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Ensemble learning is to employ multiple individual classifiers and combine their predictions, which could achieve better
performance than a single classifier. Considering that different base classifier gives different contribution to the final classification
result, this paper assigns greaterweights to the classifierswith better performance andproposes aweighted voting approach based on
differential evolution. After optimizing the weights of the base classifiers by differential evolution, the proposed method combines
the results of each classifier according to theweighted voting combination rule. Experimental results show that the proposedmethod
not only improves the classification accuracy, but also has a strong generalization ability and universality.

1. Introduction

Ensemble learning is a new direction of machine learning,
which trains a number of specific classifiers and selects some
of them for ensemble. It has been shown that the combination
ofmultiple classifiers could bemore effective compared to any
individual ones [1].

From a technical point of view, ensemble learning is
mainly implemented as two steps: training weak base clas-
sifiers and selectively combining the member classifiers into
a stronger classifier. Usually the members of an ensemble
are constructed in two ways. One is to apply a single
learning algorithm, and the other is to use different learning
algorithms over a dataset [2]. Then, the base classifiers are
combined to form a decision classifier. Generally, to get a
good ensemble, the base learners should be as more accurate
as possible and as more diverse as possible. So how to choose
an ensemble of some accurate and diverse base learners is a
focus of concern of many researchers [3].

In recent years, more andmore researchers are concerned
with ensemble learning [4]. There are many effective ensem-
ble methods, such as boosting [5], bagging [6], and stacking
[7]. Boosting is a method of producing highly accurate
prediction rules by combining many “weak” rules which
may be only moderately accurate. There are many boosting
algorithms. The main variation between many boosting
algorithms is their method of weighting training samples and

hypotheses. AdaBoost is very popular and perhaps the most
significant historically as it was the first algorithm that could
adapt to the weak learners. Bagging trains a number of base
learners each from a different bootstrap sample by calling a
base learning algorithm. A bootstrap sample is obtained by
subsampling the training dataset with replacement, where the
size of a sample is the same as that of the training dataset. In
a typical implementation of stacking, a number of first-level
individual learners are generated from the training dataset
by employing different learning algorithms.Those individual
learners are then combined by a second-level learner which
is called metalearner.

Among themost popular combination schemes, majority
voting and weighted voting for classification are widely used.
Simple majority voting is a decision rule that selects one of
many alternatives, based on the predicted classes with the
most votes. Majority voting does not require any parameter
tuning once the individual classifiers have been trained [8, 9].
In case of weighted voting, weights of voting should vary
among the different output classes in each classifier. The
weight should be high for that particular output class for
which the classifier performs well. So, it is a crucial issue
to select the appropriate weights of votes for all the classes
per classifier [2]. Weighting problem can be viewed as an
optimization problem. Therefore, it can be solved by taking
advantage of artificial intelligence techniques such as genetic
algorithms (GA) and particle swarm optimization (PSO).
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The existing literature shows the benefits of these methods of
improving the classification performance [2].

Differential evolution (DE) is a simple, efficient, and
population-based evolutionary algorithm for the global
numerical optimization [10]. Due to its simple structure, ease
of use, and robustness, DE has been successfully applied
in many fields, including data mining, pattern recognition,
digital filter design, and multiobjective optimization [11–13].
This paper describes a weighted voting ensemble learning
scheme, in which the weight values of each base classifier are
optimized by DE algorithm.

This paper is divided into five sections. Section 2 intro-
duces the differential evolution. The proposed approach is
presented in Section 3. Empirical studies, results, and discus-
sions are presented in Section 4. Conclusions and futurework
are presented in Section 5.

2. Differential Evolution

Differential evolution algorithm was proposed by Storn
and Price [10]. DE optimizes a problem by maintaining a
population of candidate solutions and creating new candidate
solutions by combining existing ones according to its simple
formulae and then keeping whichever candidate solution that
has the best score or fitness on the optimization problem
at hand. DE algorithm starts with an initial population
of 𝑁 individuals: 𝑋

𝑖,𝐺
,𝑖 = 1, . . . , 𝑁, where the index 𝑖

denotes the 𝑖th solution of the population at generation
𝐺. An individual is defined as a 𝐷-dimensional vector
𝑋
𝑖,𝐺

= [𝑥
𝑖,𝐺
(1), 𝑥
𝑖,𝐺
(2), . . . , 𝑥

𝑖,𝐺
(𝑗), . . . , 𝑥

𝑖,𝐺
(𝐷)]. There are

threemain operations ofDE that are repeated till the stopping
criterion is met. They are briefly described below.

Mutation. Mutation operation creates a donor vector 𝑉
𝑖,𝐺

corresponding to each population member or target vector
𝑋
𝑖,𝐺

in the current generation. The most frequently referred
mutation strategies are presented below [14]:

DE/rand/1:

𝑉
𝑖,𝐺
= 𝑋
𝑟1,𝐺

+ 𝐹 × (𝑋
𝑟2,𝐺

− 𝑋
𝑟3,𝐺

) ; (1)

DE/best/1:

𝑉
𝑖,𝐺
= 𝑋best,𝐺 + 𝐹 × (𝑋𝑟1,𝐺 − 𝑋𝑟2,𝐺) ; (2)

DE/current to best/1:

𝑉
𝑖,𝐺
= 𝑋
𝑖,𝐺
+ 𝐹 × (𝑋best,𝐺 − 𝑋𝑖,𝐺) + 𝐹 × (𝑋𝑟1,𝐺 − 𝑋𝑟2,𝐺) ;

(3)

DE/best/2:

𝑉
𝑖,𝐺
= 𝑋best,𝐺 + 𝐹 × (𝑋𝑟1,𝐺 − 𝑋𝑟2,𝐺) + 𝐹 × (𝑋𝑟3,𝐺 − 𝑋𝑟4,𝐺) ;

(4)

DE/rand/2:

𝑉
𝑖,𝐺
= 𝑋
𝑟1,𝐺

+ 𝐹 × (𝑋
𝑟2,𝐺

− 𝑋
𝑟3,𝐺

) + 𝐹 × (𝑋
𝑟4,𝐺

− 𝑋
𝑟5,𝐺

) .

(5)

The indexes 𝑟
𝑑
, 𝑑 = 1, . . . , 5 represent the random and

mutually different integers generated within the range [1,𝑁]

and also different from index 𝑖. 𝐹 is a mutation scaling factor
within the range [0, 2], usually less than 1. Vector𝑋best,𝐺 is the
best individual vector with the best fitness in generation 𝐺.

Crossover. After mutation, crossover operation is per-
formed between the target vector 𝑋

𝑖,𝐺
and its correspond-

ing mutant vector 𝑉
𝑖,𝐺

to form the trial vector 𝑇
𝑖,𝐺

=

[𝑡
𝑖,𝐺
(1), 𝑡
𝑖,𝐺
(2), . . . , 𝑡

𝑖,𝐺
(𝑗), . . . , 𝑡

𝑖,𝐺
(𝐷)]. For each 𝑗 of the 𝐷

variables,

𝑡
𝑖,𝐺
(𝑗) = {

V
𝑖,𝐺
(𝑗) , if rand

𝑖,𝑗 [0, 1] ≤ CR or 𝑗 = 𝑗rand
𝑥
𝑖,𝐺
(𝑗) , otherwise,

(6)

where CR is a crossover control parameter, called crossover
rate, within the range [0, 1). rand

𝑖,𝑗
[0, 1] is a uniformly

distributed random number, for each 𝑗th component of the
𝑖th vector. 𝑗rand ∈ [1, 2, . . . , 𝐷] is a randomly chosen index,
which ensures that𝑇

𝑖,𝐺
gets at least one component from𝑉

𝑖,𝐺
.

Selection. After reproduction of the trial individual 𝑇
𝑖,𝐺
,

selection operation compares it to its corresponding target
individual and decides whether the target or the trial indi-
vidual survives to the next generation (𝐺 + 1). The selection
operation is described as

𝑋
𝑖,𝐺+1

= {
𝑇
𝑖,𝐺
, if 𝑓 (𝑇

𝑖,𝐺
) ≤ 𝑓 (𝑋

𝑖,𝐺
)

𝑋
𝑖,𝐺
, otherwise,

(7)

where 𝑓( ) is the objective function to be optimized and
ensures that a member of the next generation is the fittest
individual. From (7), we can see that if the trial individual
𝑇
𝑖,𝐺

is better than target individual 𝑋
𝑖,𝐺
, namely, 𝑓(𝑇

𝑖,𝐺
) ≤

𝑓(𝑋
𝑖,𝐺
), then it replaces target individual in the next gen-

eration (𝐺 + 1); otherwise it will continue with the target
individual.

To improve optimization performance,DE algorithms are
continually being developed. Many different strategies for
performing crossover and mutation are proposed [15–18].

3. Our Proposed Approach

This section describes the proposed weighted voting
ensemble learning method based on differential evolution
(DEWVote). In our proposed method, we randomly select
base classifiers. We find the proper weights of all the base
classifiers depending on the prediction confidence through
DE algorithm. The whole procedure is summarized in
Figure 1.

3.1. Selection and Training of Base Classifiers. The use of
ensemble of classifiers has gainedwide acceptance inmachine
learning and statistics community due to significant improve-
ment in accuracy. The individual classifiers should be as
diverse as possible. In the well-known ensemble techniques
such as bagging and boosting, such diversities are achieved
by manipulating the training examples in order to generate
multiple hypotheses. In our proposed approach, we select five
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Input: The control parameters of DE: mutation factor F, crossover rate CR, and population size N.
(1) Initialization(); {Generate uniformly distributed random population of N individuals

𝑋
𝐺
= {𝑋
1,𝐺
, 𝑋
2,𝐺
, . . . , 𝑋

𝑖,𝐺
, . . . , 𝑋

𝑁,𝐺
}, where𝑋

𝑖,𝐺
= [𝑥
𝑖,𝐺
(1) , 𝑥

𝑖,𝐺
(2) , . . . , 𝑥

𝑖,𝐺
(𝑗) , . . . , 𝑥

𝑖,𝐺
(𝐷)] is a

vector representing the weights (𝑤
1
, 𝑤
2
, . . ., 𝑤

𝑗
,. . ., 𝑤

𝐷
) of D base classifiers.}

(2) Set the generation iterator 𝐺 = 0.
(3) while the stopping criterion is not satisfied do
(4) for (𝑖 = 0; 𝑖 < 𝑁; 𝑖 + +) do
(5) Select random indexes𝑟

1
, 𝑟
2
, and 𝑟

3
to be different from each other and from the index i.

(6) Compute a mutant vector 𝑉
𝑖,𝐺

using (1).
(7) Generate random number 𝑗rand.
(8) for (𝑗 = 0; 𝑗 < 𝐷; 𝑗 + +) do
(9) Decide trial individual 𝑇

𝑖,𝐺
using (6).

(10) end for
(11) Compute the fitness of the vector 𝑇

𝑖,𝐺
and𝑋

𝑖,𝐺
using 10-fold cross validation, and

update the vector𝑋
𝑖,𝐺+1

of the next generation (𝐺 + 1) using (7).
(12) end for
(13) Update generation iterator 𝐺 = 𝐺 + 1.
(14) end while
Output: The optimal weights (𝑤

1
, 𝑤
2
, . . ., 𝑤

𝑗
, . . ., 𝑤

𝐷
) for DEWVote.

Algorithm 1: DE algorithm for DEWVote’s model selection.

No

Select base classifiers

 Train base classifiers

Optimize the weights of 
classifiers  by DE

Optimal weights? Yes Ensemble of a classifier based 
on weighted voting

Classify and predict

Figure 1: The whole procedure of our proposed approach.

base classifiers to learn, including C4.5, Naive Bayes, Bayes
Nets, 𝑘-nearest neighbor (𝑘-NN), and ZeroR.

3.2. DE-BasedModel for Parameters Selection. In this section,
we are concerned with the parameters selection for the pro-
posed DEWVote. The parameters that should be optimized
in DEWVote are the weights of each base classifier in an
ensemble. Different parameters settings have a heavy impact
on the performance of DEWVote. We select the differential
evolution to search the optimal weights.

DE has a random initial population of solution candidates
that is then improved using the evolution operations. In
general, we employ the predefinedmaximum iterations𝑀max
to determine the stopping criterion of DE. Other control
parameters for DE are the mutation scaling factor 𝐹 ∈

(0, 1), the crossover rate CR ∈ (0, 1), and the population
size 𝑁. The process of the DE-based parameters selection

for DEWVote is shown in Algorithm 1 with the following
explanations.

Initialization. Initialize a population of 𝑁 individuals: 𝑋
𝐺
=

{𝑋
1,𝐺
, 𝑋
2,𝐺
, . . . , 𝑋

𝑖,𝐺
. . . , 𝑋

𝑁,𝐺
}. An individual is defined as

a 𝐷-dimensional vector: 𝑋
𝑖,𝐺

= [𝑥
𝑖,𝐺
(1), 𝑥
𝑖,𝐺
(2), . . . , 𝑥

𝑖,𝐺
(𝑗),

. . . , 𝑥
𝑖,𝐺
(𝐷)], which represents the weights (𝑤

1
, 𝑤
2
, . . . ,

𝑤
𝑗
, . . . , 𝑤

𝐷
) of base classifiers and 𝐷 is the size of base

classifiers. Each individual is generated by the uniform
distribution in the range [0, 1].

Fitness Evaluation. Train the DEWVote by using each indi-
vidual vector, and the corresponding 10-fold cross-validation
accuracy is then evaluated as the fitness function.

Given the number of categories 𝑚 and 𝐷 base classifiers
to vote, the prediction category 𝑐

𝑘
of weighted voting for each

sample 𝑘 is described as

𝑐
𝑘
= arg max

𝑗

𝐷

∑

𝑖=1

(Δ
𝑗𝑖
× 𝑤
𝑖
) , (8)

where Δ
𝑗𝑖
is the binary variable. If the 𝑖th base classifier

classifies sample 𝑘 into the 𝑗th category, then Δ
𝑗𝑖

= 1;
otherwise, Δ

𝑗𝑖
= 0. 𝑤

𝑖
is the weight of the 𝑖th base classifier

in an ensemble, which is optimized by DE algorithm in
Algorithm 1.

Then, the accuracy is defined as

Acc =
∑
𝑘
{1 | 𝑐
𝑘
is the true category of sample 𝑘}
Size of test samples

× 100%.

(9)

After obtaining the best individual by the differential evo-
lution, namely, the optimal weight (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑗
, . . . , 𝑤

𝐷
),
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Table 1: Summary of datasets.

Dataset Total samples Number of attributes Number of classes
Breast-cancer 286 10 2
Contact-lenses 24 5 3
Credit-g 1000 21 2
Diabetes 768 9 2
Ionosphere 351 35 2
Iris 150 5 3
Iris.2D 150 3 3
Glass 214 10 7
Labor 57 17 2
Segment-challenge 1500 20 7
Soybean 668 36 19
Supermarket 4627 217 2
Unbalanced 856 33 2
Vote 435 17 2
Weather.numeric 14 5 2

we generate the ensemble classifier to classify the test datasets
using (8).

4. Experimental Results and Analysis

In this section, we present and discuss, in detail, the results
obtained by the experiments carried out in this research.

We run our experiments under the framework of Weka
[19] using 15 datasets to test the performance of the pro-
posed method. These datasets are from the UCI Machine
Learning Repository [20]. Information about these datasets
is summarized in Table 1. In DE algorithm, the choice of
DE parameters can have a large impact on optimization
performance. Selecting the DE parameters that yield good
performance has therefore been the subject ofmuch research.
For simplicity, we set factor 𝐹 = 0.5, crossover rate CR = 0.9,
population𝑁 = 20, and maximum iteration number𝑀max =
100.

We first compared the performance with four base classi-
fiers, including C4.5, Naive Bayes, Bayes Nets, and 𝑘-nearest
neighbor (𝑘-NN).

C4.5 is an algorithm used to generate a decision tree
developed by Quinlan [21]. C4.5 builds decision trees from a
set of training data in the same way as ID3, using the concept
of information entropy.

A Naive Bayes classifier [22] is a simple probabilistic
classifier based on applying Bayes’ theorem with strong
(naive) independence assumptions. Bayes theorem provides
a way of calculating the posterior probability. Naive Bayes
classifier assumes that the effect of the value of a predictor on
a given class is independent of the values of other predictors.

Bayes Nets or Bayesian networks [23] are graphical
representation for probabilistic relationships among a set
of random variables. A Bayesian network is an annotated
directed acyclic graph (DAG) that encodes a joint probability

distribution. The nodes of the graph correspond to the ran-
dom variables.The links of the graph correspond to the direct
influence from one variable to the other.

𝑘-NN is a type of instance-based learning or lazy learning.
In 𝑘-NN classification, the output is a class membership. An
object is classified by amajority vote of its neighbors, with the
object being assigned to the class most common among its 𝑘
nearest neighbors (𝑘 is a positive integer, typically small). If
𝑘 = 1, then the object is simply assigned to the class of that
single nearest neighbor.

To obtain a better measure of predictive accuracy, we
compare these methods using 10-fold cross-validation. The
cross-validation accuracy is the average of the ten estimates.
In each fold nine out of ten samples are selected to be training
set, and the left one out of the ten samples is testing set. This
process repeats 10 times so that all samples are selected in
both training set and testing set. Table 2 shows the average
accuracy values of four single methods.

From Table 2, we can see that each method outperforms
other single methods in some datasets. Comparatively, C4.5
hasmore accuracies than othermethods in 8 of all 15 datasets.
It is noted that these base classifiers are more diverse.

To obtain a better measure of predictive accuracy, we
also compare several ensemble methods using 10-fold cross-
validation, such as bagging, AdaBoost, majority voting, and
our DEWVote approach. In the DEWVote approach, we
select five classifiers as base learners, including C4.5, Naive
Bayes, Bayes Nets, 𝑘-nearest neighbor (𝑘-NN), and ZeroR
[19]. ZeroR is the simplest classification method which relies
on the target and ignores all predictors. ZeroR classifier
simply predicts the majority category (class). Although
there is no predictability power in ZeroR, it is useful for
determining a baseline performance as a benchmark for
other classificationmethods.Majority voting selects the same
base classifiers as our approach. A Naive Bayes classifier is
employed as the base learning algorithm of bagging and
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Table 2: Comparison of 4 single methods.

Dataset C4.5 Naive Bayes Bayes Nets k-NN
Breast-cancer 0.755 0.717 0.720 0.724
Contact-lenses 0.833 0.708 0.708 0.792
Credit-g 0.705 0.754 0.755 0.720
Diabetes 0.738 0.743 0.763 0.702
Ionosphere 0.915 0.826 0.895 0.863
Iris 0.960 0.960 0.927 0.953
Iris.2D 0.960 0.960 0.947 0.960
Glass 0.668 0.486 0.706 0.706
Labor 0.737 0.895 0.877 0.825
Segment-challenge 0.957 0.811 0.904 0.962
Soybean 0.915 0.930 0.933 0.912
Supermarket 0.637 0.637 0.637 0.371
Unbalanced 0.986 0.908 0.986 0.977
Vote 0.963 0.901 0.901 0.924
Weather.numeric 0.643 0.643 0.571 0.786

Table 3: Comparison of 4 ensemble methods.

Dataset Bagging AdaBoost Majority voting DEWVote
Breast-cancer 0.689 0.703 0.822 0.879
Contact-lenses 0.750 0.708 0.958 0.980
Credit-g 0.737 0.695 0.854 0.973
Diabetes 0.754 0.743 0.852 0.824
Ionosphere 0.926 0.909 0.969 0.984
Iris 0.947 0.953 0.987 0.997
Iris.2D 0.953 0.953 0.980 0.993
Glass 0.724 0.743 0.939 0.962
Labor 0.842 0.877 0.986 0.988
Segment-challenge 0.959 0.975 0.981 0.980
Soybean 0.862 0.928 0.963 0.998
Supermarket 0.637 0.749 0.637 0.995
Unbalanced 0.986 0.985 0.986 0.998
Vote 0.961 0.954 0.954 0.995
Weather.numeric 0.643 0.714 0.926 0.973

AdaBoost. Naive Bayes classifiers are generated multiple
times by each ensemble method’s own mechanism. The
generated classifiers are then combined to form an ensemble.

We present the mean of 10-fold cross-validation accu-
racies for 15 datasets. The results of ensembles are shown
in Table 3. DEWVote shows more accuracies than other
ensemblemethods besides inDiabetes and Segment-challenge
datasets, while majority voting outperforms other ensemble
methods in these two datasets. It is of note that majority vot-
ing has more accuracies than bagging and AdaBoost. Com-
paratively speaking, DEWVote and majority voting obtain
better performance in majority datasets. However, bagging
and boosting obtain better performance thanmajority voting
in vote dataset.

5. Conclusions

In this paper we give a novel approach to optimal weights
of base classifiers by differential evolution and present a
weighted voting ensemble learning classifier. The proposed
approach adopts ensemble learning strategy and selects
several base learners, which are as more diverse as possible
to each other, to combine an ensemble classifier. Each weight
of base learner is obtained by differential evolution algorithm.

We have compared the performance with the three
classical ensemble methods, as well as with four base classi-
fiers. Experimental results have confirmed that our approach
consistently outperforms the previous approaches. DEWVote
searches the weights through iteration operations. So, it has
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more cost than other ensemble methods. In our future work,
we will concentrate on reducing the computational cost.
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