Open Access
2013 Nonexistence of Homoclinic Orbits for a Class of Hamiltonian Systems
Xiaoyan Lin, Qi-Ming Zhang, X. H. Tang
Abstr. Appl. Anal. 2013: 1-10 (2013). DOI: 10.1155/2013/547682

Abstract

We give several sufficient conditions under which the first-order nonlinear Hamiltonian system x ' ( t ) = α ( t ) x ( t ) + f ( t , y ( t ) ) , y ' ( t ) = - g ( t , x ( t ) ) - α ( t ) y ( t ) has no solution ( x ( t ) , y ( t ) ) satisfying condition 0 < - + [ | x ( t ) | ν + ( 1 + β ( t ) ) | y ( t ) | μ ] d t < + , where μ , ν > 1 and ( 1 / μ ) + ( 1 / ν ) = 1 , 0 x f ( t , x ) β ( t ) | x | μ , x g ( t , x ) γ 0 ( t ) | x | ν , β ( t ) , γ 0 ( t ) 0 , and α ( t ) are locally Lebesgue integrable real-valued functions defined on .

Citation

Download Citation

Xiaoyan Lin. Qi-Ming Zhang. X. H. Tang. "Nonexistence of Homoclinic Orbits for a Class of Hamiltonian Systems." Abstr. Appl. Anal. 2013 1 - 10, 2013. https://doi.org/10.1155/2013/547682

Information

Published: 2013
First available in Project Euclid: 27 February 2014

zbMATH: 1296.34120
MathSciNet: MR3108473
Digital Object Identifier: 10.1155/2013/547682

Rights: Copyright © 2013 Hindawi

Vol.2013 • 2013
Back to Top