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We characterize the centre of the Banach lattice of Banach lattice E-valued continuous functions
on the Alexandroff duplicate of a compact Hausdorff space K in terms of the centre of C(K,E),
the space of E-valued continuous functions on K. We also identify the centre of CD0(Q,E) =
C(Q,E) + c0(Q,E) whose elements are the sums of E-valued continuous and discrete functions
defined on a compact Hausdorff space Q without isolated points, which was given by Alpay and
Ercan (2000).

1. Preliminaries and Definitions

Throughout the paper, our terminology is mainly standard and a background on Riesz spaces
and Banach lattices may be obtained from [1] or [2]. In order to avoid trivial cases, we assume
that all topological spaces are nonempty and all Banach lattices are nonzero.

The centre of a Banach lattice E, denoted by Z(E), is the lattice of the linear operators,
T : E → E for which there exists a real number λ > 0 such that |Tx| ≤ λ|x| for all x ∈ E.
The operator norm of a central operator T is the minimum of those λ with this property. It
is well known that Z(E) equipped with the operator norm is an AM-space with order unit.
The order unit is identity operator I.

For a given locally compact Hausdorff space K and a Banach lattice E, C0(K,E)
denotes the space of all continuous functions f from K into E which vanish at infinity; that
is, there exists a compact set A ⊂ K such that ‖f(k)‖ < ε for each ε > 0 and k ∈ K \ A. We
consider this space to be normed by

∥
∥f

∥
∥ = sup

{∥
∥f(k)

∥
∥ : k ∈ K

}

, (1.1)
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and ordered by

f ≥ g ⇐⇒ f(k) ≥ g(k), ∀k ∈ K. (1.2)

One can show that C0(K,E) is a Banach lattice with these definitions.
Ercan and Wickstead [3] showed that the centre of C0(K,E) is isometrically Riesz

isomorhic to Cb(K,Z(E)s) the space of all functions f from K into Z(E) such that f is norm
bounded, continuous, and f(kα)(e) → f(k)(e) in E for each e ∈ E whenever kα → k in K.
Here, Z(E) is given the strong operator topology.

IfK is a compact Hausdorff space, thenC0(K,E) = C(K,E), whereC(K,E) is the space
of continuous functions f : K → E. Hence, the centre of C(K,E) can also be identified with
Cb(K,Z(E)s). We will use this identification in the sequel.

If K is a discrete topological space, then C0(K,E) is the space of E-valued bounded
functions f on K such that the set

{

k ∈ K : ε <
∥
∥f(k)

∥
∥
}

(1.3)

is finite for each ε > 0, and we will write c0(K,E) in this case.
Let Σ and Γ be compact Hausdorff and locally compact Hausdorff topologies on a

nonempty set K, respectively, such that Σ is coarser than Γ. These topologies on K will be
denoted byKΣ andKΓ. The compact Hausdorff topology onK×{0, 1} generated by the open
base A = A1 ∪ A2, where

A1 =
{

H × {1} : H is Γ-open
}

,

A2 =
{

G × {0, 1} \M × {1} : G is Σ-open, M is Γ-compact
} (1.4)

is called generalized Alexandroff duplicate of K and denoted by KΣ,Γ ⊗ {0, 1} (see [4]). When
Γ is discrete topology on K, the compact Hausdorff topological space KΣ,Γ ⊗ {0, 1} will be
denoted by A(K). The space A(K) was first considered by Engelking [5]. For K = [0, 1]
under the usual metric topology, A(K) was constructed by Alexandroff and Urysohn [6] as
an example of a compact Hausdorff space containing a discrete dense subspace. This space is
called the Alexandroff duplicate.

Note that K × {0} is a closed subspace of KΣ,Γ ⊗ {0, 1} and the map k → (k, 0) is a
homeomorphism betweenKΣ andK × {0}.

In [4], it is not proved that KΣ,Γ ⊗ {0, 1} is a compact Hausdorff space. We give the
proof here for the benefit of the reader.

Theorem 1.1. KΣ,Γ ⊗ {0, 1} is a compact Hausdorff space.

Proof. Consider an open cover {Oi}i∈I of KΣ,Γ ⊗ {0, 1}. By replacing each set in the cover by
a union of basic open neighborhoods of all points in the set, we can assume that the cover is
formed by basic open neighborhoods of the form

{Hα × {1}}α∈I ∪
{

Gγ × {0, 1} \Mγ × {1}}
γ∈Ω, (1.5)
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where Hα is a Γ-open set, Gγ is a Σ-open set, and Mγ is a Γ-compact set. It is easy to see that
{Gγ ×{0}}γ∈Ω is an open cover ofK×{0}, thus there is a finite subcoverGγ1 ×{0}, . . . , Gγn ×{0}.
Then,

Gγ1 × {0, 1} \Mγ1 × {1} ∪ · · · ∪Gγn × {0, 1} \Mγn × {1} (1.6)

misses only finitely many Γ-compact sets Mγ1 × {1}, . . . ,Mγn × {1}.
AsMγj (j = 1, 2, . . . , n) is compact, we have thatMγj ×{1} ⊂ ∪Hα ×{1}. So,Mγj ×{1} ⊂

∪n
p=1Hpj × {1}. Hence, if we add the corresponding open sets from the cover, then we obtain a

finite cover of the entire spaceKΣ,Γ ⊗ {0, 1}. Therefore,KΣ,Γ ⊗ {0, 1} is compact.
To show that KΣ,Γ ⊗ {0, 1} is Hausdorff, it is enough to show that (k, 0) and (k, 1) can

be separated. Let V be a Γ-open neighborhood of k such that clΓ(V ) (closure of V in KΓ) is
compact. Then,KΣ,Γ ⊗ {0, 1} \ (clΓ(V ) × {1}) and V × {1} are the separating open sets of (k, 0)
and (k, 1), respectively. This completes the proof.

If KΣ is a compact Hausdorff space without isolated points and KΓ is a discrete
topological space, then C(KΣ, E) ∩ c0(KΓ, E) = {0} and CD0(KΣ, E) = C(KΣ, E) ⊕ c0(KΓ, E) is
a Banach lattice under the pointwise ordering and supremum norm of the sums f + d, where
f ∈ C(KΣ, E) and d ∈ c0(KΓ, E). We refer to [7–9] for more detailed information on these
spaces. In [4], it is showed that CD0(KΣ, E) is isometrically Riesz isomorphic to C(A(K), E),
where A(K) is the Alexandroff duplicate ofK. We will use this identification in the sequel to
characterize the centre of the space CD0(KΣ, E).

2. Main Results

Let Σ and Γ be compact Hausdorff and locally compact Hausdorff topologies on K,
respectively, such that Σ is coarser than Γ, and let E be a Banach lattice. Then Cb∗ (KΣ, Z(E)s)
denotes the set of all norm bounded and continuous functions f from K into Z(E) such that
rαf(kα)(e) → rf(k)(e) in E for each e ∈ E whenever (kα, rα) → (k, r) in KΣ,Γ ⊗ {0, 1}.

We consider the vector space Cb(KΣ, Z(E)s) × Cb∗(KΣ, Z(E)s) equipped with coordi-
natewise algebraic operations, the order

0 ≤ (

f, d
) ⇐⇒ 0 ≤ f(k)(e), 0 ≤ f(k)(e) + d(k)(e) for each k ∈ K, (2.1)

and the norm

∥
∥
(

f, d
)∥
∥ = max

{∥
∥f(k) + rd(k)

∥
∥ : (k, r) ∈ K × {0, 1}}. (2.2)

The norm defined on Cb(KΣ, Z(E)s) × Cb∗(KΣ, Z(E)s) makes it a Banach space.
This is clear, as this norm is equivalent to standard products norms (we have, e.g.,
(1/2)max{‖f‖, ‖d‖} ≤ ‖(f, d)‖ ≤ (‖f‖ + ‖d‖)). This has no relation to Banach lattices, but it is
just a property of Banach spaces. The space Cb(KΣ, Z(E)s)×Cb∗ (KΣ, Z(E)s) is a lattice. This is
proved by computing |(f, d)| = (|f |, |f +d| − |f |), where the absolute values on the right-hand
side are pointwise. The norm defined onCb(KΣ, Z(E)s) ×Cb∗ (KΣ, Z(E)s) is a Riesz norm. This
is obvious from definitions. Therefore, the space Cb(KΣ, Z(E)s) × Cb∗ (KΣ, Z(E)s) is a Banach
lattice.
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Actually, the space Cb(KΣ, Z(E)s) × Cb∗(KΣ, Z(E)s) is isometrically Riesz isomorphic
to Cb(KΣ,Γ⊗{0, 1}, Z(E)s) the space of norm bounded, continuous functions f fromK×{0, 1}
intoZ(E) such that f(kα, rα)(e) → f(k, r)(e) inE for each e ∈ Ewhenever (kα, rα) → (k, r) in
KΣ,Γ ⊗ {0, 1} as the following shows.

Theorem 2.1. Cb(KΣ, Z(E)s) ×Cb∗(KΣ, Z(E)s) andC
b(KΣ,Γ⊗{0, 1}, Z(E)s) are isometrically Ries

isomorphic spaces.

Proof. Define the map

π : Cb(KΣ, Z(E)s) × Cb∗(KΣ, Z(E)s) −→ Cb(KΣ,Γ ⊗ {0, 1}, Z(E)s), (2.3)

by

π
(

f, d
)

(k, r)(e) = f(k)(e) + rd(k)(e), (2.4)

for each (k, r) ∈ K × {0, 1} and e ∈ E.
Let (kα, rα) → (k, r) in KΣ,Γ ⊗ {0, 1}. Then, kα → k in KΣ so that f(kα)(e) → f(k)(e)

and rαd(kα)(e) → rd(k)(e) in E for each e ∈ E. Hence, f(kα)(e) + rαd(kα)(e) → f(k)(e) +
rd(k)(e) in E for each e ∈ E so that the map π is well defined. It follows immediately that π
is an isometry, as π(f, d) agrees with f + d on K × {1} and with f on K × {0}. It is obvious
that π(f, d) ≥ 0 ⇔ (f, d) ≥ 0.

It remains to show that π is onto. Let h ∈ Cb(KΣ,Γ ⊗ {0, 1}, Z(E)s) be given. Define

f(k)(e) = h(k, 0)(e), d(k)(e) = h(k, 1)(e) − h(k, 0)(e), (2.5)

for each k ∈ K and e ∈ E. The norm boundedness of f and d follows directly from the norm
boundedness of h. If kα → k in KΣ, then (kα, 0) → (k, 0) in KΣ,Γ ⊗ {0, 1} so that

f(kα)(e) = h(kα, 0)(e) −→ h(k, 0)(e) = f(k)(e), (2.6)

in E for each e ∈ E, hence f ∈ Cb(KΣ, Z(E)s).
To show that d ∈ Cb∗(KΣ, Z(E)s), let (kα, rα) → (k, r) ∈ KΣ,Γ ⊗ {0, 1}. We now examine

the possibilities.
Suppose first that r = 1. Then, (rα) is eventually 1. As (kα, 0) → (k, 0) in KΣ,Γ ⊗ {0, 1},

we have rαd(kα)(e) → rd(k)(e) in E for each e ∈ E in this possibility.
Suppose now that (kα, rα) → (k, 0) and assume that rαd(kα)(e) does not converge to

zero in E. Then, there is a subnet (rαβ) of (rα) such that rαβ = 1 and ε < ‖d(kαβ)(e)‖ for each β
and for some ε > 0. On the other hand, since (kαβ , 1) → (k, 0) and (kαβ , 0) → (k, 0) in KΣ,Γ ⊗
{0, 1}, we have h(kαβ , 1)(e) → h(k, 0)(e) and h(kαβ , 0)(e) → h(k, 0)(e) so that d(kαβ)(e) =
h(kαβ , 1)(e) − h(kαβ , 0)(e) → 0. This contradiction shows that d ∈ Cb∗(KΣ, Z(E)s). It is clear
that π(f, d) = h, and this completes the proof.

SinceZ(C(KΣ, E)) and Z(C(KΣ,Γ ⊗{0, 1}, E)) can be identified with Cb(KΣ, Z(E)s) and
Cb(KΣ,Γ ⊗ {0, 1}, Z(E)s), respectively, we immediately have the following from the previous
theorem.
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Corollary 2.2. Z(C(KΣ,Γ ⊗ {0, 1}, E) and Z(C(KΣ, E)) × Cb∗(KΣ, Z(E)s) are isometrically Riesz
isomorphic spaces.

Let KΓ be a discrete topology, and let E be a Banach lattice. The set of all bounded
functions f : K → Z(E) such that the set {k : ε < ‖f(k)(e)‖ for all e ∈ E} is finite will be
denoted by c0(KΓ, Z(E)s).

Lemma 2.3. Let KΣ be a compact Hausdorff space, and let Γ be a discrete topology on K. Then,
Cb∗ (KΣ, Z(E)s) = c0(KΓ, Z(E)s).

Proof. Let f ∈ c0(KΓ, Z(E)s). Suppose that f /∈ Cb∗(KΣ, Z(E)s). Then, there exists a net (kα, 1)
in A(K) such that (kα, 1) → (k, 0) ∈ A(K) and ε < ‖f(kαβ)(e)‖ for some subnet (kαβ) of (kα),
ε > 0, and for each e ∈ E. So, (kαβ) has finite range which is a contradiction. Conversely,
assume that f ∈ Cb∗(KΣ, Z(E)s) but f /∈ c0(KΓ, Z(E)s). Then, there exist some e ∈ E and
a sequence (kn) such that ε < ‖f(kn)(e)‖ for each n and kn /=km whenever n/=m. Then,
there exists a subnet (knα) of kn such that (knα, 1) → (k, 0) so that f(knα)(e) → 0 which
is impossible and this completes the proof.

By Theorem 2.1 and the previous lemma, we have the following.

Theorem 2.4. Let KΣ be a compact Hausdorff space, and let Γ be a discrete topology on K. Then,
Cb(A(K), Z(E)s) and C

b(KΣ, Z(E)s) × c0(KΓ, Z(E)s) are isometrically Riesz isomorphic spaces.

As the centre of CD0(KΣ, E) can be identified with Cb(A(K), Z(E)s), we immediately
have Theorem 3.1 of [8] as follows.

Corollary 2.5. Let KΣ be a compact Hausdorff space without isolated points, and let Γ be a discrete
topology on K. Then, the centre of CD0(KΣ, E) and Z(C(KΣ, E)) × c0(KΓ, Z(E)s) are isometrically
Riesz isomorphic spaces.

Note that in the corollary above, if all the operators T ∈ Z(E) are norm attaining; that
is, there exists some e ∈ E with ‖e‖ = 1 such that ‖T‖ = ‖T(e)‖, then c0(KΓ, Z(E)s) can be
replaced by c0(KΓ, Z(E)).
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