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This paper deals with the analytic-numerical solution of random heat problems for the temperature distribution in a semi-infinite
bar with different boundary value conditions. We apply a random Fourier sine and cosine transform mean square approach.
Random operational mean square calculus is developed for the introduced transforms. Using previous results about random
ordinary differential equations, a closed form solution stochastic process is firstly obtained. Then, expectation and variance are
computed. Illustrative numerical examples are included.

1. Introduction

Temperature and heat flow are two important quantities in
the problem of heat conduction. Temperature at any point
of a solid is completely determined by its numerical value
because it is a scalar quantity, whereas heat flow is defined
by its value and direction, and it depends on the properties
of the material that are neither uniform nor pure [1]. These
uncertainties about material apart from measurement error
deserve a random approach. Random heat transfer in a finite
medium has been treated in [2] by developing a random
perturbation method, in [3] by using finite element method,
and in [4, 5] using finite difference methods.

It is well known that the integral transform technique
to solve deterministic heat problems is very powerful and
efficient because, by the combined use of the direct and
inverse transform, the problem is simplified, by transforming
partial differential equations into ordinary differential ones.
In this paper, we introduce the random Fourier sine and
cosine transforms and theirmean square operational calculus
to solve random temperature distribution in a semi-infinite
barwith random temperature or randomheat flow at one end.
Using results about randomordinary differential equations of
[6] allows us to find closed-form solutions stochastic process
(s.p.) of random heat problems as in the deterministic case.

Although some authors deal with the uncertainty by
using the Brownian motion and the Itô calculus [7, 8], we

use a random mean square approach (m.s.) for two main
reasons. The first one is that the m.s. solution coincides with
the deterministic solution when data are deterministic. The
secondone is that if𝑉(𝑥, 𝑡) is anm.s. approximation of𝑢(𝑥, 𝑡),
then the expectation and the variance of 𝑉(𝑥, 𝑡) converge to
the expectation and variance of 𝑢(𝑥, 𝑡), respectively; see [9,
chapter 4].

This paper is organized as follows. In Section 2, some
preliminaries about m.s. calculus definitions, properties,
and results are included. In Section 3, the random Fourier
sine and cosine transforms are introduced and important
m.s. operational rules related to the random Fourier sine
(cosine) transform of a s.p. and of its m.s. derivatives, that
is, the key to solve partial differential equations in terms of
ordinary differential equations, are given. Sections 4 and 5
deal with random boundary value problems associated with
the random heat equation

𝑢
𝑡
(𝑥, 𝑡) = 𝐿𝑢

𝑥𝑥
(𝑥, 𝑡) , 𝑥 > 0, 𝑡 > 0, (1)

where 𝐿 is a positive random variable (r.v.) whose proper-
ties will be specified later. For the deterministic case, the
boundary conditions of these problems are called of third
and second kind, respectively [1, page 52]. In Section 6, some
illustrative examples are studied and in Section 7 a set of
conclusions are given.
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2. Preliminaries about Random Mean
Square Calculus

In this section, we review some important concepts, defini-
tions, and results related to the random 𝐿

𝑝
calculus, mainly

focusing on the mean square (m.s.) and mean fourth (m.f.)
calculus, which correspond to 𝑝 = 2 and 𝑝 = 4, respectively
(see [10] for further details). After that, a relevant class of r.v.’s
that will play an important role in the development of next
sections is studied.

Let (Ω,F,P) be a probabilistic space. Let 𝑝 ≥ 1 be a real
number. A real r.v. 𝑈 defined on (Ω,F,P) is called of order
𝑝, if

E [|𝑈|𝑝] < +∞, (2)

where E[⋅] denotes the expectation operator. The space 𝐿
𝑝
of

all the real r.v.’s of order 𝑝, endowed with the norm

‖𝑈‖
𝑝
= (E [|𝑈|𝑝])1/𝑝, (3)

is a Banach space, [11, page 9].
Let {𝑈

𝑛
: 𝑛 ≥ 0} be a sequence of r.v.’s of order 𝑝. We say

that it is convergent in the 𝑝th mean to the real r.v.𝑈 ∈ 𝐿
𝑝
, if

lim
𝑛→+∞

󵄩󵄩󵄩󵄩𝑈𝑛 − 𝑈
󵄩󵄩󵄩󵄩𝑝

= 0. (4)

This type of convergence is often expressed by l.i.m.
𝑛→∞

𝑈
𝑛
=

𝑈. The symbol l.i.m. denotes the limit in the 𝑝th mean. If
𝑝
2
≥ 𝑝
1
, then 𝐿

𝑝
2

⊆ 𝐿
𝑝
1

. In addition, if {𝑈
𝑛
: 𝑛 ≥ 0} is 𝑝

2
th

mean convergent to 𝑈 ∈ 𝐿
𝑝
2

, then {𝑈
𝑛
: 𝑛 ≥ 0} is also 𝑝

1
th

mean convergent to𝑈 ∈ 𝐿
𝑝
1

[11, page 13]. Convergences in 𝐿
2

and 𝐿
4
are usually referred to as m.s. and m.f. convergence,

respectively. If {𝑈
𝑛
: 𝑛 ≥ 0} is a sequence of 2-r.v.’s in 𝐿

2
m.s.

convergent to 𝑈 ∈ 𝐿
2
, then from Theorem 4.3.1 of [9, page

88] one gets

lim
𝑛→∞

E [𝑈
𝑛
] = E [𝑈] , lim

𝑛→∞
Var [𝑈

𝑛
] = Var [𝑈] , (5)

where Var[⋅] denotes the variance operator.
Let 𝑇 be a subset of the real line. A family {𝑈(𝑡) : 𝑡 ∈ 𝑇}

of real r.v.’s of order 𝑝 is said to be a s.p. of order 𝑝 or, in short,
a 𝑝-s.p. if

E [|𝑈 (𝑡)|
𝑝
] < +∞, ∀𝑡 ∈ 𝑇. (6)

We say that {𝑈(𝑡) : 𝑡 ∈ 𝑇} is 𝑝th mean continuous at
𝑡 ∈ 𝑇, if

‖𝑈 (𝑡 + ℎ) − 𝑈 (𝑡)‖
𝑝
󳨀→ 0 as ℎ 󳨀→ 0, 𝑡, 𝑡 + ℎ ∈ 𝑇. (7)

Furthermore, if there exists a s.p. 𝑈󸀠(𝑡) of order 𝑝, such
that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑈 (𝑡 + ℎ) − 𝑈 (𝑡)

ℎ
− 𝑈
󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝

󳨀→ 0,

as ℎ 󳨀→ 0, 𝑡, 𝑡 + ℎ ∈ 𝑇,

(8)

then we say that {𝑈(𝑡) : 𝑡 ∈ 𝑇} is 𝑝th mean differentiable at
𝑡 ∈ 𝑇 and 𝑈󸀠(𝑡) is the 𝑝-derivative of 𝑈(𝑡).

In the particular cases that 𝑝 = 2, 4, aforementioned def-
initions lead to the corresponding concepts of mean square
(m.s.) andmean fourth (m.f.) continuity and differentiability.
Furthermore, it is easy to establish by the Schwarz’s inequality
that ‖𝑈𝑉‖

2
≤ ‖𝑈‖

4
‖𝑉‖
4
(see [10]), which prove that m.f.

continuity and differentiability entail m.s. continuity and
differentiability, respectively.

In accordance with [9, page 99], [12], we say that a s.p.
{𝑉(𝑥) : 𝑥 ∈ R} with 𝑉(𝑥) ∈ 𝐿

𝑝
for all 𝑥, is locally integrable

in R if, for all finite interval [𝑎, 𝑏] ⊂ R, the integral

∫

𝑏

𝑎

𝑉 (𝑥) 𝑑𝑥 (9)

exits in 𝐿
𝑝
.We say that {𝑉(𝑥) : 𝑥 ∈ R} is absolutely integrable

in 𝐿
𝑝
, if

∫

+∞

−∞

‖𝑉 (𝑥)‖
𝑝
𝑑𝑥 < +∞. (10)

Now, we introduce an important type of r.v.’s, 𝐿, that
have played a significant role in the m.s. solution of ran-
dom ordinary differential equations (see [13] and references
therein), and which will be used later. We will assume that
such r.v.’s 𝐿 have absolute moments with respect to the origin
that increases at the most exponentially; that is, there exist a
nonnegative integer 𝑛

0
and positive constants𝑀 and𝐻 such

that

E [|𝐿|𝑛] ≤ 𝑀𝐻
𝑛
, ∀𝑛 ≥ 𝑛

0
, that is, E [|𝐿|𝑛] = O (𝐻

𝑛
) .

(11)

From (11) and definition (3) for 𝑝 = 2, for each 𝑥 ∈ R, one
gets

(
󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
−𝐿𝑥
2󵄩󵄩󵄩󵄩󵄩󵄩2

)

2

= E [𝑒−2𝐿𝑥
2

] = E[∑
𝑛≥0

(−2)
𝑛
𝐿
𝑛
𝑥
2𝑛

𝑛!
]

= ∑

𝑛≥0

(−2)
𝑛
𝑥
2𝑛E [𝐿𝑛]
𝑛!

≤ ∑

𝑛≥0

(−2)
𝑛
𝑥
2𝑛E [|𝐿|𝑛]
𝑛!

≤ 𝑀∑

𝑛≥0

(−2)
𝑛
𝑥
2𝑛
𝐻
𝑛

𝑛!
= 𝑀𝑒
−2𝐻𝑥

2

, 𝑀 > 0.

(12)

Thus,
󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
−𝐿𝑥
2󵄩󵄩󵄩󵄩󵄩󵄩2

≤ 𝑀̃𝑒
−𝐻𝑥
2

, 𝑥 ∈ R, 𝑀̃ = √𝑀 > 0. (13)

Remark 1. The lack of explicit formulae for the absolute
moments with respect to the origin of some standard r.v.’s
as well as the aim of looking for a general approach to deal
with the widest range of random inputs, we are going to take
advantage of censuring method (see [14, chapter 5]) to show
that truncated r.v.’s satisfy condition (11). Let us assume a r.v.
𝐿 that satisfies

𝑙
1
≤ 𝑙 = 𝐿 (𝜔) ≤ 𝑙

2
, ∀𝜔 ∈ Ω. (14)
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Then,

E [|𝐿|𝑛] = ∫

𝑙
2

𝑙
1

|𝑙|
𝑛
𝑓
𝐿
(𝑙) 𝑑𝑙 ≤ 𝐻

𝑛
, (15)

where𝑓
𝐿
(𝑙)denotes the probability density function (p.d.f.) of

r.v. 𝐿 and 𝐻 = max(|𝑙
1
|, |𝑙
2
|). Indeed, in the case that𝐻 > 1,

one gets

∫

𝑙
2

𝑙
1

|𝑙|
𝑛
𝑓
𝐿
(𝑙) 𝑑𝑙 ≤ 𝐻

𝑛
∫

𝑙
2

𝑙
1

𝑓
𝐿
(𝑙) 𝑑𝑙 = 𝐻

𝑛
. (16)

Notice that, in the last step, we have applied that the integral
of the right-hand side is just 1 because 𝑓

𝐿
(𝑙) is a p.d.f. The

other cases can be analyzed analogously. Substituting the
integral by a sum in (15), previous reasoning remains true
when 𝐿 is a discrete r.v. As a consequence, important r.v.’s
such as binomial, hypergeometric, uniform, or beta satisfy
condition (11) related to the absolutemoments of 𝐿. Although
many other unbounded r.v.’s can also verify condition (11),
we do not need to check it each case; since censuring their
codomain suitably, we are legitimated to approximate them.
Hence, truncations of r.v.’s such as exponential or Gaussian
satisfy condition (11). The larger the censured interval is,
the better the approximations are. However, in practice,
intervals relatively short provide very good approximations.
For instance, as an illustrative example, notice that the
truncated interval [𝜇 − 3𝜎, 𝜇 + 3𝜎] contains the 99.7% of the
probability mass of a Gaussian r.v. with mean 𝜇 and standard
deviation 𝜎 > 0.

For the sake of clarity in the presentation, we state
the m.s. differentiation of integrals whose proof is a direct
consequence of the deterministic case [12, page 99] and the
m.s. differentiation theorem for a sequence of 2-s.p. [15].

Lemma 2 (m.s. differentiation of infinite integrals). Let
𝑔(𝑥, 𝑡) be a 2-s.p. m.s. continuous with m.s. continuous partial
derivative 𝜕𝑔(𝑥, 𝑡)/𝜕𝑡. Assume the following hypotheses.

(i) 𝐺(𝑡) = ∫
+∞

𝑎
𝑔(𝑥, 𝑡) 𝑑𝑥 is m.s. pointwise convergent

for each 𝑡 > 0.

(ii) ∫+∞
𝑎

(𝜕𝑔(𝑥, 𝑡)/𝜕𝑡)𝑑𝑥 is m.s. uniformly convergent in
[𝑡 − 𝛿, 𝑡 + 𝛿], 𝛿 > 0 for each 𝑡 > 0.

Then, the process 𝐺(𝑡) is m.s. differentiable, and

𝐺
󸀠
(𝑡) = ∫

+∞

𝑎

𝜕𝑔 (𝑥, 𝑡)

𝜕𝑡
𝑑𝑥. (17)

3. Random Fourier Sine and Cosine
Transforms’ Operational Calculus

We begin this section by introducing the definition of the
random Fourier sine and cosine transforms of a 2-s.p. {𝑢(𝑥) :
𝑥 > 0}m.s. locally integrable, and m.s. absolutely integrable;
that is,

∫

∞

0

‖𝑢 (𝑥)‖
2
𝑑𝑥 < +∞, (18)

as the s.p.’s

Fs [𝑢 (𝑥)] (𝜉) = ∫

∞

0

𝑢 (𝑥) sin (𝜉𝑥) 𝑑𝑥, 𝜉 > 0, (19)

Fc [𝑢 (𝑥)] (𝜉) = ∫

∞

0

𝑢 (𝑥) cos (𝜉𝑥) 𝑑𝑥, 𝜉 > 0, (20)

respectively. Note that from (18) both integrals appearing in
(19) and (20) are convergent in 𝐿

2
and thus they are 2-s.p.’s

well defined.
Following the ideas of the deterministic inverse Fourier

sine and cosine transforms, [16, chapter 2], we define the
random inverse Fourier sine and cosine transforms of a 2-
s.p. 𝐹(𝜉) m.s. locally and m.s. absolutely integrable by the
formulae

Fs
−1
[𝐹 (𝜉)] (𝑥) =

2

𝜋
∫

∞

0

𝐹 (𝜉) sin (𝜉𝑥) 𝑑𝜉, 𝑥 > 0, (21)

Fc
−1
[𝐹 (𝜉)] (𝑥) =

2

𝜋
∫

∞

0

𝐹 (𝜉) cos (𝜉𝑥) 𝑑𝜉, 𝑥 > 0, (22)

respectively.
The following result contains some m.s. operational rules

that will be used in Sections 4 and 5 to solve random heat
problems in a semi-infinite medium.

Theorem 3. Let {𝑢(𝑥) : 𝑥 > 0} be a 2-s.p. twice m.s. differ-
entiable with 𝑢

󸀠󸀠
(𝑥) m.s. locally integrable, and with 𝑢(𝑥),

𝑢
󸀠
(𝑥), and 𝑢󸀠󸀠(𝑥)m.s. absolutely integrable in [0,∞[. Then,

(i) Fs [𝑢
󸀠
(𝑥)] (𝜉) = −𝜉Fc [𝑢 (𝑥)] (𝜉) ,

𝜉 > 0,

(23)

(ii) Fc [𝑢
󸀠
(𝑥)] (𝜉) = −𝑢 (0) + 𝜉Fs [𝑢 (𝑥)] (𝜉) ,

𝜉 > 0,

(24)

(iii) Fs [𝑢
󸀠󸀠
(𝑥)] (𝜉) = 𝑢 (0) 𝜉 − 𝜉

2
Fs [𝑢 (𝑥)] (𝜉) ,

𝜉 > 0,

(25)

(iV) Fc [𝑢
󸀠󸀠
(𝑥)] (𝜉) = −𝑢

󸀠
(0) − 𝜉

2
Fc [𝑢 (𝑥)] (𝜉) ,

𝜉 > 0.

(26)

Proof. We present the proof of each formula separately.

(i) By the rule for the m.s. derivative of a product of a 2-
s.p. by a deterministic function, [9, page 96], it follows
that

(𝑢 (𝑥) sin (𝜉𝑥))󸀠 = 𝑢
󸀠
(𝑥) sin (𝜉𝑥) + 𝜉𝑢 (𝑥) cos (𝜉𝑥) , (27)

or

𝑢
󸀠
(𝑥) sin (𝜉𝑥) = (𝑢 (𝑥) sin (𝜉𝑥))󸀠 − 𝜉𝑢 (𝑥) cos (𝜉𝑥) . (28)



4 Abstract and Applied Analysis

From definitions (19) and (28), one gets

Fs [𝑢
󸀠
(𝑥)] (𝜉) = ∫

∞

0

𝑢
󸀠
(𝑥) sin (𝜉𝑥) 𝑑𝑥

= ∫

∞

0

(𝑢 (𝑥) sin (𝜉𝑥))󸀠𝑑𝑥

− 𝜉∫

∞

0

𝑢 (𝑥) cos (𝜉𝑥) 𝑑𝑥.

(29)

From the fundamental theorem of the m.s. calculus
[9, page 104], we have

∫

𝑅

0

𝑢
󸀠
(𝑥) 𝑑𝑥 = 𝑢 (𝑅) − 𝑢 (0) . (30)

From (30), as 𝑢󸀠(𝑥) is m.s. absolutely integrable, it
follows that

∫

∞

0

𝑢
󸀠
(𝑥) 𝑑𝑥 = l.i.m.

𝑅→∞

∫

𝑅

0

𝑢
󸀠
(𝑥) 𝑑𝑥

= (l.i.m.
𝑅→∞

𝑢 (𝑅)) − 𝑢 (0) .

(31)

Hence, the limit ℓ = l.i.m.
𝑅→∞

𝑢(𝑅) is finite.
Furthermore, as 𝑢(𝑥) is m.s. absolutely integrable, by
the Cauchy condition of the integral

∫

∞

0

‖𝑢 (𝑥)‖
2
𝑑𝑥, (32)

one gets that

l.i.m.
𝑅→∞

𝑢 (𝑅) = 0. (33)

By the fundamental theorem of the m.s. calculus [9,
page 104], we also have

∫

𝑅

0

(𝑢 (𝑥) sin (𝜉𝑥))󸀠𝑑𝑥 = 𝑢 (𝑅) sin (𝜉𝑅) , 𝜉 > 0. (34)

From (33) and (34) one gets that

∫

∞

0

(𝑢 (𝑥) sin (𝜉𝑥))󸀠𝑑𝑥

= l.i.m.
𝑅→∞

∫

𝑅

0

(𝑢 (𝑥) sin (𝜉𝑥))󸀠𝑑𝑥 = 0.

(35)

Finally, from (29) and (35) and definition (20), one
gets the proof of (i).

(ii) By the rule for the m.s. derivative of a product of a 2-
s.p. by a deterministic function [9, page 96] we have

(𝑢 (𝑥) cos (𝜉𝑥))󸀠 = 𝑢
󸀠
(𝑥) cos (𝜉𝑥) − 𝜉𝑢 (𝑥) sin (𝜉𝑥) , (36)

or

𝑢
󸀠
(𝑥) cos (𝜉𝑥) = (𝑢(𝑥) cos(𝜉𝑥))󸀠 + 𝜉𝑢 (𝑥) sin (𝜉𝑥) . (37)

Now, by definition (20) applied to 𝑢
󸀠
(𝑥) and (37), it

follows that

Fc [𝑢
󸀠
(𝑥)] (𝜉) = ∫

∞

0

𝑢
󸀠
(𝑥) cos (𝜉𝑥) 𝑑𝑥

= ∫

∞

0

(𝑢 (𝑥) cos (𝜉𝑥))󸀠𝑑𝑥

+ 𝜉∫

∞

0

𝑢 (𝑥) sin (𝜉𝑥) 𝑑𝑥.

(38)

By the fundamental theorem of the m.s. calculus [9,
page 104],

∫

∞

0

(𝑢 (𝑥) cos (𝜉𝑥))󸀠𝑑𝑥 = l.i.m.
𝑅→∞

{𝑢 (𝑅) cos (𝜉𝑅) − 𝑢 (0)} .

(39)
As in the proof of part (i), l.i.m.

𝑅→∞
𝑢(𝑅) = 0, and

thus from (39) one gets

∫

∞

0

(𝑢(𝑥) cos(𝜉𝑥))󸀠𝑑𝑥 = −𝑢 (0) . (40)

From (38) and (40), one gets (24).
(iii) By applying part (i) to 𝑢󸀠(𝑥), it follows directly (25).
(iv) It is a direct consequence of the application of part (ii)

to 𝑢󸀠(𝑥).

4. Random Heat Problem with Third Kind
Boundary Condition

In this section, we deal with the random heat problem for
the temperature distribution 𝑢(𝑥, 𝑡) in a semi-infinite bar
with random temperature at the end 𝑥 = 0 and zero initial
temperature

𝑢
𝑡
(𝑥, 𝑡) = 𝐿𝑢

𝑥𝑥
(𝑥, 𝑡) , 𝑥 > 0, 𝑡 > 0, (41)

𝑢 (0, 𝑡) = 𝐴, 𝑡 > 0, (42)

𝑢 (𝑥, 0) = 0, 𝑥 > 0, (43)
where 𝐿 and 𝐴 both are independent positive 4-r.v.’s, satis-
fying properties to be specified later. Assume that problem
(41)–(43) admits a solution 2-s.p. 𝑢(𝑥, 𝑡)m.s. locally and m.s.
absolutely integrable, and let us denote

Fs [𝑢 (⋅, 𝑡)] (𝜉) = U (𝑡) (𝜉) , 𝜉 > 0, (44)
what means that 𝑢(𝑥, 𝑡) is regarded as a process of the active
variable 𝑥, for fixed 𝑡 > 0. By applying the random Fourier
sine transform to both members of (41) and properties of
Theorem 3, it follows that

Fs [𝑢𝑥𝑥 (⋅, 𝑡)] (𝜉) = 𝜉𝑢 (0, 𝑡) − 𝜉
2
Fs [𝑢 (⋅, 𝑡)] (𝜉)

= 𝐴𝜉 − 𝜉
2
U (𝑡) (𝜉) ,

(45)

and from Lemma 2,

Fs [𝑢𝑡 (⋅, 𝑡)] (𝜉) =
𝑑

𝑑𝑡
(U (𝑡) (𝜉)) . (46)

From condition (43), it follows that
Fs [𝑢 (⋅, 0)] (𝜉) = U (0) (𝜉) = 0. (47)
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Hence, the transformed problem becomes the following
random initial value problem for the variable 𝑡:

𝑑

𝑑𝑡
(U (𝑡) (𝜉)) + 𝐿𝜉

2
U (𝑡) (𝜉) = 𝜉𝐴𝐿, 𝑡 > 0,

U (0) (𝜉) = 0.

(48)

Let us assume that

Φ
𝐿
(𝑡) = E [𝑒𝑡𝐿] is locally bounded about 𝑡 = 0, (49)

being Φ
𝐿
(𝑡) the moment generating function of r.v. 𝐿. Then,

byTheorem 8 of [6], the solution s.p. of problem (48) is given
by

U (𝑡) (𝜉) =
𝐴

𝜉
−
𝐴

𝜉
𝑒
−𝑡𝜉
2
𝐿
. (50)

By using the random inverse Fourier sine transform (21),
one gets

𝑢 (𝑥, 𝑡) = F
−1

s [U (𝑡) (𝜉)] =
2𝐴

𝜋
{I
1
(𝑥) − I

2
(𝑥, 𝑡)} , (51)

where

I
1
(𝑥) = ∫

∞

0

sin (𝜉𝑥)
𝜉

𝑑𝜉,

I
2
(𝑥, 𝑡) = ∫

∞

0

𝑒
−𝑡𝜉
2
𝐿 sin (𝜉𝑥)

𝜉
𝑑𝜉.

(52)

Putting the substitution 𝜉𝑥 = 𝜏, we have

I
1
(𝑥) = ∫

∞

0

sin (𝜏)
𝜏

𝑑𝜏 =
𝜋

2
, (53)

and dealing with I
2
(𝑥, 𝑡), we have

I
2
(𝑥, 𝑡) = ∫

∞

0

𝑒
−𝑡(𝜏
2
/𝑥
2
)𝐿 sin (𝜏)

𝜏
𝑑𝜏. (54)

We start paying attention to the derivative with respect to
the variable 𝑥 of the s.p. I

2
(𝑥, 𝑡). Note that, under condition

(11), the property (13) holds:
󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
−𝑡𝐿𝜉
2󵄩󵄩󵄩󵄩󵄩󵄩2

≤ 𝑀̃𝑒
−𝐻𝑡𝜉
2

, 𝑡 > 0, (55)

for some positive constants 𝑀̃ and 𝐻. Hence, it is easy
to check that I

2
(𝑥, 𝑡) is m.s. uniformly convergent in a

neighbourhood [𝑥
0
−𝛿, 𝑥
0
+𝛿], 𝛿 > 0, of each 𝑥

0
> 0, 𝑡 > 0.

Note also that, from (55), the integral of the derivative
with respect to 𝑥 of the integrand of I

2
(𝑥, 𝑡) (see (52))

𝐽 (𝑥, 𝑡) = ∫

∞

0

𝑒
−𝑡𝜉
2
𝐿 cos (𝜉𝑥) 𝑑𝜉, (56)

is m.s. absolutely uniformly convergent in a neighbourhood
[𝑥
0
− 𝛿, 𝑥
0
+ 𝛿], 𝛿 > 0, of each 𝑥

0
> 0, 𝑡 > 0. Hence, for each

𝑥 > 0, 𝑡 > 0, (56) defines a 2-r.v. By Lemma 2, it follows that

𝜕I
2
(𝑥, 𝑡)

𝜕𝑥
= 𝐽 (𝑥, 𝑡) = ∫

∞

0

𝑒
−𝑡𝜉
2
𝐿 cos (𝜉𝑥) 𝑑𝜉. (57)

By [12, page 61], fixed 𝑥 > 0, 𝑡 > 0, each realization of
(56), denoted by 𝐽(𝑥, 𝑡)(𝜔), can be computed as follows:

𝐽 (𝑥, 𝑡) (𝜔) =
1

2
√

𝜋

𝑡𝐿 (𝜔)
𝑒
−𝑥
2
/4𝑡𝐿(𝜔)

,

𝑥 > 0, 𝑡 > 0, 𝜔 ∈ Ω.

(58)

Thus,

𝐽 (𝑥, 𝑡) =
1

2
√
𝜋

𝑡𝐿
𝑒
−𝑥
2
/4𝑡𝐿

, 𝑥 > 0, 𝑡 > 0. (59)

By (52) I
2
(0, 𝑡) = 0, the fundamental theorem of the m.s.

calculus [9, page 104] yields

I
2
(𝑥, 𝑡) = I

2
(0, 𝑡) + ∫

𝑥

0

𝜕I
2
(𝑠, 𝑡)

𝜕𝑠
𝑑𝑠

=
1

2
√
𝜋

𝑡𝐿
∫

𝑥

0

𝑒
−𝑠
2
/4𝑡𝐿

𝑑𝑠.

(60)

From (51), (53), and (60), one gets

𝑢 (𝑥, 𝑡) = 𝐴(1 −
1

√𝜋𝑡𝐿
∫

𝑥

0

𝑒
−𝑠
2
/4𝑡𝐿

𝑑𝑠) . (61)

Using the independence of r.v.’s𝐴 and 𝐿, one gets that the
expectation and the variance function of the solution s.p. are,
respectively,

E [𝑢 (𝑥, 𝑡)] = E [𝐴] (1 − 1

√𝜋𝑡
∫

𝑥

0

E [ 1

√𝐿

𝑒
−𝑠
2
/4𝑡𝐿

] 𝑑𝑠) ,

𝑥 > 0, 𝑡 > 0,

(62)

Var [𝑢 (𝑥, 𝑡)] = E [(𝑢 (𝑥, 𝑡))2] − (E [𝑢 (𝑥, 𝑡)])2, (63)

where

E [(𝑢 (𝑥, 𝑡))2] = E [𝐴2]

× (1 −
2

√𝜋𝑡
∫

𝑥

0

E [ 1

√𝐿

𝑒
−𝑠
2
/4𝑡𝐿

] 𝑑𝑠 +
1

𝜋𝑡

×∬

𝑥

0

E [ 1
𝐿
𝑒
−(𝑠
2

1
+𝑠
2

2
)/4𝑡𝐿

] 𝑑𝑠
1
𝑑𝑠
2
) .

(64)

Summarizing, the following result has been established.

Theorem 4. Let us consider the random heat problem given
by (41)–(43) where 𝐿 and 𝐴 are independent positive 4-r.v.’s.
Assume that 𝐿 also satisfies conditions (11) and (49). Then,
the solution stochastic process 𝑢(𝑥, 𝑡) of this problem is given
by (61). In addition, (62)–(64) are closed expressions for its
expectation and variance.

5. Random Heat Problem with Second
Kind Boundary Condition

This section deals with the random heat problem for the
temperature distribution 𝑢(𝑥, 𝑡) in a semi-infinite bar with
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zero initial temperature and where the heat flow 𝑢
𝑥
(0, 𝑡) at

the end 𝑥 = 0 is given by s.p. 𝑔(𝑡; 𝐵):

𝑢
𝑡
(𝑥, 𝑡) = 𝐿𝑢

𝑥𝑥
(𝑥, 𝑡) , 𝑥 > 0, 𝑡 > 0, (65)

𝑢
𝑥
(0, 𝑡) = 𝑔 (𝑡; 𝐵) , 𝑡 > 0, (66)

𝑢 (𝑥, 0) = 0, 𝑥 ≥ 0, (67)

where 𝐿 and 𝐵 both are independent 4-r.v.’s and 𝐿 is positive
and satisfies properties (11) and (49). We also assume that
𝑔(𝑡; 𝐵) is m.f. continuous. Assuming that problem (65)–(67)
admits a solution 2-s.p. 𝑢(𝑥, 𝑡) locally and absolutely m.s.
integrable, let us denote

Fc [𝑢 (⋅, 𝑡)] (𝜉) = U (𝑡) (𝜉) , 𝜉 > 0, (68)

which means that 𝑢(𝑥, 𝑡) is regarded as a process of the active
variable 𝑥, for fixed 𝑡 > 0. By applying the random Fourier
cosine transform to both members of (65) and properties of
Theorem 3, one gets

Fc [𝑢𝑥𝑥 (⋅, 𝑡)] (𝜉) = −𝑢
𝑥
(0, 𝑡) − 𝜉

2
Fc [𝑢 (⋅, 𝑡)] (𝜉)

= −𝑔 (𝑡; 𝐵) − 𝜉
2
U (𝑡) (𝜉) .

(69)

In addition, from (68) and (67), one gets

Fc [𝑢 (⋅, 0)] (𝜉) = U (0) (𝜉) = 0. (70)

By Lemma 2, we also have

Fc [𝑢𝑡 (⋅, 𝑡)] (𝜉) =
𝑑

𝑑𝑡
(U (𝑡) (𝜉)) . (71)

Thus, the transformed randomordinary initial value problem
in the variable 𝑡 becomes

𝑑

𝑑𝑡
(U (𝑡) (𝜉)) + 𝐿 𝜉

2
U (𝑡) (𝜉)

= −𝐿𝑔 (𝑡; 𝐵) , 𝑡 > 0,

U (0) (𝜉) = 0.

(72)

By using Theorem 8 of [6], the solution of (72) is given
by

U (𝑡) (𝜉) = −𝐿𝑒
−𝑡𝜉
2
𝐿
∫

𝑡

0

𝑔 (𝑠; 𝐵) 𝑒
𝑠𝜉
2
𝐿
𝑑𝑠, 𝑡 > 0. (73)

Taking in (73) the random inverse Fourier cosine transform
(22) and using Fubini theorem in normed spaces [17, page
175], it follows that

𝑢 (𝑥, 𝑡) = F
−1

c [U (𝑡) (𝜉)]

= −
2𝐿

𝜋
∫

∞

0

𝑒
−𝑡𝜉
2
𝐿
∫

𝑡

0

𝑔 (𝑠; 𝐵) 𝑒
𝑠𝜉
2
𝐿 cos (𝜉𝑥) 𝑑𝑠 𝑑𝜉

= −
2𝐿

𝜋
∫

𝑡

0

𝑔 (𝑠; 𝐵) {∫

∞

0

𝑒
−𝜉
2
(𝑡−𝑠)𝐿 cos (𝜉𝑥) 𝑑𝜉} 𝑑𝑠.

(74)

With the notation of (56), we have

𝑢 (𝑥, 𝑡) = −
2𝐿

𝜋
∫

𝑡

0

𝑔 (𝑠; 𝐵) 𝐽 (𝑥, 𝑡 − 𝑠) 𝑑𝑠, 𝑥 > 0, 𝑡 > 0.

(75)

For the sake of convenience, let us write

𝐽 (𝑥, 𝑡 − 𝑠) = ∫

∞

0

𝑒
−𝜉
2
(𝑡−𝑠)𝐿 cos (𝜉𝑥) 𝑑𝜉

= [𝜉√𝑡 − 𝑠 = ]]

=
1

√𝑡 − 𝑠
∫

∞

0

𝑒
−]2 𝐿 cos( ]𝑥

√𝑡 − 𝑠
) 𝑑].

(76)

Note that under condition (11), the random integral appearing
in (76) is m.s. absolutely uniformly convergent in a neigh-
bourhood [𝑥

0
− 𝛿, 𝑥

0
+ 𝛿], 𝛿 > 0, of each 𝑥

0
> 0, 𝑡 > 0.

Furthermore, from [12, page 61] each realization

∫

∞

0

𝑒
−]2𝐿(𝜔) cos( ]𝑥

√𝑡 − 𝑠
) 𝑑]

=
1

2
√

𝜋

(𝑡 − 𝑠) 𝐿 (𝜔)
𝑒
−𝑥
2
/4(𝑡−𝑠)𝐿(𝜔)

, 𝜔 ∈ Ω.

(77)

Hence, from (76)-(77), one gets

𝐽 (𝑥, 𝑡 − 𝑠) =
1

2
√

𝜋

(𝑡 − 𝑠) 𝐿
𝑒
−𝑥
2
/4(𝑡−𝑠)𝐿

, (78)

and from (75) it follows that

𝑢 (𝑥, 𝑡) = −√
𝐿

𝜋
∫

𝑡

0

𝑔 (𝑠; 𝐵)

√𝑡 − 𝑠
𝑒
−𝑥
2
/4(𝑡−𝑠)𝐿

𝑑𝑠

= [√𝑡 − 𝑠 = V]

= 2√
𝐿

𝜋
∫

√𝑡

0

𝑔 (𝑡 − V2; 𝐵) 𝑒−(𝑥/2V
√𝐿)
2

𝑑V,

𝑥 > 0, 𝑡 > 0.

(79)

Using the independence of r.v.’s𝐵 and𝐿, one computes the
expectation of the solution s.p. 𝑢(𝑥, 𝑡):

E [𝑢 (𝑥, 𝑡)] = 2

√𝜋
∫

√𝑡

0

E [𝑔 (𝑡 − V2; 𝐵)]

× E [√𝐿𝑒−(𝑥/2V√𝐿)
2

] 𝑑V.

(80)

Taking into account (63), the variance of 𝑢(𝑥, 𝑡) is com-
puted from (80) and

E [(𝑢 (𝑥, 𝑡))2]

=
4

𝜋
∬

√𝑡

0

E [𝑔 (𝑡 − V2
1
; 𝐵) 𝑔 (𝑡 − V2

2
; 𝐵)]

× E [𝐿𝑒−(𝑥/2V1V2√𝐿)
2

(V2
1
+V2
2
)
] 𝑑V
1
𝑑V
2
.

(81)

Summarizing, the following result has been established.
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Figure 1: Approximations for the expectation E[𝑢(𝑥, 𝑡)] (a), and the standard deviation √Var[𝑢(𝑥, 𝑡)] (b), on the spatial domain 0 ≤ 𝑥 ≤ 50

for some selected values in the time interval 0 < 𝑡 ≤ 100 in the context of Example 1.

Theorem 5. Let one consider the random heat problem given
by (65)–(67) where 𝐿 is a positive 4-r.v. satisfying conditions
(11) and (49). Let one assume that 𝑔(𝑡; 𝐵) is a mean fourth
continuous process depending on r.v. 𝐵 such that, for each
𝑡 > 0, the 4-r.v. 𝑔(𝑡; 𝐵) is independent of 𝐿. Then, the solution
stochastic process 𝑢(𝑥, 𝑡) of this problem is given by (79). In
addition, (80) together with (63) and (81) are closed expressions
for its expectation and variance.

6. Numerical Examples

Example 1. Let us consider problem (41)–(43) where the pos-
itive 4-r.v.’s 𝐿 and 𝐴 are assumed to follow a beta distribution
of parameters 𝛼 = 3 and 𝛽 = 1: 𝐿 ∼ 𝐵𝑒 (3; 1) and a
gamma distribution of parameters 𝛼 = 4 and 𝛽 = 8: 𝐴 ∼

Gamma (4; 8), respectively. We will assume that both r.v.’s are
independent. Note that 𝐿 satisfies condition (55) since it is
bounded (see Remark 1 and (11)–(13)). Furthermore, it is easy
to check that the moment generating function of r.v. 𝐿,Φ

𝐿
(𝑡),

satisfies

Φ
𝐿
(𝑡) = E [𝑒𝑡𝐿] = 3

(−2 + 2𝑒
𝑡
− 2𝑒
𝑡
𝑡 + 𝑒
𝑡
𝑡
2
)

𝑡3

𝑡→0

󳨀󳨀󳨀󳨀→ 1; (82)

hence, it is locally bounded about 𝑡 = 0. Therefore, by
Theorem 4 expression (61) is a solution s.p. of problem (41)–
(43). In Figure 1, we have plotted the expectation, E[𝑢(𝑥, 𝑡)],
and the standard deviation, √Var[𝑢(𝑥, 𝑡)], of the solution
s.p. on the spatial domain 0 ≤ 𝑥 ≤ 50 for some selected
values in the time interval 0 < 𝑡 ≤ 100. One observes the
average of temperature pulls out of zero as time increases and,
as a consequence, its variability, measured through standard
deviation, behaves analogously.

Example 2. Let us consider problem (65)–(67) where 𝐿 is
assumed to follow a beta distribution of parameters 𝛼 = 6

and 𝛽 = 8: 𝐿 ∼ 𝐵𝑒 (6; 8). Notice that 𝐿 is a positive 4-r.v. and
satisfies condition (11) because it is bounded. In addition, it is
straightforward to check that its moment generating function
is given by

Φ
𝐿
(𝑡) =

1235520

𝑡13
(3991680 − 3991680𝑒

𝑡

+ 2328480𝑡 + 1663200𝑒
𝑡
𝑡

+ 635040𝑒
2
− 302400𝑒

𝑡
𝑡
2
+ 105840𝑡

3

+ 30240𝑒
𝑡
𝑡
3
+ 11760𝑡

4
− 1680𝑒

𝑡
𝑡
4

+ 882𝑡
5
+ 42𝑒
𝑡
𝑡
5
+ 42𝑡
6
+ 𝑡
7
)

(83)

and satisfiesΦ
𝐿
(𝑡)
𝑡→0

󳨀󳨀󳨀󳨀→ 1; hence, it is locally bounded about
𝑡 = 0. Let us consider the boundary condition 𝑔(𝑡; 𝐵) = 𝑡𝐵,
where 𝐵 is a Gaussian 4-r.v. of mean 𝜇 = 4 and standard
deviation 𝜎 = 0.5, that is, 𝐵 ∼ 𝑁 (4; 0.5) independent
of r.v. 𝐿. Since E[𝐵4] = 3(0.5)

4
< ∞ (see [9, page 26]),

‖𝑔(𝑡; 𝐵) − 𝑔(𝑠; 𝐵)‖
4

= ‖𝐵‖
4
|𝑡 − 𝑠|

𝑡→ 𝑠

󳨀󳨀󳨀→ 0, 𝑔(𝑡; 𝐵) is m.f.
continuous. Hence, the hypotheses ofTheorem 5 are satisfied
and expression given by (79) is a solution s.p. of problem
(65)–(67). In Figure 2, we show, by means of a surface,
approximations on the spatial domain 0 < 𝑥 ≤ 8 to the
expectations and standard deviation according to (80), (63),
and (81) at different instants in the time interval 1 ≤ 𝑡 ≤ 10.
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Figure 2: Approximations for the expectation E[𝑢(𝑥, 𝑡)] (a), and the standard deviation √Var[𝑢(𝑥, 𝑡)] (b), on the spatial domain 0 < 𝑥 ≤ 8

for some values of time in the interval 1 ≤ 𝑡 ≤ 10 for the data of Example 2.

7. Conclusions

In this paper, we show that the well-known Fourier sine and
cosine transforms’ technique used in the deterministic case
can also be used to solve random heat problems with the
same quality answer. This fact requires the proof of the m.s.
operational rules for the random Fourier sine and cosine
transforms, as well as results about random ordinary differ-
ential equations obtained by the authors.

Thus, the paper opens a fruitful research activity in the
management of randompartial differential problems not only
with these random Fourier transforms but also with other
random transforms.
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[1] M.Necati Özişik,Boundary Value Problems of Heat Conduction,
Dover, New York, NY, USA, 1968.

[2] R. Chiba, “Stochastic heat conduction analysis of a functionally
grade annular disc with spatially random heat transfer coeffi-
cients,” Applied Mathematical Modelling, vol. 33, no. 1, pp. 507–
523, 2009.

[3] Y. Li and S. Long, “A finite element model based on statistical
two-scale analysis for equivalent heat transfer parameters of
composite material with random grains,” Applied Mathematical
Modelling, vol. 33, no. 7, pp. 3157–3165, 2009.
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