Open Access
2013 Positive Solutions to Fractional Boundary Value Problems with Nonlinear Boundary Conditions
Nemat Nyamoradi, Dumitru Baleanu, Tahereh Bashiri
Abstr. Appl. Anal. 2013(SI05): 1-20 (2013). DOI: 10.1155/2013/579740

Abstract

We consider a system of boundary value problems for fractional differential equation given by D 0 + β ϕ p ( D 0 + α u ) ( t ) = λ 1 a 1 ( t ) f 1 ( u ( t ) , v ( t ) ) , t ( 0,1 ) , D 0 + β ϕ p ( D 0 + α v ) ( t ) = λ 2 a 2 ( t ) f 2 ( u ( t ) , v ( t ) ) , t ( 0,1 ) , where 1 < α , β 2 , 2 < α + β 4 , λ 1 , λ 2 are eigenvalues, subject either to the boundary conditions D 0 + α u ( 0 ) = D 0 + α u ( 1 ) = 0 , u ( 0 ) = 0 , D 0 + β 1 u ( 1 ) - Σ i = 1 m - 2 a 1 i  D 0 + β 1 u ( ξ 1 i ) = 0 , D 0 + α v ( 0 ) = D 0 + α v ( 1 ) = 0 , v ( 0 ) = 0 , D 0 + β 1 v ( 1 ) - Σ i = 1 m - 2 a 2 i  D 0 + β 1 v ( ξ 2 i ) = 0 or D 0 + α u ( 0 ) = D 0 + α u ( 1 ) = 0 , u ( 0 ) = 0 , D 0 + β 1 u ( 1 ) - Σ i = 1 m - 2 a 1 i  D 0 + β 1 u ( ξ 1 i ) = ψ 1 ( u ) , D 0 + α v ( 0 ) = D 0 + α v ( 1 ) = 0 , v ( 0 ) = 0 , D 0 + β 1 v ( 1 ) - Σ i = 1 m - 2 a 2 i  D 0 + β 1 v ( ξ 2 i ) = ψ 2 ( v ) , where 0 < β 1 < 1 , α - β 1 - 1 0 and ψ 1 , ψ 2 : C ( [ 0,1 ] ) [ 0 , ) are continuous functions. The Krasnoselskiis fixed point theorem is applied to prove the existence of at least one positive solution for both fractional boundary value problems. As an application, an example is given to demonstrate some of main results.

Citation

Download Citation

Nemat Nyamoradi. Dumitru Baleanu. Tahereh Bashiri. "Positive Solutions to Fractional Boundary Value Problems with Nonlinear Boundary Conditions." Abstr. Appl. Anal. 2013 (SI05) 1 - 20, 2013. https://doi.org/10.1155/2013/579740

Information

Published: 2013
First available in Project Euclid: 26 February 2014

zbMATH: 1296.34027
MathSciNet: MR3070200
Digital Object Identifier: 10.1155/2013/579740

Rights: Copyright © 2013 Hindawi

Vol.2013 • No. SI05 • 2013
Back to Top