Open Access
2014 Existence and Uniqueness of Positive Solutions for a Fractional Switched System
Zhi-Wei Lv, Bao-Feng Chen
Abstr. Appl. Anal. 2014(SI13): 1-7 (2014). DOI: 10.1155/2014/828721

Abstract

We discuss the existence and uniqueness of positive solutions for the following fractional switched system: ( D c 0 + α u ( t )+ f σ ( t ) ( t , u ( t ))+ g σ ( t ) ( t , u ( t ))= 0 , t J =[ 0,1 ] ); (u ( 0 )= u ( 0 )= 0 , u ( 1 )= 0 1 u ( s )  d s) , where D c 0 + α is the Caputo fractional derivative with 2 < α 3 , σ ( t ): J →{ 1,2 ,…, N } is a piecewise constant function depending on t , and + = [ 0 , + ) , f i , g i C [ J × + , + ], i = 1,2 , , N . Our results are based on a fixed point theorem of a sum operator and contraction mapping principle. Furthermore, two examples are also given to illustrate the results.

Citation

Download Citation

Zhi-Wei Lv. Bao-Feng Chen. "Existence and Uniqueness of Positive Solutions for a Fractional Switched System." Abstr. Appl. Anal. 2014 (SI13) 1 - 7, 2014. https://doi.org/10.1155/2014/828721

Information

Published: 2014
First available in Project Euclid: 2 October 2014

MathSciNet: MR3198256
Digital Object Identifier: 10.1155/2014/828721

Rights: Copyright © 2014 Hindawi

Vol.2014 • No. SI13 • 2014
Back to Top