Open Access
2014 A Weighted Voting Classifier Based on Differential Evolution
Yong Zhang, Hongrui Zhang, Jing Cai, Binbin Yang
Abstr. Appl. Anal. 2014(SI11): 1-6 (2014). DOI: 10.1155/2014/376950


Ensemble learning is to employ multiple individual classifiers and combine their predictions, which could achieve better performance than a single classifier. Considering that different base classifier gives different contribution to the final classification result, this paper assigns greater weights to the classifiers with better performance and proposes a weighted voting approach based on differential evolution. After optimizing the weights of the base classifiers by differential evolution, the proposed method combines the results of each classifier according to the weighted voting combination rule. Experimental results show that the proposed method not only improves the classification accuracy, but also has a strong generalization ability and universality.


Download Citation

Yong Zhang. Hongrui Zhang. Jing Cai. Binbin Yang. "A Weighted Voting Classifier Based on Differential Evolution." Abstr. Appl. Anal. 2014 (SI11) 1 - 6, 2014.


Published: 2014
First available in Project Euclid: 6 October 2014

zbMATH: 07022256
Digital Object Identifier: 10.1155/2014/376950

Rights: Copyright © 2014 Hindawi

Vol.2014 • No. SI11 • 2014
Back to Top