Open Access
2011 Two-Parametric Conditionally Oscillatory Half-Linear Differential Equations
Ondřej Došlý, Simona Fišnarová
Abstr. Appl. Anal. 2011(SI1): 1-16 (2011). DOI: 10.1155/2011/182827


We study perturbations of the nonoscillatory half-linear differential equation (r(t)Φ(x'))'+c(t)Φ(x)=0, Φ(x):=|x|p-2x, p>1. We find explicit formulas for the functions r˙, c˙ such that the equation [(r(t)+λr˙(t))Φ(x')]'+[c(t)+μc˙(t)]Φ(x)=0 is conditionally oscillatory, that is, there exists a constant γsuch that the previous equation is oscillatory if μ-λ>γ and nonoscillatory if μ-λ<γ. The obtained results extend the previous results concerning two-parametric perturbations of the half-linear Euler differential equation.


Download Citation

Ondřej Došlý. Simona Fišnarová. "Two-Parametric Conditionally Oscillatory Half-Linear Differential Equations." Abstr. Appl. Anal. 2011 (SI1) 1 - 16, 2011.


Published: 2011
First available in Project Euclid: 12 August 2011

zbMATH: 1217.34054
MathSciNet: MR2771241
Digital Object Identifier: 10.1155/2011/182827

Rights: Copyright © 2011 Hindawi

Vol.2011 • No. SI1 • 2011
Back to Top