Open Access
2011 Generalized Bäcklund–Darboux transformations for Coxeter–Toda flows from a cluster algebra perspective
Michael Gekhtman, Michael Shapiro, Alek Vainshtein
Author Affiliations +
Acta Math. 206(2): 245-310 (2011). DOI: 10.1007/s11511-011-0063-1
Abstract

We present the third in the series of papers describing Poisson properties of planar directed networks in the disk or in the annulus. In this paper we concentrate on special networks Nu,v in the disk that correspond to the choice of a pair (u, v) of Coxeter elements in the symmetric group Sn and the corresponding networks $N_{u,v}^\circ$ in the annulus. Boundary measurements for Nu,v represent elements of the Coxeter double Bruhat cell Gu,v⊂GLn. The Cartan subgroup H acts on Gu,v by conjugation. The standard Poisson structure on the space of weights of Nu,v induces a Poisson structure on Gu,v, and hence on the quotient Gu,v/H, which makes the latter into the phase space for an appropriate Coxeter–Toda lattice. The boundary measurement for $N_{u,v}^\circ$ is a rational function that coincides up to a non-zero factor with the Weyl function for the boundary measurement for Nu,v. The corresponding Poisson bracket on the space of weights of $N_{u,v}^\circ$ induces a Poisson bracket on the certain space $ {\mathcal{R}_n} $ of rational functions, which appeared previously in the context of Toda flows.

Following the ideas developed in our previous papers, we introduce a cluster algebra $ \mathcal{A} $ on $ {\mathcal{R}_n} $ compatible with the obtained Poisson bracket. Generalized Bäcklund–Darboux transformations map solutions of one Coxeter–Toda lattice to solutions of another preserving the corresponding Weyl function. Using network representation, we construct generalized Bäcklund–Darboux transformations as appropriate sequences of cluster transformations in $ \mathcal{A} $.

References

1.

A khiezer, N. I., The Classical Moment Problem and Some Related Questions in Analysis. Hafner, New York, 1965. 0135.33803A khiezer, N. I., The Classical Moment Problem and Some Related Questions in Analysis. Hafner, New York, 1965. 0135.33803

2.

B erenstein, A., F omin, S. & Z elevinsky, A., Parametrizations of canonical bases and totally positive matrices. Adv. Math., 122 (1996), 49–149. 0966.17011 10.1006/aima.1996.0057 MR1405449B erenstein, A., F omin, S. & Z elevinsky, A., Parametrizations of canonical bases and totally positive matrices. Adv. Math., 122 (1996), 49–149. 0966.17011 10.1006/aima.1996.0057 MR1405449

3.

— Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J., 126 (2005), 1–52. 1135.16013 10.1215/S0012-7094-04-12611-9 MR2110627— Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J., 126 (2005), 1–52. 1135.16013 10.1215/S0012-7094-04-12611-9 MR2110627

4.

B erenstein, A. & K azhdan, D., Quantum Hankel algebras, clusters, and canonical bases. In preparation.B erenstein, A. & K azhdan, D., Quantum Hankel algebras, clusters, and canonical bases. In preparation.

5.

B rockett, R.W. & F aybusovich, L.E., Toda flows, inverse spectral transform and realization theory. Systems Control Lett., 16 (1991), 79–88. 0734.93032 10.1016/0167-6911(91)90001-U MR1095248B rockett, R.W. & F aybusovich, L.E., Toda flows, inverse spectral transform and realization theory. Systems Control Lett., 16 (1991), 79–88. 0734.93032 10.1016/0167-6911(91)90001-U MR1095248

6.

6 C antero, M. J., M oral, L. & V elázquez, L., Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl., 362 (2003), 29–56. 1022.42013 10.1016/S0024-3795(02)00457-3 MR19554526 C antero, M. J., M oral, L. & V elázquez, L., Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl., 362 (2003), 29–56. 1022.42013 10.1016/S0024-3795(02)00457-3 MR1955452

7.

7 D eift, P., Li, L. C., N anda, T. & T omei, C., The Toda flow on a generic orbit is integrable. Comm. Pure Appl. Math., 39 (1986), 183–232. 0606.58020 10.1002/cpa.3160390203 MR8200687 D eift, P., Li, L. C., N anda, T. & T omei, C., The Toda flow on a generic orbit is integrable. Comm. Pure Appl. Math., 39 (1986), 183–232. 0606.58020 10.1002/cpa.3160390203 MR820068

8.

8 D eift, P., Li, L. C. & T omei, C., Matrix factorizations and integrable systems. Comm. Pure Appl. Math., 42 (1989), 443–521. 0689.70006 10.1002/cpa.3160420405 MR9901388 D eift, P., Li, L. C. & T omei, C., Matrix factorizations and integrable systems. Comm. Pure Appl. Math., 42 (1989), 443–521. 0689.70006 10.1002/cpa.3160420405 MR990138

9.

9 D i F rancesco, P. & K edem, R., Q-system cluster algebras, paths and total positivity. SIGMA Symmetry Integrability Geom. Methods Appl., 6 (2010), Paper 014, 36.9 D i F rancesco, P. & K edem, R., Q-system cluster algebras, paths and total positivity. SIGMA Symmetry Integrability Geom. Methods Appl., 6 (2010), Paper 014, 36.

10.

Q-systems, heaps, paths and cluster positivity. Comm. Math. Phys., 293 (2010), 727–802. 1194.05165 10.1007/s00220-009-0947-5 MR2566162Q-systems, heaps, paths and cluster positivity. Comm. Math. Phys., 293 (2010), 727–802. 1194.05165 10.1007/s00220-009-0947-5 MR2566162

11.

F allat, S. M., Bidiagonal factorizations of totally nonnegative matrices. Amer. Math. Monthly, 108 (2001), 697–712. 1032.15015 10.2307/2695613 MR1865657F allat, S. M., Bidiagonal factorizations of totally nonnegative matrices. Amer. Math. Monthly, 108 (2001), 697–712. 1032.15015 10.2307/2695613 MR1865657

12.

F aybusovich, L. & G ekhtman, M., Elementary Toda orbits and integrable lattices. J. Math. Phys., 41 (2000), 2905–2921. 1052.37051 10.1063/1.533279 MR1755477F aybusovich, L. & G ekhtman, M., Elementary Toda orbits and integrable lattices. J. Math. Phys., 41 (2000), 2905–2921. 1052.37051 10.1063/1.533279 MR1755477

13.

— Poisson brackets on rational functions and multi-Hamiltonian structure for integrable lattices. Phys. Lett. A, 272 (2000), 236–244. 1115.37336 10.1016/S0375-9601(00)00445-X MR1774784— Poisson brackets on rational functions and multi-Hamiltonian structure for integrable lattices. Phys. Lett. A, 272 (2000), 236–244. 1115.37336 10.1016/S0375-9601(00)00445-X MR1774784

14.

— Inverse moment problem for elementary co-adjoint orbits. Inverse Problems, 17 (2001), 1295–1306. 0985.35087 10.1088/0266-5611/17/5/304 MR1862191— Inverse moment problem for elementary co-adjoint orbits. Inverse Problems, 17 (2001), 1295–1306. 0985.35087 10.1088/0266-5611/17/5/304 MR1862191

15.

F omin, S. & Z elevinsky, A., Double Bruhat cells and total positivity. J. Amer. Math. Soc., 12 (1999), 335–380. 0913.22011 10.1090/S0894-0347-99-00295-7 MR1652878F omin, S. & Z elevinsky, A., Double Bruhat cells and total positivity. J. Amer. Math. Soc., 12 (1999), 335–380. 0913.22011 10.1090/S0894-0347-99-00295-7 MR1652878

16.

— Total positivity: tests and parametrizations. Math. Intelligencer, 22 (2000), 23–33. 1052.15500 10.1007/BF03024444 MR1745560— Total positivity: tests and parametrizations. Math. Intelligencer, 22 (2000), 23–33. 1052.15500 10.1007/BF03024444 MR1745560

17.

— Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15 (2002), 497–529. 1021.16017 10.1090/S0894-0347-01-00385-X MR1887642— Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15 (2002), 497–529. 1021.16017 10.1090/S0894-0347-01-00385-X MR1887642

18.

— Cluster algebras. II. Finite type classification. Invent. Math., 154 (2003), 63–121. 1054.17024 10.1007/s00222-003-0302-y MR2004457— Cluster algebras. II. Finite type classification. Invent. Math., 154 (2003), 63–121. 1054.17024 10.1007/s00222-003-0302-y MR2004457

19.

F uhrmann, P. A., A Polynomial Approach to Linear Algebra. Universitext. Springer, New York, 1996. 0852.15001F uhrmann, P. A., A Polynomial Approach to Linear Algebra. Universitext. Springer, New York, 1996. 0852.15001

20.

G ekhtman, M., S hapiro, M. & V ainshtein, A., Cluster algebras and Poisson geometry. Mosc. Math. J., 3 (2003), 899–934, 1199. 1057.53064 MR2078567G ekhtman, M., S hapiro, M. & V ainshtein, A., Cluster algebras and Poisson geometry. Mosc. Math. J., 3 (2003), 899–934, 1199. 1057.53064 MR2078567

21.

— Poisson geometry of directed networks in a disk. Selecta Math., 15 (2009), 61–103. 1186.53095 10.1007/s00029-009-0523-z MR2511199— Poisson geometry of directed networks in a disk. Selecta Math., 15 (2009), 61–103. 1186.53095 10.1007/s00029-009-0523-z MR2511199

22.

— Poisson geometry of directed networks in an annulus. Preprint, 2009. arXiv:0901.0020 [math.QA].— Poisson geometry of directed networks in an annulus. Preprint, 2009. arXiv:0901.0020 [math.QA].

23.

H offmann, T., K ellendonk, J., K utz, N. & R eshetikhin, N., Factorization dynamics and Coxeter–Toda lattices. Comm. Math. Phys., 212 (2000), 297–321. 0989.37074 10.1007/s002200000212 MR1772248H offmann, T., K ellendonk, J., K utz, N. & R eshetikhin, N., Factorization dynamics and Coxeter–Toda lattices. Comm. Math. Phys., 212 (2000), 297–321. 0989.37074 10.1007/s002200000212 MR1772248

24.

K arlin, S. & M cG regor, J., Coincidence probabilities. Pacific J. Math., 9 (1959), 1141–1164. 0092.34503 MR114248K arlin, S. & M cG regor, J., Coincidence probabilities. Pacific J. Math., 9 (1959), 1141–1164. 0092.34503 MR114248

25.

K edem, R., Q-systems as cluster algebras. J. Phys. A, 41 (2008), 194011, 14 pp. 10.1088/1751-8113/41/19/194011 MR2452184K edem, R., Q-systems as cluster algebras. J. Phys. A, 41 (2008), 194011, 14 pp. 10.1088/1751-8113/41/19/194011 MR2452184

26.

K ogan, M. & Z elevinsky, A., On symplectic leaves and integrable systems in standard complex semisimple Poisson-Lie groups. Int. Math. Res. Not., 32 (2002), 1685–1702. 10.1155/S1073792802203050 MR1916837K ogan, M. & Z elevinsky, A., On symplectic leaves and integrable systems in standard complex semisimple Poisson-Lie groups. Int. Math. Res. Not., 32 (2002), 1685–1702. 10.1155/S1073792802203050 MR1916837

27.

L indström, B., On the vector representations of induced matroids. Bull. London Math. Soc., 5 (1973), 85–90. 0262.05018 10.1112/blms/5.1.85 MR335313L indström, B., On the vector representations of induced matroids. Bull. London Math. Soc., 5 (1973), 85–90. 0262.05018 10.1112/blms/5.1.85 MR335313

28.

M oser, J., Finitely many mass points on the line under the influence of an exponential potential–an integrable system, in Dynamical Systems, Theory and Applications (Seattle, WA, 1974), Lecture Notes in Physics, 38, pp. 467–497. Springer, Berlin–Heidelberg, 1975.M oser, J., Finitely many mass points on the line under the influence of an exponential potential–an integrable system, in Dynamical Systems, Theory and Applications (Seattle, WA, 1974), Lecture Notes in Physics, 38, pp. 467–497. Springer, Berlin–Heidelberg, 1975.

29.

P ostnikov, A., Total positivity, Grassmannians, and networks. Preprint, 2006. arXiv:math/0609764 [math.CO].P ostnikov, A., Total positivity, Grassmannians, and networks. Preprint, 2006. arXiv:math/0609764 [math.CO].

30.

R eshetikhin, N., Integrability of characteristic Hamiltonian systems on simple Lie groups with standard Poisson Lie structure. Comm. Math. Phys., 242 (2003), 1–29. 1078.37043 MR2018267R eshetikhin, N., Integrability of characteristic Hamiltonian systems on simple Lie groups with standard Poisson Lie structure. Comm. Math. Phys., 242 (2003), 1–29. 1078.37043 MR2018267

31.

R eyman, A. & Semenov-Tian-Shansky, M., Group-theoretical methods in the theory of finite-dimensional integrable systems, in Encyclopaedia of Mathematical Sciences, 16, pp. 116–225. Springer, Berlin–Heidelberg, 1994.R eyman, A. & Semenov-Tian-Shansky, M., Group-theoretical methods in the theory of finite-dimensional integrable systems, in Encyclopaedia of Mathematical Sciences, 16, pp. 116–225. Springer, Berlin–Heidelberg, 1994.

32.

S imon, B., Orthogonal Polynomials on the Unit Circle. Part 1. American Mathematical Society Colloquium Publications, 54. Amer. Math. Soc., Providence, RI, 2005.S imon, B., Orthogonal Polynomials on the Unit Circle. Part 1. American Mathematical Society Colloquium Publications, 54. Amer. Math. Soc., Providence, RI, 2005.

33.

S tieltjes, T. J., Recherches sur les fractions continues, in Euvres complètes/Collected papers. Vol. II, pp. 402–566. Noordhoff, Groningen, 1918.S tieltjes, T. J., Recherches sur les fractions continues, in Euvres complètes/Collected papers. Vol. II, pp. 402–566. Noordhoff, Groningen, 1918.

34.

W atkins, D. S., Isospectral flows. SIAM Rev., 26 (1984), 379–391. 0559.65018 10.1137/1026075 MR750456W atkins, D. S., Isospectral flows. SIAM Rev., 26 (1984), 379–391. 0559.65018 10.1137/1026075 MR750456

35.

Y akimov, M., Symplectic leaves of complex reductive Poisson–Lie groups. Duke Math. J., 112 (2002), 453–509. 1031.17012 10.1215/S0012-9074-02-11233-2 MR1896471Y akimov, M., Symplectic leaves of complex reductive Poisson–Lie groups. Duke Math. J., 112 (2002), 453–509. 1031.17012 10.1215/S0012-9074-02-11233-2 MR1896471

36.

Y ang, S. W. & Z elevinsky, A., Cluster algebras of finite type via Coxeter elements and principal minors. Transform. Groups, 13 (2008), 855–895. 1177.16010 10.1007/s00031-008-9025-x MR2452619Y ang, S. W. & Z elevinsky, A., Cluster algebras of finite type via Coxeter elements and principal minors. Transform. Groups, 13 (2008), 855–895. 1177.16010 10.1007/s00031-008-9025-x MR2452619

37.

Z elevinsky, A., Connected components of real double Bruhat cells. Int. Math. Res. Not., 21 (2000), 1131–1154. 10.1155/S1073792800000568 MR1800992Z elevinsky, A., Connected components of real double Bruhat cells. Int. Math. Res. Not., 21 (2000), 1131–1154. 10.1155/S1073792800000568 MR1800992
2011 © Institut Mittag-Leffler
Michael Gekhtman, Michael Shapiro, and Alek Vainshtein "Generalized Bäcklund–Darboux transformations for Coxeter–Toda flows from a cluster algebra perspective," Acta Mathematica 206(2), 245-310, (2011). https://doi.org/10.1007/s11511-011-0063-1
Received: 26 June 2009; Published: 2011
Vol.206 • No. 2 • 2011
Back to Top