr,ps(K). Hence
the morphism of functors Algn,m!Algpr,ps taking A to Ap is surjective, and therefore
edp(Algn,m)>edp(Algpr,ps). We proved that

edp(Algn,m) = edp(Algpr,ps).

Theorem 6.1. Let F be a field and p be a prime integer different from char(F ).
Then, for any integers r and s with 16s6r,

edp(Algpr,ps) >

{
(r−1)2r−1, if p =2 and s=1,
(r−1)pr+pr−s, otherwise.

Proof. By [7, Proposition 1.5], we can replace the base field by any field exten-
sion. Hence we may assume that F contains a primitive p3-th root of unity. More-
over, we can replace F by the field F ′ in Lemma 5.3. Let Φ⊂Chp(F ) be the subgroup
in Lemma 5.3 and let V Φ be the algebraic torus constructed in §2.4. Set E=F (V Φ)
and let α:=δgen∈Brps(E(Φ)/E) be the element defined in §5. Let Ek be the fields
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and αk∈BΦk

k,s(Ek) be the elements constructed in §4.2, so that E0=E and α0=α. By
Lemma 5.4, αM is not p2-cyclic for any subgroup Ψ⊂Φ with [Φ:Ψ]=p2 and any field ex-
tension M/E(Ψ) of degree prime to p, and hence α satisfies the condition of Lemma 4.2.
It follows that we can apply Proposition 4.1. By the iterated application of this propo-
sition, we have

edAlgpr ,ps

p (αr) = ed
B̃Φr

r,s
p (αr) > ed

B̃
Φr−1
r−1,s

p (αr−1)+1> ...> ed
B̃Φ1

1,s
p (α1)+r−1

> ed
B̃Φ0

0,s
p (α0)+r =ed

B̃Φ
0,s

p (α)+r.

(6.1)

Consider the commutative diagram with exact rows

1 // UΦ //

��

PΦ
γ

//

��

V Φ // 1

1 // SΦ // PΦ×Gr
m

γ′
// V Φ // 1,

where PΦ!PΦ×Gr
m takes x to (x, 1), SΦ ↪!PΦ×Gr

m is the product of SΦ ↪!PΦ and

SΦ // // Gr
m and γ′(x, t)=γ(x)�(t)−1 (see diagram (2.4)).

The element α considered in BΦ
0,s(E) corresponds to the generic fiber of the UΦ-

torsor γ under the bijection BΦ
0,s(E)'UΦ-torsors(E) in (4.2). Hence, by the diagram,

the class of α in B̃Φ
0,s(E) corresponds to the generic fiber γ′gen of the SΦ-torsor γ′ in the

diagram under the bijection B̃Φ
0,s(E)'SΦ-torsors(E). As PΦ×Gr

m is a quasi-split torus,
γ′ is a generic SΦ-torsor by Proposition 2.1, and hence

ed
B̃Φ

0,s
p (α) = edSΦ-torsors

p (γ′gen) = edp(SΦ), (6.2)

by [7, Theorem 2.9]. The essential p-dimension of SΦ was calculated in Corollary 3.11.
From (6.1), (6.2) and this corollary, we have

edp(Algpr ,ps ) > edAlgpr ,ps

p (αr) > edp(SΦ)+r =
{

(r−1)2r−1, if p =2 and s=1,
(r−1)pr+pr−s, otherwise.

This concludes the proof.

7. An upper bound for edp(Algpr,ps)

Lemma 7.1. Let F be a field and p be a prime. Then, for any integers r and s with
16s6r,

edp(Algpr,ps) 6 edp(Algpr )+pr−s−1.
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Proof. Let A∈Algpr,ps(K)⊂Algpr (K) for a field extension K/F . There exist a field
extension K ′/K of degree prime to p, a subfield K0⊂K ′ over F and B∈Algpr (K0) such
that tr degF (K0)6edp(Algpr ) and A⊗K K ′'B⊗K0 K ′.

By [15, Lemma 5.6], ind(B⊗ps

) divides pr−s. Choose a central simple algebra C of
degree pr−s over K0 in the Brauer class of B⊗ps

in Br(K0), and consider the Severi–
Brauer variety X :=SB(C) of C. Since exp(A) divides ps, the algebra C is split over
K ′, and hence X(K ′) 6=∅. This implies that there exists x∈X such that K0(x)⊂K ′

and X(K0(x)) 6=∅. Therefore, CK0(x) is split, and hence exp(BK0(x)) divides ps, i.e.,
BK0(x)∈Algpr,ps(K0(x)). Since dim(X)=pr−s−1, we have

ed
Algpr,ps

p (A) 6 tr degF (K0(x))= tr degF (K0)+tr degK0
(K0(x))

6 edp(Algpr )+dim(x) 6 edp(Algpr )+pr−s−1.

By [14], we have

edp(Algpr ) 6 p2r−2+1,

if r>2 and char(F ) 6=p. Therefore, by Lemma 7.1, we have the following upper bound
for edp(Algpr,ps).

Theorem 7.2. Let F be a field and p be a prime integer different from char(F ).
Then, for any integers r>2 and s with 16s6r,

edp(Algpr,ps) 6 p2r−2+pr−s.

8. Essential dimension of AlgL/F , AlgG and ALGG

Let G be an elementary abelian group of order pr and K/F be a field extension. Consider
the subset AlgG (K) of Algpr ,ps (K) consisting of all classes that have a splitting Galois
K-algebra E with Gal(E/K)'G.

Let L/F be a Galois field extension with Gal(L/F )'G. Let further AlgL/F (K) be
the subset of AlgG (K) consisting of all classes split by the Galois G-algebra KL/K. We
have the following subfunctors of Algpr ,ps :

AlgL/F ⊂AlgG ⊂Algpr ,ps .

We write ALGG (K) for the set of isomorphism classes of pairs (A,E), where A∈AlgG (K)
and E is a Galois G-algebra splitting A. We have an obvious surjective morphism of
functors ALGG!AlgG .
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Theorem 8.1. Let F be a field, p be a prime integer different from char(F ), G be
an elementary abelian group of order pr with r>2 and L/F be a Galois field extension
with Gal(L/F )'G. Let s be an integer such that 16s6r. Suppose that r>3 if p=2
and s=1. Let F be one of the three functors AlgL/F , AlgG and ALGG . Then

edp(F) = ed(F) =
{

(r−1)2r−1, if p =2 and s=1,
(r−1)pr+pr−s, otherwise.

Proof. Let Φ be a subgroup of Chp(F ) of rank r such that L=F (Φ). By (2.7), we
have AlgL/F'UΦ-torsors. It follows from Proposition 3.9 that

edp(AlgL/F ) = ed(AlgL/F ) = dp,r,s :=
{

(r−1)2r−1, if p =2 and s=1,
(r−1)pr+pr−s, otherwise.

Let αr∈Br(Er) be as in the proof of Theorem 6.1. By construction, αr is split by Er(Φ),
and hence αr∈AlgG (Er). Note that edBp (β)6edHp (β) for any subfunctor H of a functor
B and any β∈H(K). Thus, by the proof of Theorem 6.1, we have

edp(AlgG ) > edAlgG
p (αr) > edAlgpr ,ps

p (αr) > dp,r,s.

Let J be the G-module defined in §2.4 and T :=Spec F [J ] be the split torus with
character group J . Consider the minimal surjective p-presentation ν:P ′!J as in Re-
mark 3.10. As explained in §2.2, a choice of a G-invariant basis for P ′ yields a linear
T oG-space V with dim(V )=rank(P ′). By Remark 3.10, G acts faithfully on Ker(ν).
It follows from [10, Lemma 3.3] that the action of T oG on V is generically free in this
case. Hence, by [3, Proposition 4.11],

ed(T oG) 6dim(V )−dim(T oG) = rank(P ′)−rank(J) = rank(Ker(ν))= dp,r,s.

Let γ be a G-torsor over F and let L be the corresponding Galois G-algebra over F .
As G is an abelian group, we have G=Gγ . The G-action on RL/F (Gm,L) restricts to
the trivial action on the subgroup µps . Since Tγ =RL/F (Gm,L)/µps , the connecting G-
equivariant map

H1(K, Tγ)−!H2(K, µps) =Brps(K)

is injective for any field extension K/F . Hence the group Gγ(K)=G acts trivially on
H1(K, Tγ). By (2.2),

H1(K, T oG) =
∐

Gal(E/K)=G

Brps(E/K),



26 s. baek and a. merkurjev

where the disjoint union is taken over all isomorphism classes of Galois G-algebras E/K.
Hence we have a surjective morphism of functors (T oG)-torsors!ALGG . Since ALGG

surjects on AlgG , we have

edp(AlgG ) 6 edp(ALGG ) 6 ed(ALGG ) 6 ed(T oG) 6 dp,r,s,

edp(AlgG ) 6 ed(AlgG ) 6 ed(ALGG ) 6 ed(T oG) 6 dp,r,s.

Remark 8.2. Suppose that p=r=2 and s=1, and let F be a field of characteristic
different from 2. By [12, Theorem 1] or [2, §2.4], there exists a non-trivial cohomological
invariant AlgG!H4( · , Z/2Z) over F (i), where i is a primitive fourth root of unity. Hence,
ed2(AlgG )>ed2(AlgG )F (i)>4 by [3, Corollary 3.6] and [11, Lemma 6.9]. Moreover, by the
structure theorem on central simple algebras split by a biquadratic field extension [19,
Corollary 2.8], every isomorphism class (A,E)∈ALGG (K) is of the form E=K(a1/2, b1/2)
and A=(a, x)2⊗(b, y)2, for some a, b, x, y∈K×. Hence ed(ALGG )64. As ALGG surjects
on AlgG , we have

4 6 ed2(AlgG ) 6 ed2(ALGG ) 6 ed(ALGG ) 6 4,

4 6 ed2(AlgG ) 6 ed(AlgG ) 6 ed(ALGG ) 6 4.

Hence the essential (2-)dimension of both AlgG and ALGG is equal to 4.

Corollary 8.3. Let F be a field of characteristic different from 2. Then

ed2(Alg8,2) = ed(Alg8,2) = 8.

Proof. As any central simple algebra of degree 8 and exponent 2 has a triquadratic
splitting field by [13], we have that Alg8,2=AlgG for the elementary abelian group G of
order 8, and hence the statement follows from Theorem 8.1. Note that the inequality
ed2(Alg8,2)>8 is also proven in Theorem 6.1, while the opposite inequality ed(Alg8,2)68
was shown in [2, Theorem 2.12].
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