2013 Analytic-Numerical Solution of Random Boundary Value Heat Problems in a Semi-Infinite Bar
M.-C. Casabán, J.-C. Cortés, B. García-Mora, L. Jódar
Abstr. Appl. Anal. 2013(SI10): 1-9 (2013). DOI: 10.1155/2013/676372
Abstract

This paper deals with the analytic-numerical solution of random heat problems for the temperature distribution in a semi-infinite bar with different boundary value conditions. We apply a random Fourier sine and cosine transform mean square approach. Random operational mean square calculus is developed for the introduced transforms. Using previous results about random ordinary differential equations, a closed form solution stochastic process is firstly obtained. Then, expectation and variance are computed. Illustrative numerical examples are included.

## References

1.

M. Necati Özişik, Boundary Value Problems of Heat Conduction, Dover, New York, NY, USA, 1968. M. Necati Özişik, Boundary Value Problems of Heat Conduction, Dover, New York, NY, USA, 1968.

2.

R. Chiba, “Stochastic heat conduction analysis of a functionally grade annular disc with spatially random heat transfer coefficients,” Applied Mathematical Modelling, vol. 33, no. 1, pp. 507–523, 2009. R. Chiba, “Stochastic heat conduction analysis of a functionally grade annular disc with spatially random heat transfer coefficients,” Applied Mathematical Modelling, vol. 33, no. 1, pp. 507–523, 2009.

3.

Y. Li and S. Long, “A finite element model based on statistical two-scale analysis for equivalent heat transfer parameters of composite material with random grains,” Applied Mathematical Modelling, vol. 33, no. 7, pp. 3157–3165, 2009. MR2502738 10.1016/j.apm.2008.10.018 Y. Li and S. Long, “A finite element model based on statistical two-scale analysis for equivalent heat transfer parameters of composite material with random grains,” Applied Mathematical Modelling, vol. 33, no. 7, pp. 3157–3165, 2009. MR2502738 10.1016/j.apm.2008.10.018

4.

J. C. Cortés, L. Jódar, L. Villafuerte, and R. J. Villanueva, “Computing mean square approximations of random diffusion models with source term,” Mathematics and Computers in Simulation, vol. 76, no. 1–3, pp. 44–48, 2007. MR2392455 10.1016/j.matcom.2007.01.020 J. C. Cortés, L. Jódar, L. Villafuerte, and R. J. Villanueva, “Computing mean square approximations of random diffusion models with source term,” Mathematics and Computers in Simulation, vol. 76, no. 1–3, pp. 44–48, 2007. MR2392455 10.1016/j.matcom.2007.01.020

5.

L. Jódar, J. C. Cortés, and L. Villafuerte, “A discrete eigenfunctions method for numerical solution of random diffusion models,” in Proceedings of the Conference on Differential and Difference Equations and Applications, pp. 457–466, 2005. MR2309379 L. Jódar, J. C. Cortés, and L. Villafuerte, “A discrete eigenfunctions method for numerical solution of random diffusion models,” in Proceedings of the Conference on Differential and Difference Equations and Applications, pp. 457–466, 2005. MR2309379

6.

J.-C. Cortés, L. Jódar, M.-D. Roselló, and L. Villafuerte, “Solving initial and two-point boundary value linear random differential equations: a mean square approach,” Applied Mathematics and Computation, vol. 219, no. 4, pp. 2204–2211, 2012. MR2983923 10.1016/j.amc.2012.08.066 J.-C. Cortés, L. Jódar, M.-D. Roselló, and L. Villafuerte, “Solving initial and two-point boundary value linear random differential equations: a mean square approach,” Applied Mathematics and Computation, vol. 219, no. 4, pp. 2204–2211, 2012. MR2983923 10.1016/j.amc.2012.08.066

7.

A. G. Madera, “Modelling of stochastic heat transfer in a solid,” Applied Mathematical Modelling, vol. 17, no. 12, pp. 664–668, 1993. A. G. Madera, “Modelling of stochastic heat transfer in a solid,” Applied Mathematical Modelling, vol. 17, no. 12, pp. 664–668, 1993.

8.

A. G. Madera and A. N. Sotnikov, “Method for analyzing stochastic heat transfer in a fluid flow,” Applied Mathematical Modelling, vol. 20, no. 8, pp. 588–592, 1996. A. G. Madera and A. N. Sotnikov, “Method for analyzing stochastic heat transfer in a fluid flow,” Applied Mathematical Modelling, vol. 20, no. 8, pp. 588–592, 1996.

9.

T. T. Soong, Random Differential Equations in Science and Engineering, Academic Press, New York, NY, USA, 1973. MR0451405 T. T. Soong, Random Differential Equations in Science and Engineering, Academic Press, New York, NY, USA, 1973. MR0451405

10.

L. Villafuerte, C. A. Braumann, J.-C. Cortés, and L. Jódar, “Random differential operational calculus: theory and applications,” Computers & Mathematics with Applications, vol. 59, no. 1, pp. 115–125, 2010. MR2575498 L. Villafuerte, C. A. Braumann, J.-C. Cortés, and L. Jódar, “Random differential operational calculus: theory and applications,” Computers & Mathematics with Applications, vol. 59, no. 1, pp. 115–125, 2010. MR2575498

11.

L. Arnold, Stochastic Differential Equations: Theory and Applications, John Wiley & Sons, New York, NY, USA, 1974. MR0443083 L. Arnold, Stochastic Differential Equations: Theory and Applications, John Wiley & Sons, New York, NY, USA, 1974. MR0443083

12.

E. C. Titchmarsch, The Theory of Functions, Oxford University Press, New York, NY, USA, 2nd edition, 1939. E. C. Titchmarsch, The Theory of Functions, Oxford University Press, New York, NY, USA, 2nd edition, 1939.

13.

G. Calbo, J.-C. Cortés, and L. Jódar, “Random Hermite differential equations: mean square power series solutions and statistical properties,” Applied Mathematics and Computation, vol. 218, no. 7, pp. 3654–3666, 2011. MR2851465 10.1016/j.amc.2011.09.008 G. Calbo, J.-C. Cortés, and L. Jódar, “Random Hermite differential equations: mean square power series solutions and statistical properties,” Applied Mathematics and Computation, vol. 218, no. 7, pp. 3654–3666, 2011. MR2851465 10.1016/j.amc.2011.09.008

14.

M. Loève, Probability Theory I and II, vol. 45 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 4th edition, 1977. MR0651017 M. Loève, Probability Theory I and II, vol. 45 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 4th edition, 1977. MR0651017

15.

J. C. Cortés, P. Sevilla-Peris, and L. Jódar, “Analytic-numerical approximating processes of diffusion equation with data uncertainty,” Computers & Mathematics with Applications, vol. 49, no. 7-8, pp. 1255–1266, 2005. MR2141263 J. C. Cortés, P. Sevilla-Peris, and L. Jódar, “Analytic-numerical approximating processes of diffusion equation with data uncertainty,” Computers & Mathematics with Applications, vol. 49, no. 7-8, pp. 1255–1266, 2005. MR2141263

16.

A. J. Jerri, Integral and Discrete Transforms with Applications and Error Analysis, vol. 162 of Pure and Applied Mathematics, Marcel Dekkers, New York, NY, USA, 1992. MR1186402 A. J. Jerri, Integral and Discrete Transforms with Applications and Error Analysis, vol. 162 of Pure and Applied Mathematics, Marcel Dekkers, New York, NY, USA, 1992. MR1186402

17.

J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York, NY, USA, 1969.  MR0349288 J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York, NY, USA, 1969.  MR0349288