Abstract
We characterize the centre of the Banach lattice of Banach lattice $E$-valued continuous functions on the Alexandroff duplicate of a compact Hausdorff space in terms of the centre of $C(K,E)$, the space of $E$-valued continuous functions on . We also identify the centre of $C{D}_{0}(Q,E)=C(Q,E)+{c}_{0}(Q,E)$ whose elements are the sums of -valued continuous and discrete functions defined on a compact Hausdorff space without isolated points, which was given by Alpay and Ercan (2000).
Citation
Faruk Polat. "The Centre of the Spaces of Banach Lattice-Valued Continuous Functions on the Generalized Alexandroff Duplicate." Abstr. Appl. Anal. 2011 1 - 5, 2011. https://doi.org/10.1155/2011/604931
Information